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• Formulate Online Clustering of Contextual Cascading 
Bandits problem.

• Propose a CLUB-cascade algorithm that can learn 
clustering over users and, at the same time, 
effectively handle

• contextual information
• cascading feedback

• Theoretical analysis 
• Empirical evaluation

Conclusions

Theorem 1. .Let ! = # ln(1 + )/+#) + 2 ln 4/) + λ
and 1 = 4 #/+2. Then the regret of our algorithm, 
CLUB-cascade, satisfies

3 ) = 4 # /)5 ln ) .

Corollary 2. When the number of clusters / = 1, the 
regret satisfies 

3 ) = 4 # )5 ln )
which is better than the results in [2][3].

Theorem 3. Consider a generalized linear reward 
function

7 89:
;<=,? ,

where 7 is strictly increasing, continuously differentiable, 
and Lipschitz with constant @. Let A = inf?∈[FG,G] 7′(J). 
Then the regret satisfies

3 ) = 4
@#
A /)5 ln )

Theoretical analysis

Motivation
• Cascading feedback

• Scenarios: web search results, online 
recommendation systems, …

• Model: On an ordered list
• A user goes through the list from top down,
• stops at the first satisfactory item, and
• clicks it.
• Task: Use this online feedback to help 

improve future list recommendation
• Contexts: Features for an item or and item-user pair

• Important for recommendations
• Combinatorial:

• An action is an ordered sequence of items
• Clustering

• Users have a clustering structure
• We only see the user indices
• Need to learn the user similarities online

Algorithm: CLUB-cascade
1. Parameters: λ, 1, ! > 0

2. Initialization:
• M is a complete graph over users;
• NO = 0P×P, RO = 0P×S, TO = 0 for any user U.

3. For all V = 1,2, … , ) do
1) Obtain user index X= and item set Y= ⊂ ℝP×S
2) Find the connected component \= of user X=

and compute

] = λX +^
O∈_:

NO , R = ^
O∈_:

RO , T = ^
O∈_:

TO

3) Compute
8̀ = ]FSR

4) For any x ∈ Y=, compute
b= < = min 8̀;< + ! < def, 1

5) Recommend the 5 items with largest b= values 
and observe g=;i= jk= , l ≤ g=.

6) Update statistics

NO = NO +^
knS

g:
<=,k <=,k; ,

RO = RO + <=,o:p= <=,o: ,
TO = TO + 5=
8̀O = +X + NO FSRO

7) Delete edge (U, q) if

8̀O − 8̀s ≥ 1
ln TO
TO

+
ln Ts
Ts

End for V

Linear regression
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exploration
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Setting
• )u of users.
• Each action is an ordered list of 5 items.
• At time step V,

• User X= comes to be served with items Y= ⊂ ℝP.
• Let v= denote the history so far.
• The learning agent recommends w= =
(jS= , … , jo= ) to the user.

• The user checks from the first item of w= and 
stops at g=-th item.

• The learning agent observes the weights of first 
g= base arms in w=, i= xk= , l ≤ g=.

• Assume that given v=,i= J ’s are mutually 
independent Bernoulli random variables with

y i= J zv= = 89:
;<=,?

for some unknown 89: ∈ ℝ
P×S with 89: G

≤ 1, 0 ≤
89:
;<=,? ≤ 1.

• Cluster regularity: All users in the same cluster have 
the same 8. Users in different clusters have 
noticeably different 8’s:

8 − 8′ ≥ { > 0.
• User uniformness: At each time, the user is drawn 

uniformly from the set of all users, independently 
over the past.

• Item regularity. At each time step, the items are 
drawn independently from a fixed distribution where 
y <<; has minimal eigenvalue +2 > 0.

• The regret of action | on time V is
3 V, | = }=∗ − } |,p=

where }=∗ = max
Ä∗

} |∗, p=
• Task: Minimize the cumulative regret of ) rounds

3 ) = y ^
=nS

Å
3 V, w= .

8 orthogonal, / = 2 { = 0.2, / = 2

8 orthogonal, / = 5 { = 0.2, / = 5
Figure 1. Experimental results for synthetic data. 40 users, 200 
items, 5 = 4, # = 20.

Yelp, É = 40 Yelp, É = 900
Figure 2. Cumulative rewards on Yelp dataset. 5 = 4, # =
20, Ö = 1l.

MovieLens, É = 40 MovieLens, É = 900
Figure 3. Cumulative rewards on MovieLens dataset. 5 = 4, # =
20, Ö = 1l.


