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Overall Pathway of DRL
• Deep reinforcement learning gets appealing 

success
• Atari, AlphaGo, DOTA 2, AlphaStar

• But DRL has very low data efficiency
• Trial-and-error learning for deep networks

• A recent popular direction is model-based RL
• Build a model 𝑝 𝑠’, 𝑟 𝑠, 𝑎)
• Based on the model to train the policy
• So that the data efficiency could be improved

A Perspective of



Interaction between Agent and Environment

• Real environment
• State dynamics
• Reward function

Experience data
𝜋(𝑎|𝑠)

𝑝(𝑠!, 𝑟|𝑠, 𝑎)

𝑠, 𝑎, 𝑟, 𝑠′

𝑝(𝑠!|𝑠, 𝑎)

𝑟(𝑠, 𝑎)



Interaction between Agent and Env. Model

• Real environment
• State dynamics
• Reward function

Simulated data

• Environment model
• State dynamics
• Reward function

𝜋(𝑎|𝑠)

�̂�(𝑠!, 𝑟|𝑠, 𝑎)

𝑠, 𝑎, 𝑟, 𝑠′

𝑝(𝑠!|𝑠, 𝑎) �̂�(𝑠!|𝑠, 𝑎)
�̂�(𝑠, 𝑎)𝑟(𝑠, 𝑎)



Model-free RL v.s. Model-based RL

• Model-based RL
• On-policy learning once the model is learned
• May not need further real interaction data once the 

model is learned (batch RL)
• Always show higher sample efficiency than MFRL
• Suffer from model compounding error

• Model-free RL
• The best asymptotic performance
• Highly suitable for DL architecture with big data
• Off-policy methods still show instabilities
• Very low sample efficiency & require huge amount of 

training data



Model-based RL: Blackbox and Whitebox

Model as a Blackbox
• Seamless to policy training 

algorithms
• The simulation data efficiency 

may still be low
• E.g., Dyna-Q, MPC, MBPO

Model as a Whitebox
• Offer both data and gradient 

guidance for value and policy
• High data efficiency
• E.g., MAAC, SVG, PILCO

Focus of today’s talk
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Model-based RL

or

in virtual 
environment

in real
environment

Roll-out 
trajectory data

Real trajectory 
data

Annotations based on Rich Sutton’s figure

𝑄(𝑠, 𝑎) and 𝜋(𝑎|𝑠)

𝑝(𝑠!, 𝑟|𝑠, 𝑎)

𝑝(𝑠!|𝑠, 𝑎) with 𝑟(𝑠, 𝑎) known

𝑠, 𝑎, 𝑟, 𝑠′



Q-Planning
• Random-sample one-step tabular Q-planning
• First, learn a model p(s’,r|s,a) from experience data
• Then perform one-step sampling by the model to learn 

the Q function 

• Here model learning and reinforcement learning are separate



Dyna

or

in virtual 
environment

in real
environment

Roll-out 
trajectory data

Real trajectory 
data

Annotations based on Rich Sutton’s figure

𝑄(𝑠, 𝑎) and 𝜋(𝑎|𝑠)

𝑝(𝑠!, 𝑟|𝑠, 𝑎)

𝑝(𝑠!|𝑠, 𝑎) with 𝑟(𝑠, 𝑎) known

𝑠, 𝑎, 𝑟, 𝑠′



Dyna-Q

Sutton, Richard S. "Integrated architectures for learning, planning, and reacting based on approximating dynamic programming." Machine 
Learning Proceedings 1990. Morgan Kaufmann, 1990. 216-224.



Dyna-Q on a Simple Maze



Key Questions of Deep MBRL
• How to properly train the deep model based on the 

agent-environment interaction data?

• Inevitably, the model is to-some-extent inaccurate. 
When to trust the model?

• How to effectively use the model to better train our 
policy?

• Does the model really help improve the data 
efficiency?
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Shooting Methods
Model can also be used to help decision making when 
interact with environment. For the current state     :
• Given an action sequence of length T:

• we can sample trajectory from the model:

• And then choose the action sequence with highest 
estimated return:

s0s0

𝑎), 𝑎*, 𝑎+, … , 𝑎,

𝑠), 𝑎), �̂�), �̂�*, 𝑎*, �̂�*, �̂�+, 𝑎+, �̂�+, … , �̂�, , 𝑎, , �̂�,

3𝑄 𝑠, 𝑎 =5
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,
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3𝑄 𝑠, 𝑎



Random Shooting (RS)
• The action sequences are randomly sampled
• Pros:

• implementation simplicity
• lower computational burden (no gradients)
• no requirement to specify the task-horizon in advance

• Cons: high variance, may not sample the high reward 
action

• A refinement: 
   Cross Entropy Method (CEM)

• CEM samples actions from a 
distribution closer to previous 
action samples that yield high 
reward

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

median
5% & 95%
performance



PETS: Probabilistic Ensembles with 
Trajectory Sampling

• Probabilistic ensemble (PE) dynamics model is shown as an 
ensemble of two bootstraps 
• Bootstrap disagreement far from data captures epistemic 认知的 

uncertainty: our subjective uncertainty due to a lack of data (model 
variance)

• Each probabilistic neural network 
captures aleatoric 偶然的 
uncertainty (stochastic 
environment)

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

Gaussian NN



PETS: Probabilistic Ensembles with 
Trajectory Sampling
• The trajectory sampling (TS) propagation technique 

uses our dynamics model to re-sample each 
particle (with associated bootstrap) according to its 
probabilistic prediction at each point in time, up 
until horizon T

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.



PETS: Probabilistic Ensembles with 
Trajectory Sampling
• Planning: 
At each time step, MPC algorithm computes an optimal action 
sequence by sampling multiple sequences, applies the first 
action in the sequence, and repeats until the task-horizon.

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.



PETS Algorithm

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.



PETS Experiments
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Bound based on Model & Policy Error

• Branched rollout
• Begin a rollout from a state under the previous policy’s 

state distribution 𝑑<!(𝑠) and run k steps according to 𝜋 
under the learned model 𝑝=

• Dyna can be viewed as a special case of k = 1 
branched rollout

Janner, Michael, et al. "When to Trust Your Model: Model-Based Policy Optimization." NIPS 2019.

Branch
point

K-step branched rollout with env. dynamics model

Real experience trajectorys0 a0 s1 a1



Bound based on Model & Policy Error
• Quantify model error and policy shift as

• The policy value discrepancy bound is written as

where the optimal k > 0 if           is sufficiently small
Branch
point

K-step branched rollout with env. dynamics model

Real experience trajectorys0 a0 s1 a1



Empirical Analysis of 

where the optimal k > 0 if           is sufficiently small



MBPO Algorithm

• Remarks
• Branch out from the real trajectories (instead from s0)
• Branch rollout k steps depends on model & policy
• Soft AC to update policy 



Experiment Environments

Swimmer HalfCheetah Ant

Hopper Walker2d Humanoid

Cartpole

InvertedPendulum



MBPO Experiments 1000-step horizon



Summary of Theoretic Analysis in MBRL

2. The quantitative relationship between model error 
(and policy shift) and policy value discrepancy

1. The qualitative relationship between policy value 
discrepancy and sample efficiency

higher sample efficiencylower more use of model

1. Derive the bound
2. Design algorithms to 

reduce the C term

Generalization 
error of the  

model

Policy shift 
during training

𝜂 𝜋 − @𝜂(𝜋)

𝜂 𝜋 − �̂�(𝜋) ≤ 𝐶(𝜀A, 𝜀<)
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Bidirectional Model
Key finding: Generating trajectories with the same length, the 
compounding error of the bidirectional model will be less than 
that of the forward model

forward model

bidirectional model

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 



Dynamics Model Learning
• An ensemble of bootstrapped probabilistic networks are 

used to parameterize both the forward model                     
and the backward model                     

where     and     are the mean and covariance respectively, 
and     denotes the total number of real transition data 

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 

• Each probabilistic neural network outputs 
a Gaussian distribution with diagonal 
covariance and is trained via maximum 
likelihood. The corresponding loss 
functions are:

s a s'

a s's



Backward Policy
• In the forward model rollout, actions are 

selected by the current policy                
• To sample trajectories backwards, we 

need to learn a backward policy                  
to take actions given the next state

• or conditional GAN (GAIL):

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 

• The backward policy can be trained  by either maximum 
likelihood estimation:

s a s' a'

a s'

𝐿/01 𝜙! = −5
-.)

2
log F𝜋3!(𝑎-|𝑠-4*)
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56
max
7

𝑉 𝐷, F𝜋 = 𝔼 ',"! ~6 log𝐷(𝑎, 𝑠′) + 𝔼"!~6 log(1 − 𝐷( F𝜋 𝑠! , 𝑠′))



Other Components of BMPO
• State Sampling Strategy: instead of random chosen states from 

environment replay buffer, we sample high value states to begin rollouts 
according to a Boltzmann distribution. 

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 

• Thus, the agent could learn to reach high-value states through backward rollouts, and 
also learn to act better after these states through forward rollouts

• Incorporating MPC (Model Predictive Control) to refine the action taken in 
real environment.
• At each time-step, candidate action sequences are generated from current policy and the 

corresponding trajectories are simulated by the learned model
• Then the first action of the sequence that yields the highest accumulated rewards is 

selected: 

Truncate the rollout with value function

𝑝(𝑠) ∝ 𝑒89(")

𝑎- = arg max
'#$:&~6

5
-!.-

-4:;*
𝛾-!;-𝑟(𝑠-! , 𝑎-!) + 𝛾:𝑉(𝑠-4:)



Overall Algorithm of BMPO

1. When interacting with the environment, the agent uses the model to 
perform MPC-based action selection

2. Data is stored in Denv where the value of state increases from light red to 
dark red

3. High value states are then sampled from Denv to perform bidirectional model 
rollouts, which are stored in Dmodel

4. Model-free method (e.g., soft actor-critic) is used to train the policy based 
on the data from Dmodel

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 



Theoretical Analysis

Bidirectional model:

Forward model:

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 

forward model bidirectional model



Comparison with State-of-the-Arts

• Compared with previous state-of-the-art baselines, BMPO (blue) learns faster and has 
better asymptotic performance than previous model-based algorithms using only the 
forward model

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 

BMPO
MBPO

MBPO
BMPO

MBPO
BMPO



Model Compounding Error

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020. 

Error<=> =
1
2ℎ5?.*

+@
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Distribution Mismatch in MBRL
• One potential problem
• Distribution mismatch between real data (in model 

learning) and simulated data (in model usage)  
• It’s the source of compounding model error

Training trajectories
Rollout trajectories

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.

State

Time

𝑝!"#$% 𝑠, 𝑎 ≠ 𝑝"&''&(!(𝑠, 𝑎)

State transition 
𝑇(𝑠′|𝑠, 𝑎)



Deal with Distribution Mismatch
• In model learning
• Design different architectures and loss functions
• Make the rollouts more like real

Janner, Michael, et al. "When to trust your model: Model-based policy optimization." Advances in Neural Information Processing Systems. 2019.
Buckman, Jacob, et al. "Sample-efficient reinforcement learning with stochastic ensemble value expansion." Advances in Neural Information Processing 
Systems. 2018.

Asadi, Kavosh, et al. "Combating the Compounding-Error Problem with a Multi-step Model." arXiv preprint arXiv:1905.13320 (2019).
Farahmand, Amir-massoud, Andre Barreto, and Daniel Nikovski. "Value-aware loss function for model-based reinforcement 
learning." Artificial Intelligence and Statistics. 2017.

• In model usage
• Design careful rollout schemes
• Stop the rollout before the generated data departure

• Although alleviated, the problem still exists
Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



Notations

• Environment: 𝑇(𝑠′|𝑠, 𝑎), model: )𝑇(𝑠′|𝑠, 𝑎)
• Occupancy measure (normalized)

• State visit distribution 

• Integral probability metric (IPM)

• IPM measures many well-known distances 
• Wasserstein-1 distance, Maximum Mean Discrepancy

𝜌)* 𝑠, 𝑎 = 1 − 𝛾 ⋅ 𝜋 𝑎 𝑠 /
+

𝛾+𝑃),+* (𝑠)

𝜈)* 𝑠 = 1 − 𝛾 /
+

𝛾+𝑃),+* (𝑠)

𝑑𝓕 ℙ,ℚ = sup
.∈ℱ

𝔼1∼ℙ 𝑓 𝑥 − 𝔼1∼ℚ 𝑓 𝑥

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



A Lower Bound for Expected Return

policy learning in model       +     model learning    =   basic MBRL   

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



A Lower Bound for Expected Return

reliable exploitation in 
batch RL

distribution distance

(violate the rule of exploration)
Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



Review: Domain Adaptation

error in 
target domain

error in 
source domain ConstantWasserstein distance

Inspiration: aligning the two feature distributions in MBRL

Shen, Jian, et al. "Wasserstein distance guided representation learning for domain adaptation." AAAI 2018.



Unsupervised Model Adaptation
• Source domain: model training data
• Target domain: model rollout data
• Aligning the latent feature distributions by 

minimizing IPMs according to the lower bound

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



AMPO
• Adaptation augmented Model-based Policy Optimization

• AMPO: Wasserstein-1 distance (WGAN) 
• Variants: use other distribution divergence, e.g. MMD 

(Maximum Mean Discrepancy)

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



Overall Algorithm

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.



Comparison with State-of-the-Arts

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.

AMPO
MBPO AMPO

MBPO

AMPO
MBPO

AMPO
MBPO

AMPO
MBPO



Model Loss Evaluation

• Model adaptation makes the model more accurate
• AMPO achieves smaller compounding errors than 

MBPO

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurIPS 2020.

AMPO

MBPO

AMPO

MBPO
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AutoMBPO: better understanding of 
MBRL hyper-parameters

Motivation:
• MBRL methods are sensitive to the primary hyper-

parameters, e.g., ratio of real data and simulated data, 
model and policy training frequency, rollout length
• To provide a better understanding of MBRL through hyper-

parameter scheduling

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

How to schedule the ratio 
of real data?

How to tune the frequency 
of policy training?

How to tune the frequency 
of model training?

What is the rollout 
length k? How much to interact with 

real data to make the best 
balance of performance 
and sample efficiency?



Analysis of real ratio schedule
Return discrepancy upper bound:

As              increases, the second term increases while the 
third term decreases. So there exists an optimal value 
for             . Since          increases during training, gradually 
increasing    is promising to achieve good performance.

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

Real Ratio

Real data 
number



AutoMBPO Framework
Idea: formulate hyperparameter scheduling as an 
MDP and then adopt some RL algorithm (e.g., PPO in 
the paper) to solve it

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021



AutoMBPO Experiments

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021



AutoMBPO Experiments

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

Hyperparameter Schedule Visualization:
The real ratio schedule is consistent 
with the theoretical analysis, i.e., 
gradually increasing the ratio of real 
data is promising to achieve good 
performance.



Summary of Model-based RL

Model as a Blackbox
• Sample experience data 

and train the policy in the 
manner of model-free RL
• Seamless to policy training 

algorithms
• Easy for rollout planning
• The simulation data 

efficiency may still be low
• E.g., Dyna-Q, MPC, MBPO

Model as a Whitebox
• Environment model, 

including transition 
dynamics and reward 
function, is a differentiable 
stochastic mapping
• Offer both data and 

gradient guidance for value 
and policy
• High data efficiency
• E.g., MAAC, SVG, PILCO



Future Directions of MBRL
• Environment model learning
• Learning objectives
• Environment imitation
• Complex simulation
• MBRL with true model in simulation

• Better understanding of bounds
• When to have tighter bounds
• Rollout length and when to rollout

• Multi-agent MBRL
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Deterministic Policy Gradient
• A critic module for state-action value estimation

• With the differentiable critic, the deterministic 
continuous-action actor can be updated as
• Deterministic policy gradient theorem

Chain ruleOn-policy

D. Silver et al. Deterministic Policy Gradient Algorithms. ICML 2014.

REVIEW

𝑄C(𝑠, 𝑎) ≃ 𝑄6(𝑠, 𝑎)

𝐿 𝑤 = 𝔼"~D','~6( 𝑄C 𝑠, 𝑎 − 𝑄6(𝑠, 𝑎) +

𝐽 𝜋E = 𝔼"~D' 𝑄6(𝑠, 𝑎)

∇E𝐽 𝜋E = 𝔼"~D' ∇E𝜋E 𝑠 	∇'𝑄6(𝑠, 𝑎)|'.6( "



From Deterministic to Stochastic
• For deterministic environment, i.e., reward and 

transition, and policy, i.e., a function mapping state 
to action

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.



From Deterministic to Stochastic
• Math: reparameterization of distributions
• Conditional Gaussian distribution

• Consider conditional densities whose samples are 
generated by a deterministic function of an input noise 
variable

derivative

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.



From Deterministic to Stochastic
• Deterministic version for 

reference

• Stochastic environment, 
policy, value and gradients

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.



SVG Algorithm and Experiments

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.



Model-Augmented Actor Critic
• The objective function can be directly built as a 

stochastic computation graph

Stochastic variable

Deterministic variable

H makes tradeoff between accuracy of model and learned Q

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.



Theoretic Bounds
Large H, i.e., long rollout, brings large 
gradient error, thus the model error

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.



Theoretic Bounds
One-step gradient approximation error

Dynamics error

Value function error

Policy value lower bound

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.



MAAC Algorithm

• Model learning: PILCO - ensemble of GPs

• Policy Optimization

• Q-function Learning

Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A model-based and data-efficient approach to policy search." ICML 2011.



Experiments

maac

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.



Backpropagation through Paths
• PILCO
• Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A 

model-based and data-efficient approach to policy 
search." ICML 2011.

• SVG
• Heess, Nicolas, et al. "Learning continuous control 

policies by stochastic value gradients." NIPS 2015.

• MAAC
• Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented 

Actor Critic: Backpropagation through paths. ICLR 2020.
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