TN
W =i\ R < K

X)\ \41 :r
/7///10 ONGY RSITY

TonG SHANGHAI JIAO

Model-based Reinforcement
Learning

A Perspective of

Overall Pathway of DRL

* Deep reinforcement learning gets appealing
success

» Atari, AlphaGo, DOTA 2, AlphaStar

TG
LUy o
Hl Nl cusgsgamemues) ot 1

.‘! -

315 16 17 10 19 2 3 24
s (A
1118 B :
[4 N \
e/ 11 \ 1
! ! 5
N[x ! 3
® 224 |~ ’ q
s s
® ® -
: : A Max a
“23 444 7 & i = Stri 2\ % ling
224
\J| ora

Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deepricourse/static/slides/lec-1.pdf

A Perspective of

Overall Pathway of DRL

* Deep reinforcement learning gets appealing
success
* Atari, AlphaGo, DOTA 2, AlphaStar

e But DRL has very low data efficiency
* Trial-and-error learning for deep networks

* A recent popular direction is model-based RL
* Build a model p(s’,r|s, a)
* Based on the model to train the policy
* So that the data efficiency could be improved

Interaction between Agent and Environment

n(als)
é Experience data

Agent {(s,a,1,5")}

&—0—0—0—0

p(s’,r|s,a)
Real env.
* Real environment
e State dynamics p(s'|s,a)
e Reward function 7(s,a)

Interaction between Agent and Env. Model

m(als)
é Simulated data

Agent {(s,a,7,5")}

o s o -
- " 4 " . " 4 "

. 9 . ’) »

4 r)

s y . ’ . J L ’

LN S.v e D—

p(s’,r|s,a)
Env. model
* Real environment * Environment model
e State dynamics p(s'|s,a) e State dynamics p(s'|s,a)

e Reward function r(s,a) e Reward function 7(s,a)

Model-free RL v.s. Model-based RL

* Model-based RL

* On-policy learning once the model is learned

* May not need further real interaction data once the
model is learned (batch RL)

* Always show higher sample efficiency than MFRL
e Suffer from model compounding error

* Model-free RL

* The best asymptotic performance
* Highly suitable for DL architecture with big data
* Off-policy methods still show instabilities

* Very low sample efficiency & require huge amount of
training data

Model-based RL: Blackbox and Whitebox

Model as a Blackbox

e Seamless to policy training
algorithms

* The simulation data efficiency
may still be low

* E.g., Dyna-Q, MPC, MBPO

Focus of today’s talk

." ~(s,a,r,s")

Model as a Whitebox

e Offer both data and gradient
guidance for value and policy

* High data efficiency
* E.g., MAAC, SVG, PILCO

oV (s") ds' da
© o5 09200 5ot

~(s,a,r,s")

Content

1. Introduction to MBRL from Dyna

2. Shooting methods: RS & PETS

3. Branched rollout method: MBPO

4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Model-based RL

Q(s,a) and m(als)

Roll-out value/policy
trajectory data
acting
planning in real
in virtual environment
environment
p(s’,rls,a) model experience {(s,a,r,s")}

Real trajectory
or
data

p(s'|s, a) with r(s, a) known model
learning

Annotations based on Rich Sutton’s figure

Q-Planning

* Random-sample one-step tabular Q-planning
* First, learn a model p(s’,r|s,a) from experience data

* Then perform one-step sampling by the model to learn
the Q function

Do forever:
1. Select a state, S € 8, and an action, A € A(s), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’:
Q(S,A) «+— Q(S,A) + Oz[R + vy max, Q(S5",a) — Q(S, A)}

 Here model learning and reinforcement learning are separate

Dyna

Q(s,a) and m(als)

Roll-out value/policy
trajectory data
acting
planning direct in real
in virtual RL environment
environment
(s’ rls,a) Model experience {(s,a,r,s)}

Real trajectory
or
data

p(s’|s, a) with r(s,a) known P——
learning

Annotations based on Rich Sutton’s figure

Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Do forever:
(a) S < current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Execute action Aj; observe resultant reward, R, and state, S’
(d) Q(S, 4) « Q(S, A) + a[R +ymax, Q(S,a) — Q(S,)]
(e) Model(S,A) +— R, S’ (assuming deterministic environment)
(f) Repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" <+ Model(S, A)
Q(S, A) + Q(S,A) + a|R + ymax, Q(5,a) — Q(S, A)]

Sutton, Richard S. "Integrated architectures for learning, planning, and reacting based on approximating dynamic programming." Machine
Learning Proceedings 1990. Morgan Kaufmann, 1990. 216-224.

Dyna-Q on a Simple Maze

Steps
per
episode

800

600-

400+

200

14+

I -

. actions

0 planning steps
(direct RL only)

5 planning steps

50 planning steps

Key Questions of Deep MBRL

* How to properly train the deep model based on the
agent-environment interaction data?

* Inevitably, the model is to-some-extent inaccurate.
When to trust the model?

 How to effectively use the model to better train our
policy?

* Does the model really help improve the data
efficiency?

Content

1. Introduction to MBRL from Dyna

2. Shooting methods: RS & PETS

3. Branched rollout method: MBPO

4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Shooting Methods

Model can also be used to help decision making when
interact with environment. For the current state Sy:

* Given an action sequence of length T:

lay, aq, ay, ..., ar]
e we can sample trajectory from the model:

[So, ao,r(), S1,a1, 1, §2, az,f'z, ...,§T, aT,TQT]

* And then choose the action sequence with highest
estimated return:

T
0(s,a) = z e m(s) = arg max 0(s,a)
t=0

Random Shooting (RS)

* The action sequences are randomly sampled

* Pros:
* implementation simplicity
* lower computational burden (no gradients)
* no requirement to specify the task-horizon in advance

* Cons: high variance, may not sample the high reward
action

* A refinement:
Cross Entropy Method (CEM) median

40000

* o 9 95(y
 CEM samples actions from a >% & 35%
2 performance

distribution closer to previous .
action samples that yield high

reward J

L

CEM Random

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

PETS: Probabilistic Ensembles Wlth

Model atoric Epistemic
ainty uncertainty
Bas. 1 M I Is
rajectory Samplin SEete ow o
Probabilistic NN P) Yes No
Deterministic ensemble NN (DE) No Yes
Gaussian process baseline (GP) Homoscedastic Yes
Our Model
N - Probabilistic ensemble NN (PE) Yes Yes
IOSSP(H) Zn:l log f9(8n+1’8’n7 a’n)

Gaussian NN]72 Pr(3t+1‘staat) :N(ue(stvat)vze(stvat))

* Probabilistic ensemble (PE) dynamics model is shown as an

ensemble of two bootstraps

* Bootstrap disagreement far from data captures epistemic WA K11
uncertainty: our subjective uncertainty due to a lack of data (model

variance)

Dynamics Model

* Each probabilistic neural network
captures aleatoric {H A1)
uncertainty (stochastic
environment) * AV

- Bootstrap 1
= Bootstrap 2
b % Training Data

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

PETS: Probabilistic Ensembles with
Trajectory Sampling

* The trajectory sampling (TS) propagation technique
uses our dynamics model to re-sample each
particle (with associated bootstrap) according to its
probabilistic prediction at each point in time, up
until horizon T

Trajectory Propagation

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

PETS: Probabilistic Ensembles with
Trajectory Sampling
* Planning:

At each time step, MPC algorithm computes an optimal action
sequence by sampling multiple sequences, applies the first
action in the sequence, and repeats until the task-horizon.

Planning via Model Predictive Control

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

PETS Algorithm

Algorithm 1 Our model-based MPC algorithm ‘PETS’:

1: Initialize data ID with a random controller for one trial.

2: for Trial K = 1to K do _

3: Train a PE dynamics model f given D.

4. for Time t = 0O to TaskHorizon do

5: for Actions sampled a.c+7 ~CEM(-), 1 to NSamples do
o: Propagate state particlets .;IT) using 7S and f|{D, at.t4+7}.
7: Evaluate actions as > ., & o—17(8%,ar)

8 Update CEM(+) distribution.

9 Execute first action a3 (only) from optimal actions a;.; 7.
0

Record outcome: D < D U {s+, a;, st+1}.

Chua, Kurtland, et al. "Deep reinforcement learning in a handful of trials using probabilistic dynamics models." NIPS 2018.

PETS Experiments

T

Cartpole

0 7-DOF Pusher

200
R
el
8 |l et —————
2 100
(]
a2
S sm— * %). ¢)¢ -~
0 300+ : :
0 1500 3000 0 5000 10000 15000
Number of Timesteps Number of Timesteps
7-DOF Reacher Half-cheetah
0 18000
- . ' 1 T f I AN NN NNENEEENENNENNERNNNENNERENNERNNENRNNENERNBNENERMNNERNMEBNEREMNSHNENEHSH.]
° —glzooo
<
= -100 O o =
& &’ 6000
e e e e e e Se—
K 5000 10000 15000 100000 200000 300000 400000
Number of Timesteps Number of Timesteps
‘ * * - . * EEE -
aaahs : al. 2 p al. O S i G
Our Method [Nagabandi et al. 2017] GP-E GP-DS [Kamthe et al. 2018 PPO PP SAC AC DDPG DDP

(PE-TSI)

(D-E) (GP-MM)

at convergence at convergence at convergence

Content

1. Introduction to MBRL from Dyna

2. Shooting methods: RS & PETS

3. Branched rollout method: MBPO

4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Bound based on Model & Policy Error

 Branched rollout

* Begin a rollout from a state under the previous policy’s
state distribution d_ (s) and run k steps according to 7
under the learned model pg

* Dyna can be viewed as a special case of k=1
branched rollout

Branch

Sn On S d point Real experience trajectory
0 0 1 1

E@o@oo

K-step branched rollout with env. dynamics model

Janner, Michael, et al. "When to Trust Your Model: Model-Based Policy Optimization." NIPS 20109.

Bound based on Model & Policy Error

* Quantify model error and policy shift as
€y = mtaXESNWt [Dry(p(s',7|s,a)||lpe(s’,r]s,a))]
€r = mSaXDTV(WHWD)

* The policy value discrepancy bound is written as

k41 k
branch Y €n TV €n k
77[77] Z T [7‘-] — ZTHIaX [-+ o (6771’)]
(1= (=7 1-9
where the optimal k> 0 if ddeg"" is sufficiently small
Branch
So Oy Si 0 point Real experience trajectory

W@@

K-step branched rollout with env. dynamics model

. . . dem’
Empirical Analysis of -

T
Hopper Walker2d
= = 10 a5k
S S
: 10° ~]
_ _ N EED
S 10 e 2 10 c
O O ‘S 25k
g - < 5
% 1072 - —— %
2 e h O 104 15k
€ €
0 1 2 3 4 5 0 1 2 3 4 5 Sk
policy shift (er : Dkp.(7||7p)) policy shift (ex : Dir,(7||7p))
b) 100 ° 101)
10-1 .. B ~ dEm’
a4
& ® e, 5w L 5 6771’(671') " Em T Ex
— 1072 ° = ° deﬂ'
[]
T 1073 : 1071 ¢
wg ® 0o .~..o~..o~.. A u:g 00.. .
= 107 fo,’ . 1 T 10 o =R o o o .o. ° o
[)
Loos |- ° o 0 0 0 . o
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
train size train size
k+1 k
YT e Y€ k

(€m)

> branch —9
el = e [Tt T

de'm,’
de .

where the optimal k> 0 if is sufficiently small

MBPO Algorithm

Algorithm 2 Model-Based Policy Optimization with Deep Reinforcement Learning

1: Initialize policy 7y, predictive model pg, environment dataset Dey,y, model dataset Diodel
2: for N epochs do

3: Train model py on D,,, via maximum likelihood

4. for E steps do

5 Take action in environment according to m,; add to Depy

6: for M model rollouts do

7 Sample s; uniformly from Deyy

8 Perform k-step model rollout starting from s; using policy 7,; add t0 Dpodel

9 for GG gradient updates do

10: Update policy parameters on model data: ¢ < ¢ —)\Wﬁgb S (®, Dimodel)

 Remarks
* Branch out from the real trajectories (instead from s)
* Branch rollout k steps depends on model & policy
* Soft AC to update policy

Experiment Environments

Cartpole Swimmer HalfCheetah

Walker2d Humanoid

InvertedPendulum

MBPO Experiments

1000-step horizon

InvertedPendulum Hopper Walker2d

6000
c 900 € 3000 c
0 o]]

© © @ 4000
o 600 o 2000 w
(@)] (@)] (@)]

c c S 2000

£ 300 ¢ 1000 o =

© © ©

0 0 0

0 50k 100k 0 100k 200k 300k
steps steps
HalfCheetah Humanoid

£ = =
2 2 2

@ 4000 2 10000 @ 4000
Q Q Q
o o o
£ 2000 = =

g g 5000 g 2000
[(+] [(+] [(+]

0 0 0

0 100k 200k 300k 0 200k 400k 0 100k 200k 300k
steps steps steps

= MBPO - SAC = PPO - PETS = STEVE - SLBO == convergence

Summary of Theoretic Analysis in MBRL

1. The qualitative relationship between policy value
discrepancy and sample efficiency

lower |n() — ()| = more use of model mp higher sample efficiency

2. The quantitative relationship between model error
(and policy shift) and policy value discrepancy

A 1. Derive the bound
In(m) — (@) < Clem&n) 2. Design algorithms to
reduce the C term

Generalization Policy shift
error of the during training
model

Content

1. Introduction to MBRL from Dyna

2. Shooting methods: RS & PETS

3. Branched rollout method: MBPO

4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Bidirectional Model

Key finding: Generating trajectories with the same length, the
compounding error of the bidirectional model will be less than
that of the forward model

@ : real state 5
© : forward state " 8+ k2
©: backward state Skor1 L.
: compounding error A @ . fO r'wa rd m Od el
Skv /'
B
O :
///V
.—>. ‘—».
SO Sl Sk Skz +1 Skl + ko
Sk,
< © bidirectional model
S_, S_y /'.
/
® - .4 - . g - Q
@*@* So AN Sk,
® 8.
S,

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Dynamics Model Learning

* An ensemble of bootstrapped probabilistic networks are

used to parameterize both the forward model py (s'|s, a)
and the backward model gy (s|s’, a)

Cre 4 Do (5/\3701)
* Each probabilistic neural network outputs N, I
a Gaussian distribution with diagonal W I

covariance and is trained via maximum ~ ~

I
likelihood. The corresponding loss f“_, a><— s
functions are: W AS1S, @
N
T v—1
Lp(0) = Z g (St ar) — ser1] Xy~ (8¢, ae) (1o (8¢, ar) — se41] + log det Xg (4, ay)

t=1
N

Ly(0') = Z ey (St41,ar) — St]T 29_/1 (St41,at) [por (St41,at) — s¢] + logdet Xgr (Se41, ar)

t=1

where [t and X are the mean and covariance respectively,
and N denotes the total number of real transition data

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Backward Policy

* In the forward model rollout, actions are
selected by the current policy 7, (als)

* To sample trajectories backwards, we
need to learn a backward policy 7 (als’)
to take actions given the next state

Ty (als)
S—»a S—a

()M

I

U \UY
O«S'

Ty (als’)

* The backward policy can be trained by either maximum

likelihood estimation:
N

Lyie(@’) = - Et—o log T yr(ac|se+1)

e or conditional GAN (GAIL):

mﬁin max V(D,) = [E(a’sr)~n[logD(a, sH] + Eg_[log(1 — D(7(s’),s"))]

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Other Components of BMPO

» State Sampling Strategy: instead of random chosen states from
environment replay buffer, we sample high value states to begin rollouts
according to a Boltzmann distribution.

p(s) o PV

* Thus, the agent could learn to reach high-value states through backward rollouts, and
also learn to act better after these states through forward rollouts

* Incorporating MIPC (Model Predictive Control) to refine the action taken in
real environment.

» At each time-step, candidate action sequences are generated from current policy and the
corresponding trajectories are simulated by the learned model

* Then the first action of the sequence that yields the highest accumulated rewards is

selected: t+H-1 g 4
ac=arg max Yyt (s, a) + ¥V (Sean)

a%' ~TT t'=t

Truncate the rollout with value function

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Overall Algorithm of BMPO

Future Prediction Action Selection D.,, Model Rollouts Diodel
—@—r@ (@) A+ A A+ O =Gt O @) O —>»®: . @)

= >Q (@) A+ A A+0 =6 - GV @ ©

S S A TN @ =argmax G'n) Oy & »0.0l 0
: : : 1 O : O
>Q—>@ o A+ A A+[0O =6Y @) : O

Ry, ~LN ~LN LN LN PN eI o @) (@) @ 0O (@) O

Sl St42 S| N0 T -1 Vi)

O O

I @ : high value real state QO : low value real state @ : forward state @© : backward state /\ : predictive reward] : estimated value |

1. When interacting with the environment, the agent uses the model to
perform MPC-based action selection

2. Datais stored in D,,, where the value of state increases from light red to
dark red

3. High value states are then sampled from D,,, to perform bidirectional model
rollouts, which are stored in D, 4.

4. Model-free method (e.g., soft actor-critic) is used to train the policy based
on the data from D, 4.,

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Theoretical Analysis

@ : real state 2 6y
@ : forward state " %+ k ” ‘I?
© : backward state Sty 41 e BE et
: compounding error S'kz _///y‘ & . ///'O
5 .. 9 B ienees o< —0 >0 - O
® o4 So S Sk,
o———¢@ - ®e—>0 -) 5.
So S Sk, Sty +1 g ok S,
forward model bidirectional model

Bidirectional model:

ranc kitkotle kithkoe max(k1,k2)em
‘77[”] —n° h[wH < QTmaX[7 11_27)2 + % + (1i72)|€]

Forward model:

ranc kithkot+le kithkoe k1+ka)em
] — P8]| < 2y [Tty 20 [tk]

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Comparison with State-of-the-Arts

Pendulum Hopper Walker2d
3500 = o o
=200 5000
3000
R c BMPO c
S e00 5 2500 MBPO 5 4000
2 2 2
" —-800 0 2000 O 3000
(@] (@] (@)}
@ 1000 © 1500 © s
2 -1200 2 2
© © 1000 ©
-1400 1000
500
-1600
0
% 20K 40K 60K 80K 100K 0 40K 80K 120K 160K 200K
steps steps
Hopper-NT Walker2d-NT
4000
6000 m = —mm———————— e ———— 2000
BMPQ
5000
c c 2000 c
— B M PO — M B PO 2000
2 4000 2 b=
o MBPO o 1000 T 0
(] [} (]
O 3000 o o o
@© © © 0
o o o
% 2000 % -1000 - % -1000
1000 ~2000 / 5000 W/\—/

0 —3000 —3000
0 50K 100K 150K 200K 250K 300K 0 20K 40K 60K 80K 100K 0 40K 80K 120K 160K 200K

steps steps steps

—— MBPO —— BMPO ——HSAE —— SLBO PETS —-=—=— convergence

 Compared with previous state-of-the-art baselines, BMPO (blue) learns faster and has
better asymptotic performance than previous model-based algorithms using only the
forward model
Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Model Compounding Error

compounding error

Pendulum Hopper-NT
1.4
5 12
Y10
(@)]
C
- 0.8
[
3
S 0.6
&
o 04
@]
0.2
0.0
20 40 60 80 100 0 4 8 12 16 20
rollout length rollout length
—— forward model —— Dbidirectional model

1 —2h ,
Brroror = 55) 5= sill
1=

1 h
Errory; = oh E _ 1(||5h+i — Sp+ill5 + 18n=i — sp—:ll13)
1=

Hang Lai, Jian Shen, Weinan Zhang, Yong Yu. Bidirectional Model-based Policy Optimization. ICML 2020.

Content

1. Introduction to MBRL from Dyna

2. Shooting methods: RS & PETS

3. Branched rollout method: MBPO

4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

Distribution Mismatch in MBRL

* One potential problem

e Distribution mismatch between real data (in model
learning) and simulated data (in model usage)

* It’s the source of compounding model error

Training trajectories o
State transition

T(s'|s,a)

Rollout trajectories

State

Dtrain (S, @) # Proliout (S, @)

Time

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

Deal with Distribution Mismatch

* In model learning
* Design different architectures and loss functions
* Make the rollouts more like real

Asadi, Kavosh, et al. "Combating the Compounding-Error Problem with a Multi-step Model." arXiv preprint arXiv:1905.13320 (2019).
Farahmand, Amir-massoud, Andre Barreto, and Daniel Nikovski. "Value-aware loss function for model-based reinforcement
learning." Artificial Intelligence and Statistics. 2017.

* In model usage
* Design careful rollout schemes
* Stop the rollout before the generated data departure

Janner, Michael, et al. "When to trust your model: Model-based policy optimization." Advances in Neural Information Processing Systems. 2019.
Buckman, Jacob, et al. "Sample-efficient reinforcement learning with stochastic ensemble value expansion." Advances in Neural Information Processing
Systems. 2018.

* Although alleviated, the problem still exists

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

Notations

* Environment: T(s’|[s, a), model: T(s'|s, a)
e Occupancy measure (normalized)
p(s,) = (1 =) - m(als)) v PRe(s)
 State visit distribution
VE(S) = (1=1)) ¥ PRL(s)
* Integral probabtility metric (IPM)
dz(P,Q) = ?}Eljlgmvap[f ()] — Ex~qlf (x)]

* IPM measures many well-known distances
* Wasserstein-1 distance, Maximum Mean Discrepancy

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

A Lower Bound for Expected Return

Theorem 3.1. Let R = sup,,7(s.a) < oo, F =
UsresFs and define e, 1= 2(1Tv(1/%, 1/{,3’3). Under the as-
sumption of Lemma 3.1, the expected return 7|7| admits the
following bound:

n[x] 20r]|— R-ex —yR-dr(p7”, p7) - VOI(S)

bR Equo V2D (T (s, a) T s,0)),

where Vol(S) is the volume of state‘space S.

policy learning in model + model learning = basic MBRL

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

A Lower Bound for Expected Return

Theorem 3.1. Let R := sup,, r(s,a) < oo, F =

UsresFs and define e, := 2dry (v}, v7:P). Under the as-

sumption of Lemma 3.1, the expected return 7|7| admits the
following bound:

n(r] > 0r] =R - x| = vR - dx(p7”, pZ)| VOI(S)

—AR-E [0\ 2Dk (T ({5, a) || T(-]s,a)),

where Vol(S) is

e volume of state space S.

reliable exploitation in distribution distance
batch RL

(violate the rule of exploration)

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

Review: Domain Adaptation

Theorem 1. Let jis, j1r € P(X) be two probability mea-
sures. Assume the hypotheses h € H are all K-Lipschitz
continuous for some K. Then, for every h € H the follow-

ing holds
12K W o (s, poe) [HA (1)

Vol ni

error in error in
target domain source domain

t(h)|<

Wasserstein distance Constant

Inspiration: aligning the two feature distributions in MBRL

Shen, Jian, et al. "Wasserstein distance guided representation learning for domain adaptation." AAAI 2018.

Unsupervised Model Adaptation

e Source domain: model training data
* Target domain: model rollout data

* Aligning the latent feature distributions by
minimizing IPMs according to the lower bound

!
!

o I

!

I 5 I :
A : ! , /—\
I I
Looils ' Initialize TR
l {

l 1
|
|
: : ! : t
| : : (S, ae) (Sm am) : : (Se,ac)
—————————— Fe-================1 l————————————
: en\ {(Se ae e)}l : Den\ {(Se ae)} Dmodel{(sm am)}l | Den\ {(Se ae Se)}
Model Training Model Adaptation Next Model Training

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

AMPO

* Adaptation augmented Model-based Policy Optimization

6. Policy Optimization MBPO

]
]
]
1. Interact 2. Store 3. Learn
I l — — —_—
]

I
l
4. Rollout
— |
I
: Agent Environment Real Data Model Simulated Data :
b O O O O O O O - . - - - - - - O O O O - sEsES=-u_=-= - - 4

l * l

5. Model Adaptation

* AMPO: Wasserstein-1 distance (WGAN)

* Variants: use other distribution divergence, e.g. MMD
(Maximum Mean Discrepancy)

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

Overall Algorithm

Algorithm 1 AMPO

I: Initialize policy 7, dynamics model Tg, environment buffer D_., model buffer D,,,

2: repeat

3: Take an action in the environment using the policy 7,; add the sample(s, a, s’,) to D,
4. if every E real timesteps are finished then

5: Perform (&) gradient steps to train the model 7y with samples from D,

6

7

8

9

for F' model rollouts do
Sample a state s uniformly from D,
Use policy 74 to perform a k-step model rollout starting from s; add to D,,,

end for

10: Perform (5 gradient steps to train the feature extractor with samples (s, a) from both D,
and D,,, by the model adaptation loss Lyp

11: endif

12: Perform (G5 gradient steps to train the policy 7, with samples (s, a, s’,r) from D, U D,,
13: until certain number of real samples

R U ——

I

1

I

1

1

I Feature
: xtracto
1

1

I

1

1

|
____________ 1 |
Model Training Model Adaptation Next Model Training

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

average return

averaje return

Comparison with State-of-the-Arts

InvertedPendulum Swimmer
1200 MBPO
1000 +— AMPO
— SAC g
800 - SLBO 5
= PETS =

6001 — = converge oy
1™

400 g
o

200 -

0 - " : '
0 0.5% 1K 1.5K 2K
steps
Walker2d

6000 A

5000 A
E

4000 - Z
o

3000 4 g
g

2000 A g
(0]

1000

0 T A 4 T T O
0 50K 100K 150K 200K 250K 300K 0 50K 100K 150K 200K 250K 300K
steps steps

Hopper
4000 -
£ 3000 -
|
[
&, 2000 -
o
Q
>
3 1000 - "/\f\'\/\/“
ﬂ‘-/.‘“—‘,v
0 '_-:_-— Rl Ll Ll
0 20K 40K 60K 80K 100K
steps
HalfCheetah
15000 = == == 4 o= o -

= 125001
2 10000 1 AMPO
1
¢ 75004 MBPO
P
¢ 5000 -
"

0 - v-A — Vv’ - l‘ - 1->

0 20K 40K 60K 80K 100K

steps

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

Model Loss Evaluation

Hopper
0.0150 - 1.50
0.0100 4 1.00 4
a 0.0075 4 2
o MBPO 2 0.75 1
0.0050 -
) 0.50 -
0.0025
AMPO 0.25 1
0.0000 ' y '
6K 25K 50K 75K 100K
steps

Walker2d
—— MBPO-train
- MBPO-validation
e AMPO-train
— AMPO-validation
MBPO

AMPO
6K 25K 50K 75K 100K

steps

(a) One-step model losses.

0.06

0
°c o 9
o o o
w & o

compounding error

o
o
[

Hopper

| — AMPO

e

o

[N}
'

~—— MBPO

40 60 80

rollout length

20

(b) Compounding errors.

* Model adaptation makes the model more accurate

* AMPO achieves smaller compounding errors than

MBPO

Jian Shen, Han Zhao, Weinan Zhang, Yong Yu. Model-based Policy Optimization with Unsupervised Model Adaptation. NeurlPS 2020.

Content

1. Introduction to MBRL from Dyna

2. Shooting methods: RS & PETS

3. Branched rollout method: MBPO

4. Recent work: BMPO, AMPO and AutoMBPO

Appendix: Backpropagation through paths: SVG and MAAC

AutoMBPO: better understanding of
MBRL hyper-parameters
How to tune the frequency

How to schedule the ratio value/policy
of policy training?

of real data?
acting
What is the rollout planning direct
length k? RL How much to interact with
real data to make the best

How to tune the frequency model experlence balance of performance
of model training? and sample efficiency?

model

Motivation: learning

* MBRL methods are sensitive to the primary hyper-
parameters, e.g., ratio of real data and simulated data,
model and policy training frequency, rollout length

* To provide a better understanding of MBRL through hyper-
parameter scheduling

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

Analysis of real ratio schedule

Return discrepancy upper bound:

* TK 2’)/
V= v, < ———5C,/rd, .(BF, F)
(1—7)
. BA‘ real $>
Real Ratio +0 log + log(—)
jmeal((B!A\) o(5)
Real data
number (-1l =)
u +O (P (1 8KNreal (1

+O (K/pvmax) |

As B/N.,.q; increases, the second term increases while the
third term decreases. So there exists an optimal value
for 8/Nyeai. Since N,..q increases during training, gradually
increasing 5 is promising to achieve good performance.

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

AutoMBPO Framework

ldea: formulate hyperparameter scheduling as an
MDP and then adopt some RL algorithm (e.g., PPO in
the paper) to solve it

State, Reward

re=="""="="==="EEEEEEE=E=E== "
| |

I Policy - Target-MDP
1 Hyper-MDP N~ !
& Interact 0

—
== Train lStore
Hyper-Controller |

3
ol =
o
c
(o
o |
=
P‘E
=

r——--

Action

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

-200

-400

-600

-800

-1000

average return

-1200

-1400

-1600

4000

3500

3000

N N
o a
o [=}
o o

average return
a
8

1000

500

AutoMBPO Experiments

Pendulum Hopper Ant
3500 5000
3000
4000
g 2500 c
=] =
- <+ 3000
© 2000 o
[[}
()] [®)]
® 1500 © 2000
(] (]
> >
© 1000 — N
1000
500
0 \,_\/'\/
0
0.6k 1.2k 1.8k 24K 3K 0 20K 40K 60K 80K 100K 30K 60K 90K 120K 150K
steps steps steps
HopperBullet WalkerBullet HalfCheetahBullet
3000
3000
2500
2500
c c
é é 2000
o 2000 o
(0] o 1500
81500 g
o ® 1000
@© 1000 ©
500
500
0
0
20K 40K 60K 80K 100K 0 20K 40K 60K 80K 100K 10K 20K 30K 40K 50K
steps steps steps
— MBPO —— AutoMBPO —— PBT —— RoR —— SAC(1) —— SAC(20)

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

real ratio

AutoMBPO Experiments

Hyperparameter Schedule Visualization:
Real Ratio

1.0

0.8

0.6

The real ratio schedule is consistent
with the theoretical analysis, i.e.,
gradually increasing the ratio of real
data is promising to achieve good
performance.

—— Pendulum —— Hopper — Ant HopperBullet
— WalkerBullet —— HalfCheetahBullet --- MBPO
0.2 0.4 0.6 0.8 1.0
training percentage

Model Training Frequency Policy Training Iteration Rollout Length
20 = > n—
|

— T —

N
(&2}

-

o
N
o

=5
(&)

rollout length
5

policy training iteration
S

(6}

0 0.2 0.4 0.6 0.8 1.0 0 0.2 04 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

training percentage training percentage training percentage

Hang Lai, et al. "On Effective Scheduling of Model-based Reinforcement Learning." NIPS2021

Summary of Model-based RL

L

Model as a Blackbox

Sample experience data
and train the policy in the
manner of model-free RL

Seamless to policy training
algorithms

Easy for rollout planning

The simulation data
efficiency may still be low

E.g., Dyna-Q, MPC, MBPO

Model as a Whitebox

 Environment model,
including transition
dynamics and reward
function, is a differentiable
stochastic mapping

e Offer both data and
gradient guidance for value
and policy

* High data efficiency
* E.g., MAAC, SVG, PILCO

Future Directions of MBRL

* Environment model learning
* Learning objectives
* Environment imitation
* Complex simulation
 MBRL with true model in simulation

e Better understanding of bounds
* When to have tighter bounds
* Rollout length and when to rollout

* Multi-agent MBRL

Content

1. Introduction to MBRL from Dyna
2. Shooting methods: RS & PETS
3. Branched rollout method: MBPO
4. Recent work: BMPO & AMPO

Appendix: Backpropagation through paths: SVG and MAAC

REVIEW

Deterministic Policy Gradient

e A critic module for state-action value estimation
Q%(s,a) = Q"(s,a)
L(w) = Es~pm g~y [(@Q¥(s,a) — Q™ (s,a))?]

* With the differentiable critic, the deterministic
continuous-action actor can be updated as

* Deterministic policy gradient theorem
J(mg) = II5:S~p” Q™ (s, a)]
VoJ(mg) = [Es~p” [VGT[Q (s) Vo Q™ (s, a)|a=n9(s)]

On-policy Chain rule

D. Silver et al. Deterministic Policy Gradient Algorithms. ICML 2014.

From Deterministic to Stochastic

* For deterministic environment, i.e., reward and
transition, and policy, i.e., a function mapping state

to action

a = 7(s;0) = f(s,a) gy = 0g(x,y)/0x

Vi(s) =r(s, a)vWV’((s,a))
Vs =rg +rams + 7‘/5//(fs =+ faﬂ-s)a
Vg = ramp + ’7‘/;//fa71'9 —+ ”}/VQ/.

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.

From Deterministic to Stochastic

* Math: reparameterization of distributions

e Conditional Gaussian distribution

p(ylz) = N (y|lp(z), o*(x))

- y = p(z) + o()¢, where € ~

* Consider conditional densities whose samples are

N(0,1)

generated by a deterministic function of an input noise

y = f(X f), Wheref ~ p()

variable

Epyx)8 f g(f

derivative VXEp(y|x)g() = E,) gyfx &

f)df

Zgy Bl

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradlents NIPS 2015.

A
ga:_

g(z,y)/0x

From Deterministic to Stochastic

* Deterministic version for a=m(s;0) = f(s,a)
reference V(s) = r(s, a)+vV’((s,a))

Vs =rg +rams + ')/Vvs//(fs + faﬂ_s>a

. Stthastlc environmept, Vp = ramtg + Vo famp + AV,
policy, value and gradients

a = 7(s,n0) s =1f(s,a,§) n ~ p(n)and & ~ p(§)

V(S> — Ep(ﬂ) _T(S, W(Sa 1 6)) + VEp(f) [V/(f(sv 7T<Sa Uk 9)7 5))]]

Vs =]EP(U) rs + TaTlls + ’)/Ep(g)v/“‘ + faﬂs)] :

Vo = E, ;) |ramo + YE¢) | Ve famo + V@’]] : 9o = 0g(x,y)/0x

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.

SVG Algorithm and Experiments

Algorithm 1 SVG(c0)

1. Given empty experience database D

2. for trajectory = 0 to oo do

3: fort=0to7 do .

4. Apply control a = 7 (s, n;6), n ~ p(n) §

5: Insert (s, a,r,s’) into D

6: end for)

7. Train generative model f using D

8: wi = 0 (finite-horizon)

9: v, = 0 (finite-horizon)
10: fort = "1 down to O do Swimmer-3
11: Infer £|(s,a,s’) and (s, a) -
12: ve = [rame + V(v famo + vp)] ‘n ; S
13: Vs = [rs + rams + YUL (fs + fams)] }n c 5 — 2zg§iln)f>
14: end for | g SVG(0)
15: Apply gradient-based update using vy e
16: end for . 5o 1500

Episodes

Heess, Nicolas, et al. "Learning continuous control policies by stochastic value gradients." NIPS 2015.

Model-Augmented Actor Critic

* The objective function can be directly built as a
stochastic computation graph

- F(se.ar)
H A St+1 ~ J\St, At
T (0) =E | > _ ~'r(se) +v"Q(sm,am)| |
—0 at 7T9(St)
0 H makes tradeoff between accuracy of model and learned Q

r

Q Stochastic variable

Deterministic variable

J

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.

L1 Error of the Gradient

Theoretic Bounds

70

65

Large H, i.e., long rollout, brings large 60
gradient error, thus the model error S 55

L

50

— H=0 —— H=3 45
H=2 —_— H=10 40

—— H=5 —— true dynamics(H=5) 35

0.0 0.5 1.0 1.5 2.0 2.5

Time-steps 1le3

Lemma 4.1 (Gradient Error). Let f and Q be the learned approximation of the dynamics f and
Q-function Q, respectively. Assume that QQ and () have L, /2-Lipschitz continuous gradient and f and

f have L ¢ /2-Lipschitz continuous gradient. Let € ; = max; HVf(§t, ar) — V f(st,a4)||2 be the error

on the model derivatives and eq = |V Q(3,ar) — VQ(sk, ag)||2 the error on the Q-function
derivative. Then the error on the gradient between the learned objective and the true objective can
be bounded by:

E [vajﬁ _ VBJ;HQ} < ey (H)er + co(H)eo

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.

Theoretic Bounds

One-step gradient approximation error

Lemma 4.2 (Total Variation Bound). Under the assumptions of the Lemma/4.1, let @ = 0,4+ Vg {W

be the parameters resulting from taking a gradient step on the exact objective, and 0=0,+aVeJ,
the parameters resulting from taking a gradient step on approximated objective, where o € R™. Then
the following bound on the total variation distance holds

max Dry(mol|ms) < acs(eper (H) + eqea(H))

Policy value lower bound
Theorem 4.1 (Monotonic Improvement). Under the assumptions of the Lemma\@ be 0’ and 0 as

defined in Lemma
the T4 satisfies

4.2

and assuming that the reward is bounded by ry,.x. Then the average return of
A 2armax
J.(0) > J.(0)— T acs(erci(H) +egca(H))

Dynamics error € = IMaXy va(§t7 dt) — Vf(Sta at)HZ

Value function error €g = HVQ(§H,&H) —VQ(sy,am)l2

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.

MAAC Algorithm

Algorithm 1 MAAC

I: Initialize the policy g, model fp, Qs Deny < 0, and the model dataset Dyoger — ()
2: repeat
3 Sample trajectories from the real environment with policy 7. Add them to Dey,.
4: fori=1...G1 do
5: ¢ — ¢ — B¢V pJs(¢) using data from Depy.
6: end for A
7 Sample trajectories 7 from fg. Add them to Dyodel-
8: D «+ Dmodel U Denv
9: fori=1...Godo
10: Update 8 < 0 + 3, Vg.J(0) using data from D
11: Update v < ¢ — B V. Jo (1) using data from D
12: end for
13: until the policy performs well in the real environment
14: return Optimal parameters 8*

* Model learning: PILCO - ensemble of GPs {fs,, ..., fo. }
H-1

* Policy Optimization .J,.(0) =E Z Yir(8:) + 77 Qup (3, arr) | + BH(7e)
t=0

* Q-function Learning Jg () = E[(Quy (51, ar) — (r(st, at) +7Qu (5t 11, a111)))°]

Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A model-based and data-efficient approach to policy search." ICML 2011.

Experiments

AntEnv HalfCheetahEnv
< 4000 10000
)
+—
£ 3000 7500
v
5000
(@)
32000
—
g 2500
1000-
< __—4 (o}
0.00 025 050 075 1.00 125 150 0.0 0.2 0.4 0.6 0.8
Time-steps 1e> Time-steps 1e>
HopperEnv Walker2dEnv
c
— 2000
>
4
Q
o
Q 0
(@)
©
L -
L 20007 ; - -
Z i
0 1 2 3 4 5 6 7 0.0 0.2 0.4 0.6 0.8 1.0
Time-steps led Time-steps 1e5

~—— svg ~—— mbpo —— steve =—— sac —— maac

Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented Actor Critic: Backpropagation through paths. ICLR 2020.

References of

Backpropagation through Paths

* PILCO

* Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A
model-based and data-efficient approach to policy
search.”" ICML 2011.

* SVG

* Heess, Nicolas, et al. "Learning continuous control
policies by stochastic value gradients.” NIPS 2015.

* MAAC

* Ignasi Clavera, Yao Fu, Pieter Abbeel. Model-Augmented
Actor Critic: Backpropagation through paths. ICLR 2020.

