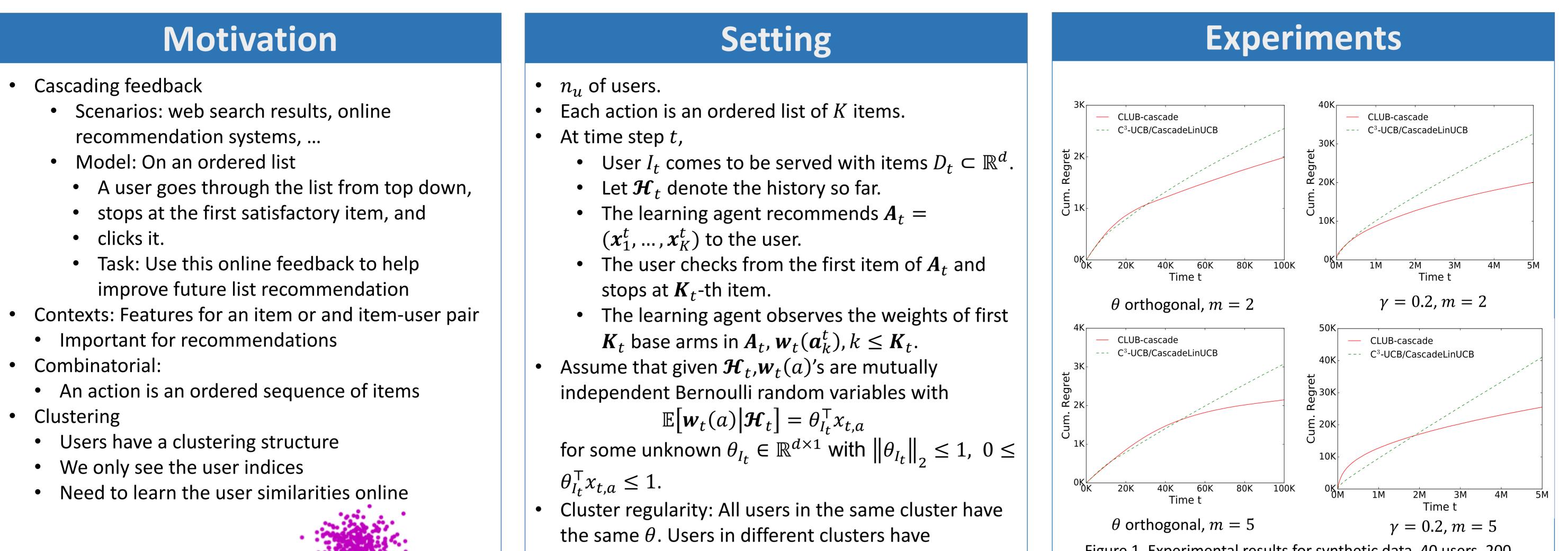
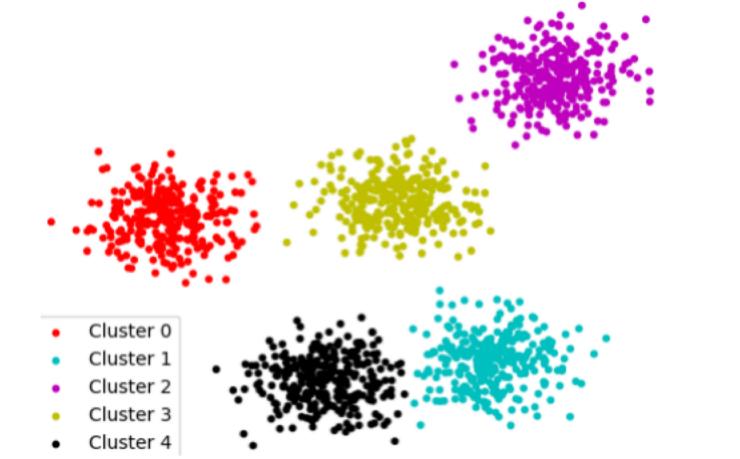


Online Clustering of Contextual Cascading Bandits

Shuai Li^{*1} Shengyu Zhang^{*1,2} 1. The Chinese University of Hong Kong. 2. Tencent





Algorithm: CLUB-cascade

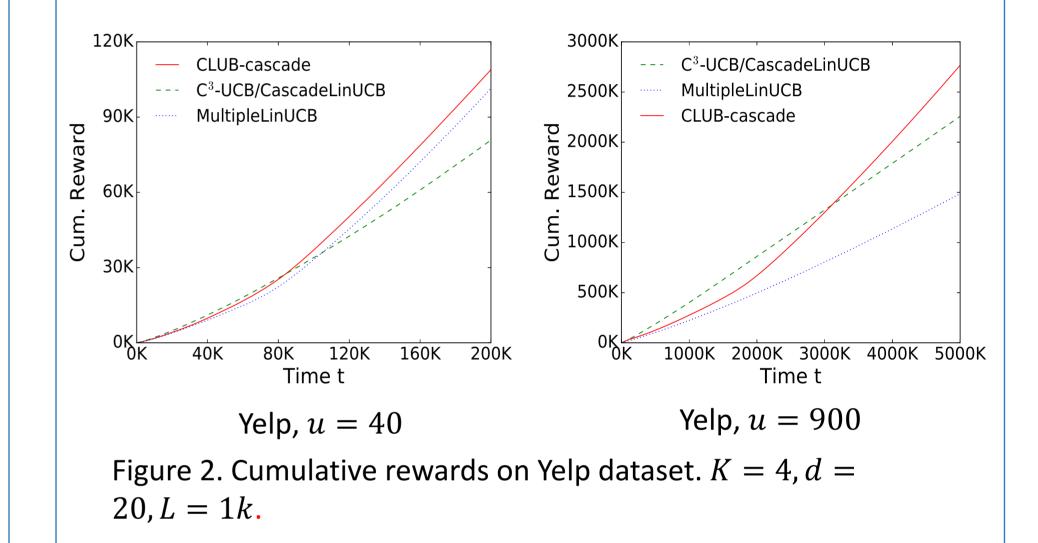
- 1. Parameters: $\lambda, \alpha, \beta > 0$
- Initialization:
 - *G* is a complete graph over users;
 - $S_i = 0_{d \times d}, b_i = 0_{d \times 1}, T_i = 0$ for any user *i*.

noticeably different θ 's:

 $\|\theta - \theta'\| \ge \gamma > 0.$

- User uniformness: At each time, the user is drawn uniformly from the set of all users, independently over the past.
- Item regularity. At each time step, the items are • drawn independently from a fixed distribution where $\mathbb{E}[xx^{\top}]$ has minimal eigenvalue $\lambda_x > 0$.
- The regret of action A on time t is $R(t,A) = f_t^* - f(A,w_t)$ where $f_t^* = \max_{A^*} f(A^*, w_t)$
- Task: Minimize the cumulative regret of *n* rounds $R(n) = \mathbb{E}\left[\sum_{t=1}^{n} R(t, A_t)\right].$

Figure 1. Experimental results for synthetic data. 40 users, 200 items, K = 4, d = 20.



- 3. For all t = 1, 2, ..., n do
 - 1) Obtain user index I_t and item set $D_t \subset \mathbb{R}^{d \times 1}$
 - 2) Find the connected component V_t of user I_t and compute

 $M = \lambda I + \sum_{i \in V_t} S_i, b = \sum_{i \in V_t} b_i, T = \sum_{i \in V_t} T_i$ 3) Compute Linear regression $\hat{\theta} = M^{-1}h$ 4) For any $x \in D_t$, compute exploitation $U_t(x) = \min\{\hat{\theta}^\top x + \beta \|x\|_{M^{-1}}, 1\}$ exploration 5) Recommend the K items with largest U_t values and observe K_t ; $w_t(x_k^t)$, $k \leq K_t$. 6) Update statistics $S_i = S_i + \sum_{k=1}^{K_t} x_{t,k} x_{t,k}^{\mathsf{T}}$, $b_i = b_i + x_{t,K_t} w_t(x_{t,K_t}),$ $T_i = T_i + K_t$ $\hat{\theta}_i = (\lambda I + S_i)^{-1} b_i$ 7) Delete edge (i, l) if $\left\|\widehat{\theta}_{i} - \widehat{\theta}_{l}\right\| \geq \alpha \left(\frac{\sqrt{\ln T_{i}}}{T_{i}} + \frac{\sqrt{\ln T_{l}}}{T_{i}}\right)$ End for *t*

Theoretical analysis

Theorem 1. Let $\beta = \sqrt{d \ln(1 + n/\lambda d)} + 2 \ln 4mn + \sqrt{\lambda}$ and $\alpha = 4\sqrt{d}/\lambda_{\chi}$. Then the regret of our algorithm, CLUB-cascade, satisfies $R(n) = O(d\sqrt{mnK}\ln n).$

Corollary 2. When the number of clusters m = 1, the regret satisfies

 $R(n) = O\left(\frac{d\sqrt{nK}}{\ln n}\right)$ which is better than the results in [2][3].

Theorem 3. Consider a generalized linear reward function

 $\mu(\theta_{I_t}^{\mathsf{T}} x_{t,a}),$

where μ is strictly increasing, continuously differentiable, and Lipschitz with constant κ . Let $c = \inf_{a \in [-2,2]} \mu'(a)$. Then the regret satisfies

$$R(n) = O\left(\frac{\kappa d}{c}\sqrt{mnK}\ln n\right)$$

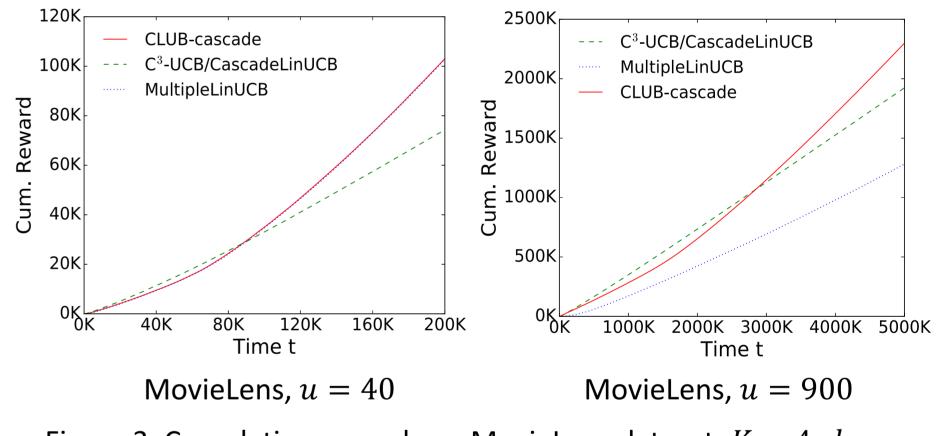


Figure 3. Cumulative rewards on MovieLens dataset. K = 4, d =20, L = 1k.

Conclusions

- Formulate Online Clustering of Contextual Cascading Bandits problem.
- Propose a CLUB-cascade algorithm that can learn clustering over users and, at the same time, effectively handle
 - contextual information
 - cascading feedback
- Theoretical analysis
- **Empirical evaluation**

Contact

Shuai Li Email: shuaili@cse.cuhk.edu.hk

Shengyu Zhang Email: syzhang@cse.cuhk.edu.hk

References

- 1. Gentile, Li, and Zappella. "Online clustering of bandits." Proceedings of the 31st International Conference on Machine Learning. 2014.
- 2. Li, Wang, Zhang, Chen. "Contextual combinatorial cascading bandits." International Conference on Machine Learning. 2016.
- 3. Zong, Ni, Sung, Ke, Wen, Kveton. "Cascading bandits for large-scale recommendation problems." Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2016.