Improved Algorithm on Online Clustering of Bandits

Shuai Li
Shanghai Jiao Tong University

was in
The Chinese University of Hong Kong
joint work with
Wei Chen, S Li, Kwong-Sak Leung
Motivation – Reinforcement Learning

AlphaGo, AlphaStar
Motivation -- Multi-armed Bandits

• A special case of Reinforcement Learning
Multi-armed Bandits

• There are L arms
 • Each arm a has an unknown reward distribution with unknown mean $\alpha(a)$
 • The best arm is $a^* = \arg\max_a \alpha(a)$

• At each time t
 • The learning agent selects an arm a_t
 • Observes the reward $X_{a_t,t}$
Multi-armed Bandits (Continued)

• The objective is to minimize the regret in T rounds

$$ R(T) = T \cdot \alpha(a^*) - \mathbb{E} \left[\sum_{t=1}^{T} \alpha(a_t) \right] $$

• Balance the trade-off between exploitation and exploration
 • Exploitation: select arms that yield good results so far
 • Exploration: select arms that have not been tried much before
Contextual Multi-armed Bandits

• Contexts
 • User profiles, search key words
 • Important for search, recommendations

• Usually suppose each arm a has a feature representation $x_{a,t} \in \mathbb{R}^d$
 • Contexts could change over time

• The reward mean is $\alpha_t(a) = \theta^T x_{a,t}$
 • for some fixed but unknown weight vector θ
Online Clustering of Bandits

• Drawbacks of simple contextual bandits
 • They assume the weight vector θ is the same for all users

• Online clustering of bandits
 • Users with strong ties (like friendship) usually have similar interests
 • Assume
 • Users within the same cluster have the same θ
 • Users of different clusters have weight gap $\|\theta_i - \theta_j\| \geq \gamma$
 • Find clustering adaptively as well as recommending
Existing Problems

• They assume the user distribution is uniform

• If generalizing the algorithm to arbitrary distribution over users
 • Their algorithm is much inefficient
 • The regret will depend on the minimal user frequency
 • \(R(T) = O\left(d \sqrt{mT \ln T} + \frac{1}{p_{\min} \gamma^2 \lambda^3} \ln T \right) \)
Our Work – SCLUB (set-based clustering of bandits)

• Generalize the setting to allow arbitrary distribution over users

• Split a user out of the current cluster if we finds inconsistency

• Merge two good clusters together
Results

• Regret

\[R(T) = O \left(d \sqrt{mT} \ln T + \left(\frac{1}{\gamma_p^2} + \frac{n_u}{\gamma^2 \lambda_x^3} \right) \ln T \right) \]

• compared to \(R(T) = O \left(d \sqrt{mT} \ln T + \frac{1}{\rho \min \gamma^2 \lambda_x^3} \ln T \right) \)
Experiments – Synthetic

• 1000 users, 10 clusters, randomly generated weight vectors, $d = 20$
• (a) uniform distribution over users
• (b) arbitrary distribution over clusters
• (c) arbitrary distribution over users

- Ours --- CLUB --- LinUCB-One --- LinUCB-Ind
Experiments – Real Datasets

• 1000 users, $d = 20$
• (a)(c) uniform distribution over users
• (b)(d) arbitrary distribution over users

- Ours
- CLUB
- LinUCB-One
- LinUCB-Ind
Future Work

• Asymmetric relationships between users
 • Recommendations for low-frequency users can use information (or feedback) from high-frequency users, but not vice versa
 • Nested clusters

• Use the same idea to improve the collaborative filtering bandits

• Generalize the collaborative filtering bandits to the setting of changing item set
Thanks!
&
Questions?