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Overview
• Introduction to imitation learning

• Core methods of imitation learning

• Advanced works on imitation learning

• Connection between imitation learning and GANs
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Where does the Reward Function Come from?

• Frequently easier to provide expert data than reasonable reward 
function

• Inverse reinforcement learning: infer reward function from 
demonstrations (rollouts) of expert policy

Slide credit Sergey Levine3



Imitation Learning for Auto-driving

https://techcrunch.com/2019/12/12/waymo-buys-latent-logic-drives-deeper-into-simulation-and-europe/ 4

https://techcrunch.com/2019/12/12/waymo-buys-latent-logic-drives-deeper-into-simulation-and-europe/


Images from Stephane Ross 

Imitation Learning in a Nutshell
• Given: demonstrations or demonstrator
• Normally without any reward signals 

• Goal: train a policy to mimic demonstrations
• And achieve good policy performance 

Agent Experience (s, a, r, s’, a’) tuples Reinforcement Learning

Expert Demonstrations (s, a) pairs Imitation Learning
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Imitation Learning Approaches on 
Super Tux Kart

https://www.youtube.com/watch?v=V00npNnWzSU 6



What is Imitation Learning
• Where from?
• Learning from expert demonstration (LfD)
• Try to imitate from the expert demonstrations 

LfD

Imitation
Learning

Apprenticeship 
学徒

Learning

Behavior
Cloning

Inverse
RL

(General) Imitation Learning
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What is Imitation Learning
General setting (in this lecture):
• The learning agent

1. can obtain pre-collected trajectories ((s,a) pairs) from 
uninteractive expert 

2. can interact with the environments (with simulators) 
3. cannot access reward signals
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What is Imitation Learning
Other optional settings
• No actions and only state / observations -> 

Imitation Learning From Observations (ILFO)
• With reward signals -> Imitation Learning with 

Rewards
• Interactive expert for correctness and data 

aggregation -> On-policy Imitation Learning (begin 
as Dagger, Dataset Aggregation)
• Cannot interact with Environments -> A special case 

of Batch RL (data in Batch RL can contain more than 
expert demos)
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What is Imitation Learning

More Considerations
• Imitation loss
• Suboptimal demonstrations 
• Partial demonstrations (e.g., weak feedback)
• Domain transfer (e.g., few-shot learning) 
• Structured domains (e.g., multi-agent systems, 

structured prediction) 
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What is Imitation Learning
• When we necessarily want IL?
• Hard to define the reward in some tasks
• Hand-crafted rewards can lead to unwanted behavior

• What we want from IL?
• Less interact with the real-world environments with 

expert demonstrations to improve sample efficiency and 
learn good policies
• A fast and not bad policy initialization
• A good solution that is robust to environment’s slight 

changes (compared to RL normally overfitting the env)
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Applications

Helicopter Acrobatics [1,2] Robotics Arm [3]

Sports Analysis [4] Robotics Movement [5]

12



Formulation
• Notation & setup 1
• State: 𝑠

• State may only be partially observed, i.e., o
• Action: 𝑎 
• Policy: 𝜋 

• Policy maps states to actions: 𝜋 𝑠 → 𝑎
• or distributions over actions: 𝜋(𝑠) → 𝑃(𝑎)

• State transition dynamics: 𝑃(𝑠’|𝑠, 𝑎)	
• Typically not known to policy
• Essentially the simulator/environment 
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Formulation
• Notation & setup 2 
• Rollout: sequentially execute 𝜋(𝑠!) on an initial state 

• Produce trajectory 𝜏 = (𝑠!, 𝑎!, 𝑠", 𝑎", … )	

• 𝑃(𝜏|𝜋) : distribution of trajectories induced by a policy
• 1. Sample 𝑠! from 𝜌! (distribution over initial states), initialize 
𝑡 = 0

• 2. Sample action 𝑎#  from 𝜋(𝑠#) 
• 3. Sample next state 𝑠#$"	from applying 𝑎#  to 𝑠#  (requires 

access to environment)
• 4. Repeat from Step 2 with	𝑡 = 𝑡 + 1	

14



Formulation
• Notation & setup 3
• 𝑃 𝑠 𝜋 → 𝜌"(𝑠):	distribution of states induced by a 

policy 

𝜌%(𝑠) = 1 − 𝛾 4
#&!

'

𝛾# 𝑃(𝑠# = 𝑠|𝜋)

• 𝑃 𝑠, 𝑎 𝜋 → 𝜌"(𝑠, 𝑎):	distribution of state-action pairs 
induced by a policy (known as occupancy measure)

𝜌%(𝑠, 𝑎) = 1 − 𝛾 4
#&!

'

𝛾# 𝑃(𝑠# = 𝑠, 𝑎# = 𝑎|𝜋)

𝜌%(𝑠, 𝑎) = 𝜋(𝑎|𝑠)𝜌%(𝑠)
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Formulation & Example 1
• Observation 𝑠	= game screen 
• Action 𝑎 = turning angle 
• Training set 𝐷 = {𝜏 = [ 𝑠, 𝑎 ]} from an expert policy 𝜋*
• Goal: learn a good policy 𝜋(𝑠) → 𝑎 that achieves high value
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Formulation & Example 1
• NGSim dataset

Light Traffic

Ramp In

Heavy Traffic

: History Data Replay : Policy Controlled Agent
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Formulation & Example 2
• Observation 𝑠	= location of players & ball
• Action 𝑎 = next location of player
• Training set 𝐷 = {𝜏 = [ 𝑠, 𝑎 ]} from an expert policy 𝜋*
• Goal: learn a good policy 𝜋(𝑠) → 𝑎 that achieves high value

Right Image from Yisong Yue18



Formulation & Example 2

https://github.com/linouk23/NBA-Player-Movements19



Formulation & Example 2
• Observation 𝑠	= location of players & ball
• Action 𝑎 = next location of player
• Training set 𝐷 = {𝜏 = [ 𝑠, 𝑎 ]} from an expert policy 𝜋*
• Goal: learn a good policy 𝜋(𝑠) → 𝑎 that achieves high value
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Formulation & Example 2
• Nantes vs. Lyon. Red/Blue are real trajectory. Yellow is the 

generated

21



Overview
• Introduction to imitation learning

• Core methods of imitation learning

• Advanced works on imitation learning

• Connection between imitation learning and GANs
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Core Methods
• Behavior Cloning (BC)
• Learn a direct mapping from states/contexts to

trajectories/actions without recovering the reward
function

• Inverse Reinforcement Learning (IRL)
• Finds a reward function which makes expert trajectories 

better than others

• Generative Adversarial Imitation Learning (GAIL)
• Apply GAN under the structure of IRL to make close the 

two occupancy measures between the expert and the 
agent
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General Imitation Learning

• 𝑙 denotes some loss function or some distance metric
• Distribution of 𝑠 depends on rollout from 𝜋
• 𝑃 𝑠 𝜋 → 𝜌"(𝑠):	distribution of states sampled by a 

policy

• Objective

• Problem
• Cannot get access to the expert during sampling!

𝜌%(𝑠) = 1 − 𝛾 4
#&!

'

𝛾# 𝑃(𝑠# = 𝑠|𝜋)
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Behavioral Cloning

• Learning objective of BC

• Distribution provided exogenously
• Essentially a Maximum Likelihood Estimation (MLE) on

single step

• Compared with the original objective
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Distributional 
Shift

Limitations of Behavioral Cloning

The problem is like a common problem
in supervised learning, but more serious

𝜌!"

𝑠, 𝑎 !

𝜌#

𝑠 𝜋

IID Assumption 
(Supervised Learning) 

Reality
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Limitations of Behavioral Cloning

When 𝜋6  makes a mistake, i.e., starts to diverge 
from the expert
• New state sampled not from 𝜌() ! 
• Worst case is catastrophic! 
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Limitations of Behavioral Cloning

Images from Stephane Ross 
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Imitation Learning vs. Supervised Learning

• The solution may have important structural 
properties including constraints (for example, robot 
joint limits), dynamic smoothness and stability, or 
leading to a coherent, multi-step plan 
• The interaction between the learner’s decisions 

and its own input distribution (an on-policy versus 
off-policy distinction) 
• Along side of the policy similarity, IL further cares 

about the policy performance

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From 
Theory to Algorithms. Cambridge University Press, 2014. 
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When to use BC?

• Advantages
• Simple
• Efficient

Slide credit to Yisong Yue

• Disadvantages
• State distribution mismatch 

between training and test
• No long-term planning

• When to use
• 1-step deviations not 

too bad
• Learning reactive 

behaviors
• Expert trajectories 

“cover” state space

• When not to use
• 1-step deviations can lead 

to catastrophic error
• Optimizing long-term 

objective
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• DAgger: Dataset Aggregation
• train 𝜋*(𝑎+, 𝑜+) from a human data

𝒟 = 𝑜,, 𝑎,, … , 𝑜-, 𝑎- .
• run 𝜋*(𝑎+|𝑜+) to get dataset 𝒟" = 𝑜,, 𝑎,, … , 𝑜-, 𝑎- .
• Ask human to label states in 𝒟" with action 𝑎+.
• Aggregate 𝒟 ← 𝒟 ∪ 𝒟"

BC with Dataset Aggregation

• Samples from a stable trajectory distribution
• Learning from a stabilizing controller (with noise)

• Add more on-policy data
• e.g. DAgger

Stéphane Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTATS 2011.

Human-in-the-loop IL
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Illustration of DAgger

Problems:
• execute an unsafe/partially 

trained policy 
• repeatedly query the expert

32



Inverse Reinforcement Learning

• Given:
• State 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
• (sometimes) transitions
𝑝(𝑠’|𝑠, 𝑎)

• Samples {𝜏!} sampled from
𝜋∗(𝜏!)

• Learn 𝑟! 𝑠, 𝑎  

• Then use it to learn 𝜋∗(𝑎|𝑠)

• Given:
• State 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
• (sometimes)

transitions 𝑝(𝑠’|𝑠, 𝑎)
• Reward function
𝑟(𝑠, 𝑎)

• Learn 𝜋∗(𝑎|𝑠)

“Forward” RL Inverse RL

Linear reward function

r (s, a) =
X

i

 ifi =  T f(s, a)

Neural net reward function
r (s, a)s

a Parameters 𝜓
33



Inverse Reinforcement Learning
• Objective

• looks for a reward function 𝑟∗ under which the expert
policy is the optimal solution.

• Need to recover 𝑟∗
• Principle: expert is optimal, i.e., find r* such that

Abbeel P, Ng A Y. Apprenticeship learning via inverse reinforcement learning. ICML 2004.

This is ambiguous
and the solution of r 
may not be unique

• Usually with a bi-level optimization
• Outer loop: find r

• Inner loop: train policy 𝜋 with r
• Check whether 𝑉 𝜋∗ − 𝑉 𝜋  is minimized 

𝑟∗ = argmax
%
𝔼 8

&'#

(
𝛾&𝑟 𝑠, 𝑎 |𝜋∗ − 𝔼 8

&'#

(
𝛾&𝑟 𝑠, 𝑎 |𝜋
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Sample adaptively to estimate 𝑍
[by constructing a policy]
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Generative Adversarial Imitation Learning

• Review the occupancy measure of each policy interacting 
with the environment

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016.

Agent

Dynamic Environment Data

𝜌" 𝑠, 𝑎 = (1 − 𝛾)𝔼#~" % ,	%!~((%,#) 4
+,-

.
𝛾+	𝑝(𝑠+ = 𝑠, 𝑎+ = 𝑎)

• Theorem 1: for two policies 𝜋,, 𝜋=	and their occupancy 
measures 𝜌"! , 𝜌"" , it has 𝜌"! = 𝜌"" 	iff	𝜋, = 𝜋= 
• Theorem 2: given an occupancy measure 𝜌, the only policy 

generating 𝜌 is 𝜋> = 𝜌(𝑠, 𝑎)/∑?# 𝜌(𝑠, 𝑎′)
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Generative Adversarial Imitation Learning

• GAIL: match the occupancy measures with GAN

• GAN

• Occupancy measure is analogous to the data 
distribution
• Discriminator D distinguishes between the 

distribution of data generated by G (𝜋 in GAIL) and 
the true data distribution (𝜋;  in GAIL) 

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016.

min
)
max
*

𝔼)! log𝐷(𝑠, 𝑎) + 𝔼) log(1 − 𝐷 𝑠, 𝑎 ) − 𝜆𝐻(𝜋)

min
+
max
*

𝔼,~."#$# log𝐷(𝑥) + 𝔼,~+ log(1 − 𝐷 𝑥 )
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GAIL Algorithm

• GAIL alternates between
• An Adam gradient step of w to increase the objective of D
• A TRPO step of 𝜃 to decrease the objective of D

Objective of D:

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016. 43



GAIL Experiments

GAIL

Ho J, Ermon S. Generative adversarial imitation learning. NIPS 2016. 44
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• Core methods of imitation learning
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• Connection between imitation learning and GANs
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Recent Works
• One-pass IL methods with fixed reward function
• First estimate the reward then apply a forward RL

procedure
• Set the reward with specific intention

• Soft Q imitation Learning (SQIL)
• Random Expert Distillation (RED)
• Disagreement-Regularized Imitation Learning (DRIL)
• Energy-Based Imitation Learning (EBIL)

46



Soft Q Imitation Learning (SQIL)
• Reward definition
• Expert data 𝑟 𝑠∗, 𝑎∗ = 1
• New interaction data 𝑟 𝑠, 𝑎 = 0

• Off-policy Learning
• A replay buffer initialized with expert data
• Then add new interaction data (50% each)
• RL algorithm: Soft Q-Learning (or Soft Actor-Critic)

Reddy S, Dragan A D, Levine S. SQIL: imitation learning via regularized behavioral cloning. ICLR 2020. 47



Random Expert Distillation (RED)
• Random Network Distillation (RND) for exploration
• Fit a randomly initialized neural network 𝑓*(𝑠, 𝑎)
• Use the MSE prediction error as the intrinsic reward

Wang R, et al. Random expert distillation: Imitation learning via expert policy support estimation. ICML 2019.

• Similar idea for imitation learning

• Then run an RL algorithm with the reward function
Reward is high on familiar state-actions of expert

Burda, Yuri, et al. Exploration by random network distillation. 2018.

𝑓/0 𝑠, 𝑎 − 𝑓0 𝑠, 𝑎 1

M𝜃 = argmin
0%

𝑓0% 𝑠, 𝑎 − 𝑓0 𝑠, 𝑎 1 	 |	𝒟

𝑟 Q = exp −𝜎 𝑓/0 𝑠, 𝑎 − 𝑓0 𝑠, 𝑎 1
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• Motivation
• Policy should move towards the expert data distribution if it is 

away from it
• How to train the policy?

• Variance (uncertainty) minimization
• Minimizing variance encourages the policy to return to 

regions of dense coverage by the expert, where the variance 
is low

• How to estimate the variance?
• Ensemble (bagging) of policies
• The disagreement in imitation serves as the prediction 

variance
• Clipped reward definition

Disagreement-Regularized IL (DRIL)

Brantley K et al. Disagreement-Regularized Imitation Learning. ICLR 2020.

𝐶2
3456 𝑠, 𝑎 = V−1	 if	𝐶2(𝑠, 𝑎) ≤ 𝑞

+1	 otherwise

𝐶2 𝑠, 𝑎 = Var)~.(8|𝒟) 𝜋(𝑎|𝑠)
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Energy-Based imitation Learning (EBIL)

• Motivation
• Estimate the energy (can be regarded as an

unnormalized density) of expert’s occupancy measure
and use it as the surrogate reward to run an RL
algorithm

• This can be regarded as minimizing the KL-divergence:

Liu M et al. Energy-Based Imitation Learning. AAMAS 2021. 50
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GAN: A Minimax Game

G
D

Real World

Generator

Discriminator

Data

The joint objective function

max
*

𝐽(𝐺, 𝐷)min
+
max
*

𝐽(𝐺, 𝐷)

52



Connection between GAN and IL
• Analogy to Imitation learning

• In imitation learning, a value function is learned from expert data to 
guide the policy optimization

• In GAN, a discriminator is trained with real (positive) data and 
generated (negative) data to guide the generator optimization

• One step generation: stateless or one-step MDP

Generator as a policy Discriminator as a reward
Data instance
as an action

Real data instance as an expert action

𝐺6(𝑥) 𝐷<(𝑥)

𝑥

a𝑥
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Connection between GAN and IL
• Analogy to Imitation learning

• In imitation learning, a value function is learned from expert data to 
guide the policy optimization

• In GAN, a discriminator is trained with real (positive) data and 
generated (negative) data to guide the generator optimization

• Multi-step generation: MDP

Generator as a policy Discriminator as a value
Data instance
as a trajectory

Real data instance as an expert trajectory

𝑥<…>

𝐺6(𝑥=|𝑥>…=?>) 𝐷<(𝑥)a𝑥<…>
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GAN and RL on Learning Rules
For continuous data/action
• Deterministic policy 

gradient (DPG)

For discrete data/action
• Stochastic policy gradient 

(PG)

• GAN for continuous 
data

• GAN for discrete data

𝜕𝐽(𝜋0)
𝜕𝜃 = 𝔼,~?&

𝜕𝑄)(𝑠, 𝑎)
𝜕𝑎

𝜕𝜋0(𝑠)
𝜕𝜃 |@')'(")

𝜕𝐽(𝐺0 , 𝐷)
𝜕𝜃 = 𝔼,~.(A)

𝜕𝐽(𝐺0 , 𝐷(𝑥))
𝜕𝑥

𝜕𝐺0(𝑧)
𝜕𝜃 |,'+'(A)

𝜕𝐽(𝜃)
𝜕𝜃 = 𝔼)'

𝜕 log 𝜋0(𝑎|𝑠)
𝜕𝜃 𝑄)'(𝑠, 𝑎)

𝜕𝐽(𝐺0 , 𝐷)
𝜕𝜃 = 𝔼,~+'

𝜕 log𝐺0(𝑥)
𝜕𝜃 𝐷(𝑥)
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IRL & GAN & Energy-based Models
• Guided cost learning optimizes 

the MaxEnt IRL objective:

Finn C, Christiano P, Abbeel P, et al. A connection between generative adversarial networks, 
inverse reinforcement learning, and energy-based models. arXiv 2016.

• GAN with this discriminator:

• It can be proved that

56

𝑝0 𝜏 =
1
𝑍 exp −𝑐0(𝜏)

𝐿BC"& 𝜃 = 𝔼D~. − log 𝑝0(𝜏)

𝐷0 𝜏 =
1
𝑍 exp −𝑐0(𝜏)

1
𝑍 exp −𝑐0(𝜏) + 𝜋(𝜏)

𝐿* 𝜃 = 𝔼D~. − log𝐷0(𝜏) + 𝔼D~E − log 1 − 𝐷0(𝜏)

𝜕0𝐿BC"& 𝜃 = 𝜕0𝐿* 𝜃



• MaxEnt IRL essentially aims to recover the expert’s
energy with maximizing the likelihood on the whole
trajs -> need to estimate the partition function 𝑍

• EBIL proposes that one can use any kind of method
to estimate the expert’s energy first, showing much 
high efficiency and flexibility

EBIL & MaxEnt IRL
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Summary of Imitation Learning
• Imitation learning is important when reward function is 

unavailable or hard to properly define
• Behavior cloning is straightforward and easy to implement, 

but suffer from distribution shift or exposure bias
• Inverse RL first recover the underlying reward of the expert 

from the trajectory and then perform RL to obtain the policy, 
but suffer from high-complexity of bi-level optimization
• GAIL aims to match the occupancy measures with GAN
• IL & GAN are highly related. You can say GAN is IL for data 

generation tasks
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Open Questions of IL
• Problems related to algorithms 
• How to generalize skills with complex conditions? 
• How to find solutions with guarantees? 
• How to scale up with respect to the number of 

dimensions? 
• How to find globally optimal solutions in high dimensional 

spaces? How to make it tractable? 
• How to perform imitation by multiple agents? 
• How to perform incremental/active learning in IRL? 

• Performance evaluation 
• How to establish benchmark problems for imitation 

learning? 
• What metric should be used to evaluate imitation 

learning methods? 
59
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