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Motivation

Amazon, Facebook, Netflix
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Motivation

Production Policy π

Number of clicks: V(π) = 1

Hypothetical Policy h

Number of clicks: V(h) = 2

• How can we know V(h) = 2 ?

Search “London” @ Adobe Stock
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Directly Implementing New Policy h

Risks for directly implementing new
policy h
• Expensive
• Uses a portion of live users and
poor policy might harm user
experience

• Not replicable

Can we know V(h) = 2 without directly implementing it?

Offline Evaluation!
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Setting

• Lists: A = (a1, . . . ,aK)

· · ·
• The value of list A with the click realization w:

V(A;w) =
K∑
k=1

w(ak, k)

• The value of a policy h:

V(h) = Ex,w,A∼h(·|x) [V(A;w)]
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Setting

• Suppose the clicks depend only on (item, position) pairs
• The CTR of putting item a at k-th position under context x is

w̄(a, k | x)

• The expected value of A

V(A) =
K∑
k=1

w̄(ak, k | x)
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Setting (Problem Definition)

Logged dataset S = {(xt,At,wt)}nt=1

• At each time t
• The environment draws context xt and click realizations wt
• The learner observes xt and selects At according to policy π
• The environment reveals {wt(atk, k)}Kk=1

Objective

• To design statistically efficient estimators based on logged
dataset for any ranking policy

Challenge

• The number of different lists is exponential in K
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Existing Method - Direct Method

• Direct Method

V̂(h) = 1
n

n∑
t=1

∑
a

K∑
k=1

h(a, k | xt) ŵ(a, k | xt)

• Can be used to evaluate any policy
• Unstable when the number of observations for some item is
small

• No theoretical guarantee for known computationally efficient
method for some click models
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ExistingMethod - Unstructured List Estimator [Strehl et al. 2010]

• Importance sampling (for list level)

V(h) = EA∼h[V(A)]

= EA∼h
[
V(A) · π(A)

π(A)

]
= EA∼π

[
V(A) · h(A)

π(A)

]

• List estimator

V̂L(h) =
1
|S|

∑
(x,A,w)∈S

V(A;w) min
{
h(A | x)
π̂(A | x) , M

}
Trade-off between
bias and variance

Empirical distribu-
tion over logged
data 8



List Estimator - Disadvantages

• Disadvantages
• Have to match the exact lists
• The number of lists is exponential in K, thus π̂(A | x) is very small

3 2 1

4 5 2

1 3 4

...

Logged Data Test List

4 5 2

1 3 2 X

Click No Click
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Document-Based Click Model (DCTR)

• w̄(a, k | x) only depends on item a, for any context x

3 2 1

4 5 2

1 3 4

...

Logged Data

Test List

1 3 2

1 2

3

1 2

3 4 4 5
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Estimators for DCTR

• DCTR: w̄(a, k | x) only depends on item a for any context x

V̂I(h) =
1
|S|

∑
(x,A,w)∈S

K∑
k=1

w(ak, k) min
{
h(ak | x)
π̂(ak | x)

, M
}

• List estimator

V̂L(h) =
1
|S|

∑
(x,A,w)∈S

K∑
k=1

w(ak, k) min
{
h(A | x)
π̂(A | x) , M

}
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Estimators for Click Models

Click Model Assumption Estimator
Random w̄(a, k | ·) constant V̂R
Rank-Based w̄(a, k | ·) only depends on position k V̂R
Document-Based w̄(a, k | ·) only depends on item a V̂I
Position-Based w̄(a, k | ·) = µ(a | ·)p(k | ·) V̂PBM
Item-Position w̄(a, k | ·) V̂IP

12



Analysis

Proposition (Unbiased in a larger class of policies)
The structured estimators are unbiased in a larger class of policies
than list estimator.

Proposition (Lower bias in estimating policy)
The structured estimators have lower bias than list estimator.

Proposition (Better guarantee for policy optimization)
The best policy found by structured estimators have better
theoretical guarantees than that by list estimator.
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Experiments

• Recorded over 27 days
• Each record contains

• A query ID
• The day when the query
occurs

• 10 displayed item as a
response to the query

• The corresponding click
indicators of each displayed
items

• Logged dataset S
• Any record except day d
• π̂ is the empirical
distribution over S

• Evaluation policy h
• Records of day d
• h is the empirical
distribution over these
records

• V(h) is the average CTR for
these records
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Experiments - Example Query with K = 3
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(b) Query 11655238: K = 3

RCTR

Item

IP

PBM

List

• Structured estimators better
• Tuning of M matters
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Experiments - 100 Most Frequent Queries with K = 2
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(a) 100 Queries: K = 2
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• IP estimator improves 18% over list estimator
• IP estimator improves 13% over RCTR estimator
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Experiments - 100 Most Frequent Queries with K = 3
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(b) 100 Queries: K = 3
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• IP estimator improves 46% over list estimator
• IP estimator improves 13% over RCTR estimator
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Experiments - 100 Most Frequent Queries with K = 10, DCG
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(c) 100 Queries: K = 10, DCG
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• IP estimator improves 82% over list estimator
• IP estimator improves 11% over RCTR estimator
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Conclusions

• We propose various estimators for the expected number of
clicks on lists generated by ranking policies that leverage the
structure of click models

• We prove that our estimators are better than the unstructured
list estimators

• Less biased
• Better guarantees for policy optimization

• Our estimators consistently outperform the list estimator in
experiments
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