
Lecture 3: Constraint
Satisfaction Problems

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS3317/index.html

Constraint Satisfaction Problems

2

Constraint Satisfaction Problems

3

N variables

x1

x2

domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable

What is Search For?

• Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems

4

Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables 𝑋𝑖 with values

from a domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying

allowable combinations of values for subsets
of variables

• Allows useful general-purpose algorithms
with more power than standard search
algorithms 5

Why study CSPs?

• Many real-world problems can be formulated as CSPs

• Assignment problems: e.g., who teaches what class

• Timetabling problems: e.g., which class is offered when and where?

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Circuit layout

• Fault diagnosis

• … lots more!

• Sometimes involve real-valued variables…

6

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: D={red, green, blue}

• Constraints: adjacent regions must have different
colors:
• Implicit: WA≠NT
• Explicit: (WA,NT)∈{(red, green), (red, blue), …}

• Solutions are assignments satisfying all constraints,
e.g.:

7

Example: N-Queens

• Formulation 1:
• Variables: 𝑋𝑖𝑗
• Domains: 0,1

• Constraints:

8

Example: N-Queens 2

• Formulation 2:
• Variables: 𝑄𝑘
• Domains: 1,2,3,… ,𝑁

• Constraints:

9

Implicit:

Explicit:

Example: The Waltz Algorithm

• The Waltz algorithm is for
interpreting line drawings of solid
polyhedra as 3D objects

• An early example of an AI
computation posed as a CSP

10

?
• Approach:

• Each intersection is a variable
• Adjacent intersections impose

constraints on each other
• Solutions are physically realizable 3D

interpretations

Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:

11

X1

Example: Sudoku

• Variables:
• Each (open) square

• Domains:
• {1,2,…,9}

• Constraints:

12

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of pairwise
inequality constraints)

Varieties of CSPs

• Discrete Variables
• Finite domains

• Size d means 𝑂(𝑑𝑛) complete assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

• Infinite domains (integers, strings, etc.)
• E.g., job scheduling, variables are start/end times for each job
• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time by LP

methods

13

We will cover in this lecture

Related with linear programming

Varieties of Constraints 2

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable

assignment
• Gives constrained optimization problems
• (We’ll ignore these until we get to Bayes’ nets)

14

Focus of this lecture

Constraint Graphs

• Binary CSP: each constraint relates (at most)
two variables

• Binary constraint graph: nodes are variables,
arcs show constraints

• General-purpose CSP algorithms use the
graph structure to speed up search. E.g.,
Tasmania is an independent subproblem!

15

Solving CSPs

16

Standard Search Formulation

• Standard search formulation of CSPs

• States defined by the values assigned so
far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

17

→Can be any unassigned variable

Search Methods: BFS

• What would BFS do?

18

{}

{WA=g} {WA=r} {NT=g}… …

Search Methods: BFS 2

19

• Any one variable

Search Methods: BFS 3

20

• Any two variables

Search Methods: BFS 4

21

…

• Any assignment
for all variables

Search Methods: DFS

• At each node, assign a value from the
domain to the variable

• Check feasibility (constraints) when
the assignment is complete

• What problems does the naïve search
have?

22[Demo: coloring -- dfs]

Search Methods: DFS 2

23

……

Backtracking Search

25

Backtracking Search

• Backtracking search is the basic uninformed algorithm for
solving CSPs

• Backtracking search = DFS + two improvements

• Idea 1: One variable at a time 走一步
• Variable assignments are commutative, so fix ordering -> better

branching factor! (from O(nd) to O(d))
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go 看一步
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Can solve N-queens for 𝑁 ≈ 25

26

Example

27[Demo: coloring -- backtracking]

function BACKTRACKING_SEARCH(csp) returns a solution, or failure

return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then

return assignment

var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var=value} to assignment

result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)

if result ≠ failure then

return result

remove {var=value} from assignment

return failure

function BACKTRACKING_SEARCH(csp) returns a solution, or failure

return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then

return assignment

var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var=value} to assignment

result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)

if result ≠ failure then

return result

remove {var=value} from assignment

return failure

No need to check consistency for a
complete assignment

Checks consistency at each assignment

What are choice
points?

Backtracking = DFS + variable-ordering +
fail-on-violation

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

31

Filtering
Keep track of domains for unassigned variables and cross off bad options

32

Filtering: Forward Checking
• Filtering: Keep track of domains for unassigned variables and cross off bad

options

• Forward checking: Cross off values that violate a constraint when added to
the existing assignment

33

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

failure is detected if some variables have no values remaining

Filtering: Forward Checking 2
• Filtering: Keep track of domains for unassigned variables and cross off bad

options

• Forward checking: Cross off values that violate a constraint when added to
the existing assignment

34

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints

Filtering: Forward Checking 3
• Filtering: Keep track of domains for unassigned variables and cross off bad

options

• Forward checking: Cross off values that violate a constraint when added to
the existing assignment

35

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Filtering: Forward Checking 4
• Filtering: Keep track of domains for unassigned variables and cross off bad

options

• Forward checking: Cross off values that violate a constraint when added to
the existing assignment

36

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

FAIL – variable with
no possible values

Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

38

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the
head which could be assigned without violating a constraint

Forward checking?
A special case
Enforcing consistency of arcs pointing to each new assignment 39

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

40

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP 2

• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-
consistency, repeating the cycle until no domains change for a whole
cycle

• AC-3 (Arc Consistency Algorithm #3):
• A more efficient algorithm ignoring constraints that have not been modified

since they were last analyzed

41

WA
SA

NT
Q

NSW

V

T

function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

while queue is not empty do

(𝑋𝑖 , 𝑋𝑗) ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) then

for each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] do

add (𝑋𝑘 , 𝑋𝑖) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) returns true iff succeeds

removed ⟵ false

for each x in DOMAIN[𝑋𝑖] do

if no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint 𝑋𝑖 ⟷ 𝑋𝑗 then

delete x from DOMAIN[𝑋𝑖]; removed ⟵ true

return removed

function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

while queue is not empty do

(𝑋𝑖 , 𝑋𝑗) ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) then

for each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] do

add (𝑋𝑘 , 𝑋𝑖) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) returns true iff succeeds

removed ⟵ false

for each x in DOMAIN[𝑋𝑖] do

if no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint 𝑋𝑖 ⟷ 𝑋𝑗 then

delete x from DOMAIN[𝑋𝑖]; removed ⟵ true

return removed

Constraint Propagation!

function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

while queue is not empty do

(𝑋𝑖 , 𝑋𝑗) ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) then

for each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] do

add (𝑋𝑘 , 𝑋𝑖) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) returns true iff succeeds

removed ⟵ false

for each x in DOMAIN[𝑋𝑖] do

if no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint 𝑋𝑖 ⟷ 𝑋𝑗 then

delete x from DOMAIN[𝑋𝑖]; removed ⟵ true

return removed … but detecting all possible future
problems is NP-hard – why?

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values

• Total times of removal: 𝑂 𝑛𝑑

• After a removal, ≤ 𝑛 arcs added

• Total times of adding arcs: 𝑂(𝑛2𝑑)

• Check arc consistency per arc: 𝑂(𝑑2)

• Complexity: 𝑂(𝑛2𝑑3)

• Can be improved to 𝑂(𝑛2𝑑2)

Example of AC-3

45

Queue:

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

45

SA->WA
NT->WA

Example of AC-3 2

46

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

WA
SA

NT
Q

NSW

V

T

Remember: Delete from the tail!

Example of AC-3 3

47

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

Example of AC-3 4

48

WA
SA

NT
Q

NSW

V

T

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Example of AC-3 5

49

WA
SA

NT
Q

NSW

V

T

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Example of AC-3 6

50

Queue:

WA
SA

NT
Q

NSW

V

T

Quiz: What would be added to the queue?

51

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

Queue:

WA
SA

NT
Q

NSW

V

T

Example of AC-3 7

52

Queue:
NT->Q
SA->Q
NSW->Q

WA
SA

NT
Q

NSW

V

T

Example of AC-3 8

53

Queue:
NT->Q
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

Example of AC-3 9

54

WA
SA

NT
Q

NSW

V

T

Queue:
NT->Q
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Example of AC-3 10

55

WA
SA

NT
Q

NSW

V

T

Queue:
NT->Q
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Example of AC-3 11

56

WA
SA

NT
Q

NSW

V

T

Queue:
NT->Q
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Example of AC-3 12

57

!!!

WA
SA

NT
Q

NSW

V

T

Queue:
NT->Q
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

• Backtrack on the assignment of Q

• Arc consistency detects failure earlier than forward checking

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left

• Can have multiple solutions left

• Can have no solutions left (and not know it)

• Arc consistency still runs inside a
backtracking search!

• And will be called many times

58
[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

function BACKTRACKING_SEARCH(csp) returns a solution, or failure

return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then

return assignment

var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var=value} to assignment

result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)

if result ≠ failure, then

return result

remove {var=value} from assignment

return failure

AC-3(𝑐𝑠𝑝)

K-Consistency

• Increasing degrees of consistency
• 1-Consistency (Node Consistency): Each single

node’s domain has a value which meets that node’s
unary constraints

• 2-Consistency (Arc Consistency): For each pair of
nodes, any consistent assignment to one can be
extended to the other

• k-Consistency: For each k nodes, any consistent
assignment to k-1 can be extended to the kth node.

• Higher k more expensive to compute

• (You need to know the k=2 case: arc consistency)

61

Strong K-Consistency

• Strong k-consistency: also k-1, k-2, … 1 consistent
• Claim: strong n-consistency means we can solve without backtracking!
• Why?

• Choose any assignment to any variable
• Choose a new variable
• By 2-consistency, there is a choice consistent with the first
• Choose a new variable
• By 3-consistency, there is a choice consistent with the first 2
• …

• Lots of middle ground between arc consistency and n-consistency! (e.g.
k=3, called path consistency)

62

Ordering

63

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

64

Backtracking Search

• fix ordering

• check constraints as you go

65

Quiz

• What is good/bad to fix the ordering of variables?

• What is good/bad to fix the ordering of values?

66

Variable Ordering: Minimum Remaining
Values
• Variable Ordering: Minimum remaining values (MRV):

• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?

• Also called “most constrained variable”

• “Fail-fast” ordering

67

Value Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least constraining

value
• I.e., the one that rules out the fewest values in the

remaining variables
• Note that it may take some computation to determine

this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible

69

Quiz

• How we order variables and
why

• How we order values and
why

• Why different on variables
and values

71

Structure

72

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

73

Problem Structure

• For general CSPs, worst-case complexity with backtracking
algorithm is O(dn)

• When the problem has special structure, we can often solve
the problem more efficiently

• Special Structure 1: Independent subproblems
• Example: Tasmania and mainland do not interact
• Connected components of constraint graph
• Suppose a graph of 𝑛 variables can be broken into

subproblems, each of only 𝑐 variables:
• Worst-case complexity is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec

74

Tree-Structured CSPs

• Theorem: if the constraint graph has no cycles, the CSP can be solved in O(nd2)
time
• Compare to general CSPs, where worst-case time is O(dn)
• How?

• This property also applies to probabilistic reasoning (later): an example of the
relation between syntactic restrictions and the complexity of reasoning

75

Tree-Structured CSPs 2

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

76

Tree-Structured CSPs 3

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

77

Tree-Structured CSPs 4

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)
• Assign forward: For 𝑖 = 1: 𝑛, assign 𝑋𝑖 consistently with Parent(𝑋𝑖)

• Runtime: 𝑂(𝑛𝑑2) (why?)
• Can always find a solution when there is one (why?) 78

Remove backward 𝑂(𝑛𝑑2) : 𝑂 𝑑2 per arc and 𝑂(𝑛) arcs
Assign forward 𝑂(𝑛𝑑): 𝑂(𝑑) per node and 𝑂(𝑛) nodes

Tree-Structured CSPs 5

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass

79

Tree-Structured CSPs 6

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• When 𝑋𝑖 was visited, we enforced arc consistency of Parent(𝑋𝑖) → 𝑋𝑖 by reducing the domain

of Parent(𝑋𝑖). By definition, for every value in the reduced domain of Parent(𝑋𝑖), there was

some 𝑥 in the domain of 𝑋𝑖 which could be assigned without violating the constraint involving

Parent(𝑋𝑖) and 𝑋𝑖

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass
80

Tree-Structured CSPs 7

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once.

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass

• Domain of 𝑋𝑖 would not have been reduced after 𝑋𝑖 is visited because 𝑋𝑖’s children were

visited before 𝑋𝑖. Domain of Parent(𝑋𝑖) could have been reduced further. Arc consistency

would still hold by definition.

81

Tree-Structured CSPs 8

• Assign forward: For 𝑖=1:𝑛, assign 𝑋𝑖 consistently with Parent(𝑋𝑖)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

• Proof: Follow the backtracking algorithm (on the reduced domains and with the same
ordering). Induction on position Suppose we have successfully reached node 𝑋𝑖. In the
current step, the potential failure can only be caused by the constraint between 𝑋𝑖 and
Parent(𝑋𝑖), since all other variables that are in a same constraint of 𝑋𝑖 have not
assigned a value yet. Due to the arc consistency of Parent(𝑋𝑖) → 𝑋𝑖, there exists a
value 𝑥 in the domain of 𝑋𝑖 that does not violate the constraint. So we can successfully
assign value to 𝑋𝑖 and go to the next node. By induction, we can successfully assign a
value to a variable in each step of the algorithm. A solution is found in the end.

82

What if there are cycles

• Why doesn’t this algorithm work with cycles in the constraint graph?

• We can still apply the algorithm (choose an arbitrary order and draw
“forward” arcs).

• For remove backward, what would happen?

• For assign forward, what would happen?

83Note: We’ll see a similar idea with Bayes’ nets in later lectures

What if there are cycles 2

• Why doesn’t this algorithm work with cycles in the constraint graph?

• We can still apply the algorithm (choose an arbitrary order and draw
“forward” arcs).

• For remove backward, what would happen?

• We can enforce all arcs pointing to 𝑋𝑖 when 𝑋𝑖 is visited. The complexity is
𝑂(𝑛2𝑑2). After backward pass, the reduced domains do not exclude any
solution and all the forward arcs are consistent

• For assign forward, what would happen? 84

What if there are cycles 3

• Why doesn’t this algorithm work with cycles in the constraint graph?

• We can still apply the algorithm (choose an arbitrary order and draw
“forward” arcs).

• For remove backward, what would happen?
• For assign forward, what would happen?
• In a step of assigning values, we may encounter failure because we need to

make sure the constraints involving the current node and any parent node
is satisfied, which could be impossible. Therefore, we may need to
backtrack.

85

Improving Structure

86

Nearly Tree-Structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

• Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

87

Cutset Conditioning

88

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Quiz

• Find the smallest cutset for the graph below

89

Tree Decomposition

• Idea: create a tree-structured graph of mega-variables

• Each mega-variable encodes part of the original CSP

• Subproblems overlap to ensure consistent solutions

90

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

A
gree

 o
n

 sh
ared

 vars

NT

SA


WA

 

Q

SA


NT

 

A
gree

 o
n

 sh
ared

 vars

NS

W

SA


Q

 
A

gree o
n

 sh
ared

 vars

V

SA


NS

W

 

Non-binary CSPs

91

Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:

92

X1

Constraint graph for non-binary CSPs

• Variable nodes: nodes to represent the variables

• Constraint nodes: auxiliary nodes to represent the constraints

• Edges: connects a constraint node and its corresponding variables

• Constraints:

93

Example: N-Queens

Solve non-binary CSPs

• Naïve search?
• Yes!

• Backtracking?
• Yes!

• Forward Checking?
• Need to generalize the original FC operation

• (nFC0) After a variable is assigned a value, find all constraints with only one
unassigned variable and cross off values of that unassigned variable which
violate the constraint

• There exist other ways to do generalized forward checking

95

Solve non-binary CSPs 2

• AC-3? Need to generalize the definition of AC and enforcement of AC

• Generalized arc-consistency (GAC)

• A non-binary constraint is GAC iff for every value for a variable there exist
consistent value combinations for all other variables in the constraint

• Reduced to AC for binary constraints

• Enforcing GAC

• Simple schema: enumerate value combination for all other variables

• O(𝑑𝑘) on 𝑘-ary constraint on variables with domains of size 𝑑

• There are other algorithms for non-binary constraint propagation, e.g., (i,j)-
consistency [Freuder, JACM 85]

96

Local Search

97

Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

• Typically use a complete-state formulation
• e.g., all variables assigned in a CSP (may not satisfy all the constraints)

• Different “complete”:
• An assignment is complete means that all variables are assigned a value

• An algorithm is complete means that it will output a solution if there exists
one

98

Iterative Algorithms for CSPs

• To apply to CSPs:
• Take an assignment with unsatisfied constraints
• Operators reassign variable values
• No fringe! Live on the edge

• Algorithm: While not solved,
• Variable selection: randomly select any

conflicted variable
• Value selection: min-conflicts heuristic

• Choose a value that violates the fewest constraints
• v.s., hill climb with h(x) = total number of violated

constraints (break tie randomly)

99

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks/conflicts

100

Video of Demo Iterative Improvement – n
Queens

101

Performance of Min-Conflicts

• Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)!

• The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

103

Local Search vs Tree Search

• Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

• Local search: improve a single option until you can’t make it better
(no fringe!)

• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete
and suboptimal)

104

Example

• Local search may get stuck in a local optima

105

ℎ = 1

Hill Climbing

• Simple, general idea:
• Start wherever

• Repeat: move to the best neighboring state

• If no for current, quit

• What’s bad about this approach?

• What’s good about it?

106

Complete?

Optimal?

No!

No!

Hill Climbing Diagram

107

In identification problems, could be a function measuring how close you are to a
valid solution, e.g., −1 × #conflicts in n-Queens/CSP

What’s the difference between
shoulder and flat local maximum
(both are plateau)?

Quiz

• Starting from X, where do you end up ?

• Starting from Y, where do you end up ?

• Starting from Z, where do you end up ?

108

Hill Climbing (Greedy Local Search)

109

How to apply Hill Climbing to 𝑛-Queens? How is it different from Iterative Improvement?

Define a state as a board with 𝑛 queens on it, one in each column
Define a successor (neighbor) of a state as one that is generated by moving a
single queen to another square in the same column

Hill Climbing (Greedy Local Search) 2

110

What if there is a tie?

Typically break ties randomly

What if we do not stop here?

• In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
• Takes 4 steps on average when it succeeds, and 3 steps when it fails

• When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
• Takes 21 steps on average when it succeeds, and 64 steps when it fails

Variants of Hill Climbing

• Random-restart hill climbing
• “If at first you don’t succeed, try, try again.”
• Complete!
• What kind of landscape will random-restarts hill climbing work the best?

• Stochastic hill climbing
• Choose randomly from the uphill moves, with probability dependent on the

“steepness” (i.e., amount of improvement)
• Converge slower than steepest ascent, but may find better solutions

• First-choice hill climbing
• Generate successors randomly (one by one) until a better one is found
• Suitable when there are too many successors to enumerate

111

Variants of Hill Climbing 2

• What if variables are continuous, e.g. find 𝑥 ∈ [0,1] that maximizes 𝑓 𝑥 ?

• Gradient ascent

• Use gradient to find best direction

• Use the magnitude of the gradient to determine how big a step you move

112
Value space of variables

Random Walk

• Uniformly randomly choose a neighbor to move to

• Stop according to the goal test

• Complete but inefficient!

113

Simulated Annealing

• Combines random walk and hill climbing

• Complete and efficient

• Inspired by statistical physics

• Annealing – Metallurgy
• Heating metal to high temperature then cooling

• Reaching low energy state

• Simulated Annealing – Local Search
• Allow for downhill moves and make them rarer as time goes on

• Escape local maxima and reach global maxima

114

Simulated Annealing 2

• Idea: Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

115

Almost the same as hill climbing
except for a random successor
Unlike hill climbing, move
downhill with some prob.

Control the change of
temperature 𝑇 (↓ over time)

Simulated Annealing 3

• ℙ move downhill = 𝑒Δ𝐸/𝑇

• Bad moves are more likely to be allowed when 𝑇 is high (at the beginning
of the algorithm)

• Worse moves are less likely to be allowed

• Theoretical guarantee:
• Stationary distribution:

• If T decreased slowly enough, will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local optimum, the less likely you are

to ever make them all in a row
• People think hard about ridge operators which let you jump around the space in

better ways
116

Genetic Algorithms

• Inspired by evolutionary biology
• Nature provides an objective function (reproductive fitness) that Darwinian (
达尔文) evolution could be seen as attempting to optimize

• A variant of stochastic beam search
• Successors are generated by combining two parent states instead of

modifying a single state (sexual reproduction rather than asexual
reproduction)

117

Genetic Algorithms 2

• State Representation: 8-digit string, each digit in {1. . 8}
• Fitness Function: #Nonattacking pairs
• Selection: Select 𝑘 individuals randomly with probability proportional to

their fitness value (random selection with replacement)
• Crossover: For each pair, choose a crossover point ∈ {1. . 7}, generate two

offsprings by crossing over the parent strings
• Mutation (With some prob.): Choose a digit and change it to a different

value in {1. . 8} 118What if 𝑘 is an odd number?

Example: N-Queens

• Why does crossover make sense here?

• When wouldn’t it make sense?

• What would mutation be?

• What would a good fitness function be?
119

Genetic Algorithms 3

• Start with a population of 𝑘 individuals (states)

• In each iteration
• Apply a fitness function to each individual in the current population
• Apply a selection operator to select 𝑘 pairs of parents
• Generate 𝑘 offsprings by applying a crossover operator on the parents
• For each offspring, apply a mutation operation with a (usually small) independent

probability

• For a specific problem, need to design these functions and operators

• Successful use of genetic algorithms require careful engineering of the
state representation!

• Possibly the most misunderstood, misapplied (and even maligned)
technique around 120

Genetic Algorithms 4

121

How is this different from the illustrated procedure on 8-Queens?

Quiz: Traveling Salesman Problem

• Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to
the origin city?

• Input: 𝑐𝑖𝑗 , ∀𝑖, 𝑗 ∈ {0, … , 𝑛 − 1}

• Output: An ordered sequence {𝑣0, 𝑣1, … , 𝑣𝑛} with 𝑣0 = 0, 𝑣𝑛 = 0 and
all other indices show up exactly once

• Question: How to apply Local Search algorithms to this problem?

122

Local Search: Summary

• Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration
• Do not maintain a search tree or multiple paths

• Typically do not retain the path to the node

• Advantages
• Use little memory

• Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

123

Summary

• CSPs
• A special kind of search problem:
• States are partial assignments
• Goal test defined by constraints
• Planning vs Identification problems

• Basic solution: backtracking search

• Speed-ups:
• Filtering: Forward checking & arc consistency
• Ordering: MRV & LCV
• Structure: Independent subproblems/Trees

• Local Search
• Iterative algorithm/hill climb/simulated

annealing/genetic algorithm

Questions?

https://shuaili8.github.io

Shuai Li

124

https://shuaili8.github.io/

