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• First work, generalizes existing settings
• Also considers cascade triggering case
• Lower bound
• Upper bound, match with probability 1

Conclusions

Lower Bounds
• Let 𝑖 = 1 be the best arm
• An algorithm is consistent if 𝑅% 𝑇 = 𝑜 𝑇( for any 
𝑎 > 0

• Let 𝑝-./ be the probability that there is a directed path 
from 𝑖 to 𝑗 in a random realizaaon of 𝐺

One-Step Triggering
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Theorem. For any consistent algorithm, the regret 
saasfies

limI→K
𝑅% 𝑇
log 𝑇

≥ infP∈Q % 𝑐, ∆ 𝜇

• Recovers exisang works for 𝑝 ≡ 1

Cascade Triggering 
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One-Step Triggering
• 𝑉W: the set of exploraaon nodes that have the largest 

live probabiliaes among all incoming edges to some 𝑗
• 𝑝-W: the minimum exploraaon probability of 𝑖

Theorem. The regret saasfies for any 𝜖 > 0,

𝑅 𝑇 = 𝑂 log(𝑇):
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holds with probability 1.
• Matched lower bound

Cascade Triggering 
• b𝑉W = 𝑖: 𝑝-./ ≥

>
C
max
-U

𝑝-U.
/ for some 𝑗

a relaxed version of 𝑉W

• 𝑝̂-W = min 𝑝-./ : 𝑝-./ ≥
>
C
max
-U

𝑝-U.
/ for some 𝑗

a relaxed version of 𝑝-W

Theorem. The regret saasfies for any 𝜖 > 0,

𝑅 𝑇 = 𝑂 :
-Z>

[

∆- 𝜃 max
ijI

𝑐- 𝜃, 𝜖, 𝜂 𝑡 log 𝑡 + log(𝑇) :
-∈m8^

∆- 𝜃
n𝑝-W

and

limI→K
𝑅 𝑇
log 𝑇 ≤ 4 a infP∈QU % 𝑐, ∆ 𝜃

holds with probability 1.
• Matched lower bound

Results

MoBvaBon
• Full informaaon

(complete graph)

• Bandit feedback
(only self-loops)

• Graph feedback
can cover full informaaon and bandit semngs

• Moavaang examples:
• Recommend island A would infer user’s 

preference of island B
• Influence spread of seed A would infer influence 

ability of neighbor B

• Probabilisac graph

Setting
• 𝑉 = [𝐾] set of acaons
• 𝐸 ⊆ 𝑉×𝑉 set of directed edges
• 𝑝: 𝐸 → (0,1] triggering probabiliaes
• 𝜇 = 𝜇- -∈8 unknown reward distribuaons
• 𝜃 = 𝜃- -∈8 unknown reward means

• At ame 𝑡,
• The environment draws a random reward 

vector 
𝑟i = 𝑟i 𝑖 : 𝑖 ∈ 𝑉

with 𝑟i 𝑖 ~𝜇- and a random graph 𝐺i = 𝑉, 𝐸i
with 𝑖, 𝑗 ∈ 𝐸 is acave with probability 𝑝-.

• The learner selects acaon 𝑖i ∈ 𝑉 and observes
One-Step Triggering
𝑗, 𝑟i 𝑗 if and only if 𝑖, 𝑗 ∈ 𝐸i

Cascade Triggering
𝑗, 𝑟i 𝑗 if and only if there is a path 𝑖 → 𝑗 in 𝐺i

• The learner receives reward 𝑟i 𝑖i

• Assumpaons
1. Observability:

For each acaon 𝑗, there is an edge 𝑖, 𝑗 ∈ 𝐸 for 
some 𝑖

2. Reward distribuaons are of same type:
𝐾𝐿 𝜇-, 𝜇. is well-defined

3. Conanuity:
For each 𝜇-, 𝜇. and 𝜖, there exists 𝜇-/ such that
𝜃 𝜇- + 𝜖 ≤ 𝜃 𝜇-/ ≤ 𝜃 𝜇- + 2𝜖
𝐾𝐿 𝜇., 𝜇-/ − 𝐾𝐿 𝜇., 𝜇- ≤ 𝐵𝜖

• Minimize the expected regret of 𝑇 rounds

𝑅%(𝑇; 𝐺) = 𝑇max
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Algorithms
• 𝑁- 𝑡 : selected ames of acaon 𝑖
• 𝑀. 𝑡 = ∑-∈8;<(.) 𝑁- 𝑡 𝑝-.
• 𝑛-. 𝑡 : observaaon ames of acaon 𝑗 when selecang 

acaon 𝑖
• 𝑚. 𝑡 = ∑- 𝑛-. 𝑡

• 𝑁W 𝑡 : number of exploraaon rounds on 𝜃

One-Step Triggering
1. 𝑁W = 0; b𝜃 = (1,1, … , 1)
2. For all 𝑡 = 1,2, … , 𝑇 do

Gap between probabilisac graph and realizaaons
1) If 𝑚. < 𝑀./2, play 𝑖i ∈ argmax-∈8;< . 𝑝-.

Exploitaaon
2) Else if �(i)

��� i
∈ 𝐶 b𝜃 , play 𝑖i = 𝑖> b𝜃

Forced exploraaon
3) Else if 𝑀. < 2𝛽 𝑁W /𝐾, play 𝑖i ∈ 𝑉-� 𝑗 and 

increase 𝑁W by 1
Exploraaon by linear programming

4) Play 𝑖i = 𝑖 such that 
𝑁- < 16𝑐 b𝜃 log 𝑡

and increase 𝑁W by 1

Cascade Triggering 
• The computaaon of 𝑝-./ is #𝑃-hard
• Approximate them by 𝑝-./ (𝑡)
• Run above algorithm on �𝐺i with 𝑝-./ (𝑡)
• Details omiped

Sublinear auxiliary funcaon

a. Cyclic feedback graph
𝜃 = 0.5 + ∆, 0.5, … , 0.5

b. A random feedback graph
𝜃 = 0.6,0.5, … , 0.5

Experiments

Best arm’s reward
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Approximation rate of 𝑝-./


