

Model-based Reinforcement Learning

A Perspective of Overall Pathway of DRL

- Deep reinforcement learning gets appealing success
 - Atari, AlphaGo, DOTA 2, AlphaStar

Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-1.pdf

A Perspective of Overall Pathway of DRL

- Deep reinforcement learning gets appealing success
 - Atari, AlphaGo, DOTA 2, AlphaStar
- But DRL has very low data efficiency
 - Trial-and-error learning for deep networks
- A recent popular direction is model-based RL
 - Build a model p(s', r|s, a)
 - Based on the model to train the policy
 - So that the data efficiency could be improved

Interaction between Agent and Environment

Real env.

- Real environment
 - State dynamics p(s'|s, a)
 - Reward function r(s, a)

Interaction between Agent and Env. Model

- Env. model
- Real environment
 - State dynamics p(s'|s,a)
 - Reward function r(s, a)
- Environment model
 - State dynamics $\hat{p}(s'|s,a)$
 - Reward function $\hat{r}(s, a)$

Model-free RL v.s. Model-based RL

- Model-based RL
 - On-policy learning once the model is learned
 - May not need further real interaction data once the model is learned (batch RL)
 - Always show higher sample efficiency than MFRL
 - Suffer from model compounding error
- Model-free RL
 - The best asymptotic performance
 - Highly suitable for DL architecture with big data
 - Off-policy methods still show instabilities
 - Very low sample efficiency & require huge amount of training data

Model-based RL: Blackbox and Whitebox

Model as a Blackbox

- Seamless to policy training algorithms
- The simulation data efficiency may still be low
- E.g., Dyna-Q, MPC, MBPO

\sim (*s*, *a*, *r*, *s*')

Model as a Whitebox

- Offer both data and gradient guidance for value and policy
- High data efficiency
- E.g., MAAC, SVG, PILCO

$$\rightarrow \frac{\partial V(s')}{\partial s'} \frac{\partial s'}{\partial a} \frac{\partial a}{\partial \theta} |_{s' \sim f_{\phi}(s,a)}$$

 $\sim (s, a, r, s')$

Focus of today's talk

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Model-based RL

Annotations based on Rich Sutton's figure

Q-Planning

- Random-sample one-step tabular Q-planning
 - First, learn a model p(s',r|s,a) from experience data
 - Then perform one-step sampling by the model to learn the Q function

Do forever:

- 1. Select a state, $S \in S$, and an action, $A \in \mathcal{A}(s)$, at random
- Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
 Apply one-step tabular Q-learning to S, A, R, S':

 $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$

• Here model learning and reinforcement learning are separate

Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Do forever:

- (a) $S \leftarrow \text{current}$ (nonterminal) state
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Execute action A; observe resultant reward, R, and state, S' (d) $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment) (f) Repeat *n* times:

 $S \leftarrow$ random previously observed state

 $A \leftarrow \text{random}$ action previously taken in S

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$

Sutton, Richard S. "Integrated architectures for learning, planning, and reacting based on approximating dynamic programming." *Machine Learning Proceedings 1990*. Morgan Kaufmann, 1990. 216-224.

Dyna-Q on a Simple Maze

Key Questions of Deep MBRL

- How to properly train the deep model based on the agent-environment interaction data?
- Inevitably, the model is to-some-extent inaccurate. When to trust the model?
- How to effectively use the model to better train our policy?
- Does the model really help improve the data efficiency?

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Shooting Methods

Model can also be used to help decision making when interact with environment. For the current state s_0 :

• Given an action sequence of length T:

 $[a_0, a_1, a_2, \dots, a_T]$

• we can sample trajectory from the model:

 $[s_0, a_0, \hat{r}_0, \hat{s}_1, a_1, \hat{r}_1, \hat{s}_2, a_2, \hat{r}_2, \dots, \hat{s}_T, a_T, \hat{r}_T]$

 And then choose the action sequence with highest estimated return:

$$\widehat{Q}(s,a) = \sum_{t=0}^{T} \gamma^t \widehat{r}_t \qquad \qquad \pi(s) = \arg \max_a \widehat{Q}(s,a)$$

Random Shooting (RS)

- The action sequences are randomly sampled
- Pros:
 - implementation simplicity
 - lower computational burden (no gradients)
 - no requirement to specify the task-horizon in advance
- Cons: high variance, may not sample the high reward action
- A refinement: Cross Entropy Method (CEM)
 - CEM samples actions from a distribution closer to previous action samples that yield high reward

PETS: Probabilistic Ensembles with Trajectory Sampling

Model	uncertainty	uncertainty
Baseline Models		
Deterministic NN (D)	No	No
Probabilistic NN (P)	Yes	No
Deterministic ensemble NN (DE)	No	Yes
Gaussian process baseline (GP)	Homoscedastic	Yes
Our Model		
Probabilistic ensemble NN (PE)	Yes	Yes

Alestoric

Enistemic

$$\mathrm{loss}_{\mathrm{P}}(oldsymbol{ heta}) = -\sum_{n=1}^{N} \log \widetilde{f}_{oldsymbol{ heta}}(oldsymbol{s}_{n+1} | oldsymbol{s}_n, oldsymbol{a}_n)$$

Gaussian NN $\widetilde{f} = \Pr(\boldsymbol{s}_{t+1} | \boldsymbol{s}_t, \boldsymbol{a}_t) = \mathcal{N}(\boldsymbol{\mu}_{\theta}(\boldsymbol{s}_t, \boldsymbol{a}_t), \boldsymbol{\Sigma}_{\theta}(\boldsymbol{s}_t, \boldsymbol{a}_t))$

- Probabilistic ensemble (PE) dynamics model is shown as an ensemble of two bootstraps
 - Bootstrap disagreement far from data captures epistemic 认知的 uncertainty: our subjective uncertainty due to a lack of data (model variance)
 - Each probabilistic neural network captures aleatoric 偶然的 uncertainty (stochastic environment)

PETS: Probabilistic Ensembles with Trajectory Sampling

• The trajectory sampling (TS) propagation technique uses our dynamics model to re-sample each particle (with associated bootstrap) according to its probabilistic prediction at each point in time, up until horizon *T*

Trajectory Propagation

PETS: Probabilistic Ensembles with Trajectory Sampling

• Planning:

At each time step, MPC algorithm computes an optimal action sequence by sampling multiple sequences, applies the first action in the sequence, and repeats until the task-horizon.

Planning via Model Predictive Control

PETS Algorithm

Algorithm 1 Our model-based MPC algorithm '*PETS*':

- 1: Initialize data D with a random controller for one trial.
- 2: for Trial k = 1 to K do
- Train a *PE* dynamics model f given \mathbb{D} . 3:
- for Time t = 0 to TaskHorizon do 4:
- 5: for Actions sampled $a_{t:t+T} \sim \text{CEM}(\cdot)$, 1 to NS amples do
- Propagate state particles $\boldsymbol{s}_{\tau}^{p}$ using *TS* and $f|\{\mathbb{D}, \boldsymbol{a}_{t:t+T}\}$. Evaluate actions as $\sum_{\tau=t}^{t+T} \frac{1}{P} \sum_{p=1}^{P} r(\boldsymbol{s}_{\tau}^{p}, \boldsymbol{a}_{\tau})$ 6:
- 7:
- 8: Update $CEM(\cdot)$ distribution.
- Execute first action a_t^* (only) from optimal actions $a_{t:t+T}^*$. 9:
- Record outcome: $\mathbb{D} \leftarrow \mathbb{D} \cup \{s_t, a_t^*, s_{t+1}\}.$ 10:

PETS Experiments

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Bound based on Model & Policy Error

- Branched rollout
 - Begin a rollout from a state under the previous policy's state distribution $d_{\pi_D}(s)$ and run k steps according to π under the learned model p_{θ}
- Dyna can be viewed as a special case of k = 1 branched rollout

K-step branched rollout with env. dynamics model

Janner, Michael, et al. "When to Trust Your Model: Model-Based Policy Optimization." NIPS 2019.

Bound based on Model & Policy Error

• Quantify model error and policy shift as

$$\epsilon_{m'} = \max_{t} \mathbb{E}_{s \sim \pi_t} [D_{TV}(p(s', r | s, a) \| p_{\theta}(s', r | s, a))]$$

$$\epsilon_{\pi} = \max_{s} D_{TV}(\pi \| \pi_D)$$

• The policy value discrepancy bound is written as

$$\eta[\pi] \ge \eta^{\text{branch}}[\pi] - 2r_{\max} \left[\frac{\gamma^{k+1}\epsilon_{\pi}}{(1-\gamma)^2} + \frac{\gamma^k\epsilon_{\pi}}{(1-\gamma)} + \frac{k}{1-\gamma}(\epsilon_{m'}) \right]$$

where the optimal $k > 0$ if $\frac{d\epsilon_{m'}}{d\epsilon_{\pi}}$ is sufficiently small
Branch point Real experience trajectory

K-step branched rollout with env. dynamics model

MBPO Algorithm

Algorithm 2 Model-Based Policy Optimization with Deep Reinforcement Learning

- 1: Initialize policy π_{ϕ} , predictive model p_{θ} , environment dataset \mathcal{D}_{env} , model dataset \mathcal{D}_{model}
- 2: for N epochs do
- 3: Train model p_{θ} on \mathcal{D}_{env} via maximum likelihood
- 4: for E steps do
- 5: Take action in environment according to π_{ϕ} ; add to \mathcal{D}_{env}
- 6: **for** M model rollouts **do**
- 7: Sample s_t uniformly from \mathcal{D}_{env}
- 8: Perform k-step model rollout starting from s_t using policy π_{ϕ} ; add to $\mathcal{D}_{\text{model}}$
- 9: **for** *G* gradient updates **do**
- 10: Update policy parameters on model data: $\phi \leftarrow \phi \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi, \mathcal{D}_{\text{model}})$
 - Remarks
 - Branch out from the real trajectories (instead from s₀)
 - Branch rollout k steps depends on model & policy
 - Soft AC to update policy

Experiment Environments

Swimmer

HalfCheetah

Ant

Cartpole

InvertedPendulum

Hopper

Walker2d

Humanoid

MBPO Experiments

1000-step horizon

Summary of Theoretic Analysis in MBRL

1. The qualitative relationship between policy value discrepancy and sample efficiency

lower $|\eta(\pi) - \hat{\eta}(\pi)| \Rightarrow$ more use of model \Rightarrow higher sample efficiency

 The quantitative relationship between model error (and policy shift) and policy value discrepancy

$$\begin{aligned} |\eta(\pi) - \hat{\eta}(\pi)| &\leq C(\varepsilon_m, \varepsilon_\pi) & 1. & \text{Derive the bound} \\ 1 & \text{Design algorithms to} \\ 1 & \text{reduce the } C \text{ term} \end{aligned}$$

$$\begin{aligned} & \text{Generalization} & \text{Policy shift} \\ & \text{error of the} & \text{during training} \\ & \text{model} \end{aligned}$$

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: **BMPO**, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Bidirectional Model

Key finding: Generating trajectories with the same length, the compounding error of the bidirectional model will be less than that of the forward model

Dynamics Model Learning

- An ensemble of bootstrapped probabilistic networks are used to parameterize both the forward model $p_{\theta}(s'|s, a)$ and the backward model $q_{\theta'}(s|s', a)$
- Each probabilistic neural network outputs a Gaussian distribution with diagonal covariance and is trained via maximum likelihood. The corresponding loss functions are:

$$\mathcal{L}_{f}(\theta) = \sum_{\substack{t=1\\N}}^{N} \left[\mu_{\theta}\left(s_{t}, a_{t}\right) - s_{t+1} \right]^{\top} \Sigma_{\theta}^{-1}\left(s_{t}, a_{t}\right) \left[\mu_{\theta}\left(s_{t}, a_{t}\right) - s_{t+1} \right] + \log \det \Sigma_{\theta}\left(s_{t}, a_{t}\right)$$

$$\mathcal{L}_{b}(\theta') = \sum_{t=1} \left[\mu_{\theta'} \left(s_{t+1}, a_{t} \right) - s_{t} \right]^{\top} \Sigma_{\theta'}^{-1} \left(s_{t+1}, a_{t} \right) \left[\mu_{\theta'} \left(s_{t+1}, a_{t} \right) - s_{t} \right] + \log \det \Sigma_{\theta'} \left(s_{t+1}, a_{t} \right)$$

where μ and Σ are the mean and covariance respectively, and N denotes the total number of real transition data

Backward Policy

- In the forward model rollout, actions are selected by the current policy $\pi_{\phi}(a|s)$
- To sample trajectories backwards, we need to learn a backward policy $\tilde{\pi}_{\phi'}(a|s')$ to take actions given the next state

• The backward policy can be trained by either maximum likelihood estimation:

$$L_{\text{MLE}}(\phi') = -\sum_{t=0}^{N} \log \tilde{\pi}_{\phi'}(a_t|s_{t+1})$$

• or conditional GAN (GAIL):

 $\min_{\widetilde{\pi}} \max_{D} V(D, \widetilde{\pi}) = \mathbb{E}_{(a, s') \sim \pi} [\log D(a, s')] + \mathbb{E}_{s' \sim \pi} [\log(1 - D(\widetilde{\pi}(s'), s'))]$

Other Components of BMPO

 State Sampling Strategy: instead of random chosen states from environment replay buffer, we sample high value states to begin rollouts according to a Boltzmann distribution.

 $p(s) \propto e^{\beta V(s)}$

- Thus, the agent could learn to reach high-value states through backward rollouts, and also learn to act better after these states through forward rollouts
- Incorporating MPC (Model Predictive Control) to refine the action taken in real environment.
 - At each time-step, candidate action sequences are generated from current policy and the corresponding trajectories are simulated by the learned model
 - Then the first action of the sequence that yields the highest accumulated rewards is selected: $\sum_{t+H-1} t' = t \quad \text{(Instant)}$

$$a_t = \arg \max_{a_t^{1:N} \sim \pi} \sum_{t'=t} \gamma^{t'-t} r(s_{t'}, a_{t'}) + \gamma^H V(s_{t+H})$$

Truncate the rollout with value function

Overall Algorithm of BMPO

- 1. When interacting with the environment, the agent uses the model to perform MPC-based action selection
- 2. Data is stored in D_{env} where the value of state increases from light red to dark red
- 3. High value states are then sampled from D_{env} to perform bidirectional model rollouts, which are stored in D_{model}
- 4. Model-free method (e.g., soft actor-critic) is used to train the policy based on the data from D_{model}

Theoretical Analysis

Bidirectional model:

$$\left|\eta[\pi] - \eta^{\operatorname{branch}}[\pi]\right| \leq 2r_{\max} \left[\frac{\gamma^{k_1 + k_2 + 1}\epsilon_{\pi}}{(1 - \gamma)^2} + \frac{\gamma^{k_1 + k_2}\epsilon_{\pi}}{(1 - \gamma)} + \frac{\max(k_1, k_2)\epsilon_m}{1 - \gamma}\right]$$

Forward model:

$$\left|\eta[\pi] - \eta^{\text{branch}}[\pi]\right| \le 2r_{\max}\left[\frac{\gamma^{k_1+k_2+1}\epsilon_{\pi}}{(1-\gamma)^2} + \frac{\gamma^{k_1+k_2}\epsilon_{\pi}}{(1-\gamma)} + \frac{(k_1+k_2)\epsilon_m}{1-\gamma}\right].$$

Comparison with State-of-the-Arts

 Compared with previous state-of-the-art baselines, BMPO (blue) learns faster and has better asymptotic performance than previous model-based algorithms using only the forward model

Model Compounding Error

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Distribution Mismatch in MBRL

- One potential problem
 - Distribution mismatch between real data (in model learning) and simulated data (in model usage)
 - It's the source of compounding model error

Deal with Distribution Mismatch

- In model learning
 - Design different architectures and loss functions
 - Make the rollouts more like real

Asadi, Kavosh, et al. "Combating the Compounding-Error Problem with a Multi-step Model." arXiv preprint arXiv:1905.13320 (2019). Farahmand, Amir-massoud, Andre Barreto, and Daniel Nikovski. "Value-aware loss function for model-based reinforcement learning." Artificial Intelligence and Statistics. 2017.

- In model usage
 - Design careful rollout schemes
 - Stop the rollout before the generated data departure

Janner, Michael, et al. "When to trust your model: Model-based policy optimization." *Advances in Neural Information Processing Systems*. 2019. Buckman, Jacob, et al. "Sample-efficient reinforcement learning with stochastic ensemble value expansion." *Advances in Neural Information Processing Systems*. 2018.

• Although alleviated, the problem still exists

Notations

- Environment: T(s'|s, a), model: $\hat{T}(s'|s, a)$
- Occupancy measure (normalized) $\rho_T^{\pi}(s, a) = (1 - \gamma) \cdot \pi(a|s) \sum_t \gamma^t P_{T,t}^{\pi}(s)$
- State visit distribution $\nu_T^{\pi}(s) = (1 \gamma) \sum_t \gamma^t P_{T,t}^{\pi}(s)$
- Integral probability metric (IPM)

 $d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{F}} \mathbb{E}_{x \sim \mathbb{P}}[f(x)] - \mathbb{E}_{x \sim \mathbb{Q}}[f(x)]$

- IPM measures many well-known distances
 - Wasserstein-1 distance, Maximum Mean Discrepancy

A Lower Bound for Expected Return

Theorem 3.1. Let $R := \sup_{s,a} r(s,a) < \infty$, $\mathcal{F} := \bigcup_{s' \in S} \mathcal{F}_{s'}$ and define $\epsilon_{\pi} := 2d_{\text{TV}}(\nu_T^{\pi}, \nu_T^{\pi_D})$. Under the assumption of Lemma 3.1, the expected return $\eta[\pi]$ admits the following bound:

$$\eta[\pi] \geq \hat{\eta}[\pi] - R \cdot \epsilon_{\pi} - \gamma R \cdot d_{\mathcal{F}}(\rho_{T}^{\pi_{D}}, \rho_{\hat{T}}^{\pi}) \cdot \operatorname{Vol}(\mathcal{S})$$

$$- \gamma R \cdot \mathbb{E}_{(s,a) \sim \rho_{T}^{\pi_{D}}} \sqrt{2D_{\mathrm{KL}}(T(\cdot|s,a) \parallel \hat{T}(\cdot|s,a))},$$
where $\operatorname{Vol}(\mathcal{S})$ is the volume of state space \mathcal{S} .
policy learning in model + model learning = basic MBRI

A Lower Bound for Expected Return

Theorem 3.1. Let $R := \sup_{s,a} r(s,a) < \infty$, $\mathcal{F} := \bigcup_{s' \in S} \mathcal{F}_{s'}$ and define $\epsilon_{\pi} := 2d_{\text{TV}}(\nu_T^{\pi}, \nu_T^{\pi_D})$. Under the assumption of Lemma 3.1, the expected return $\eta[\pi]$ admits the following bound:

$$\begin{split} \eta[\pi] &\geq \hat{\eta}[\pi] - R \cdot \epsilon_{\pi} - \gamma R \cdot d_{\mathcal{F}}(\rho_{T}^{\pi_{D}}, \rho_{\hat{T}}^{\pi}) \cdot \operatorname{Vol}(\mathcal{S}) \\ &- \gamma R \cdot \mathbb{E}_{(s,\mu) \sim \rho_{T}^{\pi_{D}}} \sqrt{2D_{\mathrm{KL}}(T(\cdot|s,a) \parallel \hat{T}(\cdot|s,a))}, \\ \text{where } \operatorname{Vol}(\mathcal{S}) \text{ is the volume of state space } \mathcal{S}. \\ \text{reliable exploitation in} & \text{distribution distance} \\ & \text{batch } \operatorname{RL} \\ \text{(violate the rule of exploration)} \end{split}$$

Review: Domain Adaptation

Theorem 1. Let $\mu_s, \mu_t \in \mathcal{P}(\mathcal{X})$ be two probability measures. Assume the hypotheses $h \in H$ are all K-Lipschitz continuous for some K. Then, for every $h \in H$ the following holds

Inspiration: aligning the two feature distributions in MBRL

Shen, Jian, et al. "Wasserstein distance guided representation learning for domain adaptation." AAAI 2018.

Unsupervised Model Adaptation

- Source domain: model training data
- Target domain: model rollout data
- Aligning the latent feature distributions by minimizing IPMs according to the lower bound

AMPO

Adaptation augmented Model-based Policy Optimization

- AMPO: Wasserstein-1 distance (WGAN)
- Variants: use other distribution divergence, e.g. MMD (Maximum Mean Discrepancy)

Overall Algorithm

Algorithm 1 AMPO

- 1: Initialize policy π_{ϕ} , dynamics model \hat{T}_{θ} , environment buffer \mathcal{D}_{e} , model buffer \mathcal{D}_{m}
- 2: repeat
- 3: Take an action in the environment using the policy π_{ϕ} ; add the sample(s, a, s', r) to \mathcal{D}_e
- 4: if every E real timesteps are finished then
- 5: Perform G_1 gradient steps to train the model \hat{T}_{θ} with samples from \mathcal{D}_e
- 6: **for** F model rollouts **do**
- 7: Sample a state s uniformly from \mathcal{D}_e
- 8: Use policy π_{ϕ} to perform a k-step model rollout starting from s; add to \mathcal{D}_m

9: end for

- 10: Perform G_2 gradient steps to train the feature extractor with samples (s, a) from both \mathcal{D}_e and \mathcal{D}_m by the model adaptation loss \mathcal{L}_{WD}
- 11: end if
- 12: Perform G_3 gradient steps to train the policy π_{ϕ} with samples (s, a, s', r) from $\mathcal{D}_e \cup \mathcal{D}_m$
- 13: until certain number of real samples

Comparison with State-of-the-Arts

Model Loss Evaluation

- Model adaptation makes the model more accurate
- AMPO achieves smaller compounding errors than MBPO

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

AutoMBPO: better understanding of MBRL hyper-parameters

- MBRL methods are sensitive to the primary hyperparameters, e.g., ratio of real data and simulated data, model and policy training frequency, rollout length
- To provide a better understanding of MBRL through hyperparameter scheduling

Analysis of real ratio schedule

Return discrepancy upper bound:

As β/N_{real} increases, the second term increases while the third term decreases. So there exists an optimal value for β/N_{real} . Since N_{real} increases during training, gradually increasing β is promising to achieve good performance.

AutoMBPO Framework

Idea: formulate hyperparameter scheduling as an MDP and then adopt some RL algorithm (e.g., PPO in the paper) to solve it

AutoMBPO Experiments

AutoMBPO Experiments

Hyperparameter Schedule Visualization:

Summary of Model-based RL

Model as a Blackbox

- Sample experience data and train the policy in the manner of model-free RL
- Seamless to policy training algorithms
- Easy for rollout planning
- The simulation data efficiency may still be low
- E.g., Dyna-Q, MPC, MBPO

Model as a Whitebox

- Environment model, including transition dynamics and reward function, is a differentiable stochastic mapping
- Offer both data and gradient guidance for value and policy
- High data efficiency
- E.g., MAAC, SVG, PILCO

Future Directions of MBRL

- Environment model learning
 - Learning objectives
 - Environment imitation
 - Complex simulation
 - MBRL with true model in simulation
- Better understanding of bounds
 - When to have tighter bounds
 - Rollout length and when to rollout
- Multi-agent MBRL

Content

- 1. Introduction to MBRL from Dyna
- 2. Shooting methods: RS & PETS
- 3. Branched rollout method: MBPO
- 4. Recent work: BMPO & AMPO

Appendix: Backpropagation through paths: SVG and MAAC

Deterministic Policy Gradient

• A critic module for state-action value estimation

 $Q^w(s,a)\simeq Q^\pi(s,a)$

$$L(w) = \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [(Q^w(s, a) - Q^{\pi}(s, a))^2]$$

- With the differentiable critic, the deterministic continuous-action actor can be updated as
 - Deterministic policy gradient theorem

$$J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}} \left[Q^{\pi}(s, a) \right]$$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}} \left[\nabla_{\theta} \pi_{\theta}(s) \, \nabla_{a} Q^{\pi}(s, a) |_{a = \pi_{\theta}(s)} \right]$$

On-policy Chain rule

D. Silver et al. Deterministic Policy Gradient Algorithms. ICML 2014.

From Deterministic to Stochastic

 For deterministic environment, i.e., reward and transition, and policy, i.e., a function mapping state to action

From Deterministic to Stochastic

- Math: reparameterization of distributions
 - Conditional Gaussian distribution

 $p(y|x) = \mathcal{N}(y|\mu(x), \sigma^2(x))$

 $\Rightarrow y = \mu(x) + \sigma(x)\xi, \text{ where } \xi \sim \mathcal{N}(0, 1)$

 Consider conditional densities whose samples are generated by a deterministic function of an input noise variable

$$\mathbf{y} = \mathbf{f}(\mathbf{x}, \xi), \text{ where } \xi \sim \rho(\cdot)$$
$$\mathbb{E}_{p(\mathbf{y}|\mathbf{x})} \mathbf{g}(\mathbf{y}) = \int \mathbf{g}(\mathbf{f}(\mathbf{x}, \xi)) \rho(\xi) d\xi \qquad \boxed{g_x \triangleq \partial g(x, y) / \partial x}$$
$$\text{derivative} \quad \nabla_{\mathbf{x}} \mathbb{E}_{p(\mathbf{y}|\mathbf{x})} \mathbf{g}(\mathbf{y}) = \mathbb{E}_{\rho(\xi)} \mathbf{g}_{\mathbf{y}} \mathbf{f}_{\mathbf{x}} \approx \frac{1}{M} \sum_{i=1}^{M} \mathbf{g}_{\mathbf{y}} \mathbf{f}_{\mathbf{x}} \big|_{\xi = \xi_i}$$

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.

From Deterministic to Stochastic

• Deterministic version for reference

 $\mathbf{a} = \pi(\mathbf{s}; \theta) \qquad \mathbf{s}' = \mathbf{f}(\mathbf{s}, \mathbf{a})$ $V(\mathbf{s}) = r(\mathbf{s}, \mathbf{a}) + \gamma V'(\mathbf{f}(\mathbf{s}, \mathbf{a}))$

 Stochastic environment, policy, value and gradients

$$V_{\mathbf{s}} = r_{\mathbf{s}} + r_{\mathbf{a}}\pi_{\mathbf{s}} + \gamma V_{\mathbf{s}'}'(\mathbf{f}_{\mathbf{s}} + \mathbf{f}_{\mathbf{a}}\pi_{\mathbf{s}}),$$
$$V_{\theta} = r_{\mathbf{a}}\pi_{\theta} + \gamma V_{\mathbf{s}'}'\mathbf{f}_{\mathbf{a}}\pi_{\theta} + \gamma V_{\theta}'.$$

$$\mathbf{a} = \pi(\mathbf{s}, \eta; \theta) \quad \mathbf{s}' = \mathbf{f}(\mathbf{s}, \mathbf{a}, \xi) \quad \eta \sim \rho(\eta) \text{ and } \xi \sim \rho(\xi)$$
$$V(\mathbf{s}) = \mathbb{E}_{\rho(\eta)} \left[r(\mathbf{s}, \pi(\mathbf{s}, \eta; \theta)) + \gamma \mathbb{E}_{\rho(\xi)} \left[V'(f(\mathbf{s}, \pi(\mathbf{s}, \eta; \theta), \xi)) \right] \right]$$
$$V_{\mathbf{s}} = \mathbb{E}_{\rho(\eta)} \left[r_{\mathbf{s}} + r_{\mathbf{a}} \pi_{\mathbf{s}} + \gamma \mathbb{E}_{\rho(\xi)} V'_{\mathbf{s}'}(\mathbf{f}_{\mathbf{s}} + \mathbf{f}_{\mathbf{a}} \pi_{\mathbf{s}}) \right],$$

$$V_{\theta} = \mathbb{E}_{\rho(\eta)} \left[r_{\mathbf{a}} \pi_{\theta} + \gamma \mathbb{E}_{\rho(\xi)} \left[V_{\mathbf{s}'}' \mathbf{f}_{\mathbf{a}} \pi_{\theta} + V_{\theta}' \right] \right]. \qquad g_{x} \triangleq \partial g(x, y) / \partial x$$

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.

SVG Algorithm and Experiments

Algorithm 1 SVG (∞)

- 1: Given empty experience database \mathcal{D}
- 2: for trajectory = 0 to ∞ do
- 3: **for** t = 0 **to** *T* **do**
- 4: Apply control $\mathbf{a} = \pi(\mathbf{s}, \eta; \theta), \eta \sim \rho(\eta)$
- 5: Insert $(\mathbf{s}, \mathbf{a}, r, \mathbf{s}')$ into \mathcal{D}
- 6: end for
- 7: Train generative model $\hat{\mathbf{f}}$ using \mathcal{D}
- 8: $v'_{\mathbf{s}} = 0$ (finite-horizon)
- 9: $v'_{\theta} = 0$ (finite-horizon)
- 10: for t = T down to 0 do
- 11: Infer $\xi | (\mathbf{s}, \mathbf{a}, \mathbf{s}')$ and $\eta | (\mathbf{s}, \mathbf{a})$

12:
$$v_{\theta} = \left[r_{\mathbf{a}} \pi_{\theta} + \gamma (v'_{\mathbf{s}'} \hat{\mathbf{f}}_{\mathbf{a}} \pi_{\theta} + v'_{\theta}) \right] \Big|_{\eta,\xi}$$

13:
$$v_{\mathbf{s}} = [r_{\mathbf{s}} + r_{\mathbf{a}}\pi_{\mathbf{s}} + \gamma v'_{\mathbf{s}'}(\hat{\mathbf{f}}_{\mathbf{s}} + \hat{\mathbf{f}}_{\mathbf{a}}\pi_{\mathbf{s}})]|_{\eta,\xi}$$

- 14: **end for**
- 15: Apply gradient-based update using v_{θ}^{0}
- 16: **end for**

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.

Model-Augmented Actor Critic

• The objective function can be directly built as a stochastic computation graph

$$J_{\pi}(\boldsymbol{\theta}) = \mathbb{E} \begin{bmatrix} \sum_{t=0}^{H-1} \gamma^{t} r(s_{t}) + \gamma^{H} \hat{Q}(s_{H}, a_{H}) \\ a_{t} \sim \pi_{\boldsymbol{\theta}}(s_{t}) \end{bmatrix} \begin{bmatrix} s_{t+1} \sim \hat{f}(s_{t}, a_{t}) \\ a_{t} \sim \pi_{\boldsymbol{\theta}}(s_{t}) \end{bmatrix}$$

Theoretic Bounds

Large H, i.e., long rollout, brings large gradient error, thus the model error

70

65

L1 Error of the Gradient

2.0

15

2.5

1e3

Lemma 4.1 (Gradient Error). Let \hat{f} and \hat{Q} be the learned approximation of the dynamics f and *Q*-function Q, respectively. Assume that Q and \hat{Q} have $L_q/2$ -Lipschitz continuous gradient and f and \hat{f} have $L_f/2$ -Lipschitz continuous gradient. Let $\epsilon_f = \max_t \|\nabla \hat{f}(\hat{s}_t, \hat{a}_t) - \nabla f(s_t, a_t)\|_2$ be the error on the model derivatives and $\epsilon_Q = \|\nabla \hat{Q}(\hat{s}_H, \hat{a}_H) - \nabla Q(s_H, a_H)\|_2$ the error on the Q-function derivative. Then the error on the gradient between the learned objective and the true objective can *be bounded by:*

$$\mathbb{E}\left[\|\nabla_{\boldsymbol{\theta}} J_{\pi} - \nabla_{\boldsymbol{\theta}} \hat{J}_{\pi}\|_{2}\right] \leq c_{1}(H)\epsilon_{f} + c_{2}(H)\epsilon_{Q}$$

Theoretic Bounds

One-step gradient approximation error

Lemma 4.2 (Total Variation Bound). Under the assumptions of the Lemma [4.1], let $\theta = \theta_o + \alpha \nabla_{\theta} J_{\pi}$ be the parameters resulting from taking a gradient step on the exact objective, and $\hat{\theta} = \theta_o + \alpha \nabla_{\theta} \hat{J}_{\pi}$ the parameters resulting from taking a gradient step on approximated objective, where $\alpha \in \mathbb{R}^+$. Then the following bound on the total variation distance holds

$$\max_{s} D_{TV}(\pi_{\theta} || \pi_{\hat{\theta}}) \le \alpha c_3(\epsilon_f c_1(H) + \epsilon_Q c_2(H))$$

Policy value lower bound

Theorem 4.1 (Monotonic Improvement). Under the assumptions of the Lemma 4.1, be θ' and $\hat{\theta}$ as defined in Lemma 4.2, and assuming that the reward is bounded by r_{max} . Then the average return of the $\pi_{\hat{\theta}}$ satisfies

$$J_{\pi}(\hat{\boldsymbol{\theta}}) \ge J_{\pi}(\boldsymbol{\theta}) - \frac{2\alpha r_{\max}}{1-\gamma} \alpha c_3(\epsilon_f c_1(H) + \epsilon_Q c_2(H))$$

Dynamics error $\epsilon_f = \max_t \|\nabla \hat{f}(\hat{s}_t, \hat{a}_t) - \nabla f(s_t, a_t)\|_2$ Value function error $\epsilon_Q = \|\nabla \hat{Q}(\hat{s}_H, \hat{a}_H) - \nabla Q(s_H, a_H)\|_2$

MAAC Algorithm

Algorithm 1 MAAC

- 1: Initialize the policy π_{θ} , model \hat{f}_{ϕ} , \hat{Q}_{ψ} , $\mathcal{D}_{env} \leftarrow \emptyset$, and the model dataset $\mathcal{D}_{model} \leftarrow \emptyset$
- 2: repeat
- 3: Sample trajectories from the real environment with policy π_{θ} . Add them to \mathcal{D}_{env} .
- 4: **for** $i = 1 \dots G_1$ **do**
- 5: $\phi \leftarrow \phi \beta_f \nabla_{\phi} J_f(\phi)$ using data from \mathcal{D}_{env} .
- 6: **end for**
- 7: Sample trajectories \mathcal{T} from \hat{f}_{ϕ} . Add them to $\mathcal{D}_{\text{model}}$.

8:
$$\mathcal{D} \leftarrow \mathcal{D}_{model} \cup \mathcal{D}_{env}$$

9: **for**
$$i = 1 \dots G_2$$
 do

- 10: Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \beta_{\pi} \nabla_{\boldsymbol{\theta}} J_{\pi}(\boldsymbol{\theta})$ using data from \mathcal{D}
- 11: Update $\psi \leftarrow \psi \beta_Q \nabla_{\psi} J_Q(\psi)$ using data from \mathcal{D}
- 12: **end for**
- 13: **until** the policy performs well in the real environment
- 14: **return** Optimal parameters θ^*
- Model learning: PILCO ensemble of GPs $\{\hat{f}_{m{\phi}_1},...,\hat{f}_{m{\phi}_M}\}$
- Policy Optimization $J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}\left[\sum_{t=0}^{H-1} \gamma^{t} r(\hat{s}_{t}) + \gamma^{H} Q_{\boldsymbol{\psi}}(\hat{s}_{H}, a_{H})\right] + \beta \mathcal{H}(\pi_{\boldsymbol{\theta}})$
- Q-function Learning $J_Q(\boldsymbol{\psi}) = \mathbb{E}[(Q_{\boldsymbol{\psi}}(s_t, a_t) (r(s_t, a_t) + \gamma Q_{\boldsymbol{\psi}}(s_{t+1}, a_{t+1})))^2]$

Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A model-based and data-efficient approach to policy search." ICML 2011.

Experiments

References of Backpropagation through Paths

- PILCO
 - Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A model-based and data-efficient approach to policy search." ICML 2011.
- SVG
 - Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.
- MAAC
 - Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.