
Experiments
• Yandex dataset
• The dataset is recorded over 27 days
• Each record contains 

• a query ID
• the day when the query occurs
• 10 displayed items as a response to the query
• the corresponding click indicators of each 

displayed items

• Logged dataset %
• any records except day &
• '( is the empirical distribution over %

• Evaluation policy ℎ
• Take the records of day &
• ℎ is the empirical distribution of these records
• The value *(ℎ) is the average CTR for these 

records

• Prediction errors on 100 most frequent queries as a 
function of clipping parameter -

• Records of . = 2 or 3 positions

• Records of . = 10 positions with DCG value

• The performance of list estimator deteriorates 
fast with more positions

• The IP estimator performs best
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• We propose various estimators for the expected 
number of clicks on lists generated by ranking 
policies that leverage the structure of click models

• We prove that our estimators are better than the 
unstructured list estimators, in the sense that they 
are less biased and have better guarantees for policy 
optimization

• Our estimators consistently outperform the list 
estimator in our experiments

Conclusions

Proposition 1.[Unbiased in a larger class of policies] 
Let ℋ2 contains all policies such that 3*2 is unbiased, for 
any 4 ∈ {7, 9:, 9, :;-}. Then ℋ= ⊆ ℋ?@ ⊆ ℋ?/ℋ@BC.

Proposition 2.[Lower bias in estimating policy]
DE 3*= ≤ DE 3*?@ ≤ DE 3*? /DE 3*@BC ≤ *(ℎ)

Proposition 3.[Policy optimization]
Suppose Gℎ2 is the best policy under 3*2, for any 4 ∈
{7, 9:, 9, :;-}. Then the lower bound on Gℎ2 is at least 
as high as that on Gℎ=.

Analysis

Motivation
• Recommendations happen everywhere, such as 

Amazon, Facebook, Adobe Stock, Google Play, Netflix

• Suppose the existing policy (

with the expected CTR * (
• Can we verify a new policy ℎ

satisfies * ℎ ≥ * ( based on logged data under 
policy (?

Setting
• Ground set I = {1,… , 7} of 7 items
• A list is a .-permutation of I, which is an element of

K
L
I = { MN, … , ML : MN, … , ML ∈ I; MQ ≠ MS, T ≠ U}

• Context set V
• WX(M, Y|[): the expected CTR of putting item M in

position Y under context [
• A policy ( is a conditional probability distribution of 

a list given context [: ((\ |[)

• The reward of list ]

^ ],X = _
`aN

L

X(M`, Y)

• The value of a policy
* ( = Db[Dd~f \ [ ^(], WX(\ |[))]

• At each time h
• the environment draws context [i and click 

realizations Xi
• The learner observes [i and selects ]i

according to policy (
• The environment reveals Xi(M`

i , Y) `aN
L

• Logged dataset: % = [i, ]i, Xi iaN
j

• Objective
• To design statistically efficient estimators based 

on logged dataset for any ranking policy

• Challenge
• The number of different lists is exponential in .
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Click Models & Estimators
• List estimator [Strehl’2010]
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'(: estimates of the logging policy
• Disadvantages:

• Have to match the exact lists. The number of lists is 
extremely large, thus '((]|[) is very small

• With click-model assumptions, we can build estimators 
that leverage structures of click feedback

• Document-Based Click Model (DCTR): 
• WX(M, Y|[) only depends on item M
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• Item-Position Click Model (IP): 
• WX M, Y [ depends on both item M and position Y
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• Rank-Based Click Model (RCTR): 
• WX(M, Y|[) only depends on position Y
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• Position-Based Click Model (PBM): 
• WX M, Y [ = p M [ q Y [
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(b) 100 Queries: K = 3
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(a) 100 Queries: K = 2
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(c) 100 Queries: K = 10, DCG
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