

John Hopcroft Center for Computer Science

Improved Algorithm on Online Clustering of Bandits

Shuai Ll

Shanghai Jiao Tong University

was in

The Chinese University of Hong Kong

joint work with

Wei Chen, S Li, Kwong-Sak Leung

Motivation – Reinforcement Learning

Motivation -- Multi-armed Bandits

• A special case of Reinforcement Learning

Multi-armed Bandits

- There are *L* arms
 - Each arm a has an unknown reward distribution with unknown mean $\alpha(a)$
 - The best arm is $a^* = \operatorname{argmax}_a \alpha(a)$

- At each time *t*
 - The learning agent selects an arm a_t
 - Observes the reward $X_{a_t,t}$

Multi-armed Bandits (Continued)

- The objective is to minimize the regret in *T* rounds $R(T) = T \cdot \alpha(a^*) - \mathbb{E}\left[\sum_{t=1}^T \alpha(a_t)\right]$
- Balance the trade-off between exploitation and exploration
 - Exploitation: select arms that yield good results so far
 - Exploration: select arms that have not been tried much before

Contextual Multi-armed Bandits

- Contexts
 - User profiles, search key words
 - Important for search, recommendations
- Usually suppose each arm a has a feature representation $x_{a,t} \in \mathbb{R}^d$
 - Contexts could change over time
- The reward mean is $\alpha_t(a) = \theta^{\top} x_{a,t}$
 - for some fixed but unknown weight vector $\boldsymbol{\theta}$

Online Clustering of Bandits

- Drawbacks of simple contextual bandits
 - They assume the weight vector θ is the same for all users
- Online clustering of bandits
 - Users with strong ties (like friendship) usually have similar interests
 - Assume
 - Users within the same cluster have the same θ
 - Users of different clusters have weight gap $\|\theta_i \theta_j\| \ge \gamma$
 - Find clustering adaptively as well as recommending

Existing Problems

- They assume the user distribution is uniform
- If generalizing the algorithm to arbitrary distribution over users
 - Their algorithm is much inefficient
 - The regret will depend on the minimal user frequency

•
$$R(T) = O\left(d\sqrt{mT}\ln T + \frac{1}{p_{\min}\gamma^2\lambda_x^3}\ln T\right)$$

Our Work – SCLUB (set-based clustering of bandits)

- Generalize the setting to allow arbitrary distribution over users
- Split a user out of the current cluster if we finds *inconsistency*

• Merge two good clusters together

Results

• Regret

$$R(T) = O\left(d\sqrt{mT}\ln T + \left(\frac{1}{\gamma_p^2} + \frac{n_u}{\gamma^2 \lambda_x^3}\right)\ln T\right)$$

• compared to
$$R(T) = O\left(d\sqrt{mT}\ln T + \frac{1}{p_{\min}\gamma^2\lambda_x^3}\ln T\right)$$

Experiments – Synthetic

- 1000 users, 10 clusters, randomly generated weight vectors, d = 20
- (a) uniform distribution over users
- (b) arbitrary distribution over clusters
- (c) arbitrary distribution over users

Experiments – Real Datasets

- 1000 users, d = 20
- (a)(c) uniform distribution over users
- (b)(d) arbitrary distribution over users
- ---Ours ---CLUB ----LinUCB-One ----LinUCB-Ind

Future Work

- Asymmetric relationships between users
 - Recommendations for low-frequency users can use information (or feedback) from high-frequency users, but not vice versa
 - Nested clusters
- Use the same idea to improve the collaborative filtering bandits
- Generalize the collaborative filtering bandits to the setting of changing item set

Thanks!

Questions?