Lecture 3: Constraint
Satisfaction Problems

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

Part of slide credits: CMU Al & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS3317/index.html

Constraint Satisfaction Problems

Constraint Satisfaction Problems

N variables
domain D

constraints

states

partial assignment

goal test

complete; satisfies constraints

successor function

assign an unassigned variable

What is Search For?

* Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

* Planning: sequences of actions
* The path to the goal is the important thing
e Paths have various costs, depths
* Heuristics give problem-specific guidance

* |dentification: assignments to variables
* The goal itself is important, not the path
e All paths at the same depth (for some formulations)
* CSPs are specialized for identification problems

Constraint Satisfaction Problems

e Standard search problems:
e State is a “black box”: arbitrary data structure
e Goal test can be any function over states
* Successor function can also be anything

* Constraint satisfaction problems (CSPs):
* A special subset of search problems

 State is defined by variables X; with values
from a domain D (sometimes b depends on i)

e Goal testis a set of constraints specifying
allowable combinations of values for subsets
of variables

* Allows useful general-purpose algorithms
with more power than standard search
algorithms 5

Why study CSPs?

* Many real-world problems can be formulated as CSPs

* Assignment problems: e.g., who teaches what class

* Timetabling problems: e.g., which class is offered when and where?
Hardware configuration Mmoo |

Transportation scheduling

Factory scheduling |

Circuit layout

... lots more!

Fault diagnosis = !

Sometimes involve real-valued variables...

Example: Map Coloring

e Variables: WA, NT, Q, NSW, V, SA, T
 Domains: D={red, green, blue}

e Constraints: adjacent regions must have different
colors:

* Implicit: WA=NT

e Explicit: (WA,NT)€{(red, green), (red, blue), ...} .

 Solutions are assignments satisfying all constraints

e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Example: N-Queens

* Formulation 1:
* Variables: X;;
* Domains: {0,1}
* Constraints:

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi.j.k (X;5, Xp) € {(0,0),(0,1), (1,0} X, =
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} .

Vi, g,k (X, Xigki—k) € {(0,0),(0,1),(1,0)}

Example: N-Queens 2

* Formulation 2:
* Variables: Oy
 Domains: {1,2,3, ..., N}
* Constraints:

Implicit: Vi,j non-threatening(Q;, @;)

i (Q1,Q2) € {(1,3),(1,4),...)

Example: The Waltz Algorithm

* The Waltz algorithm is for
interpreting line drawings of solid
polyhedra as 3D objects

* An early example of an Al
computat_ion posed as a CSP ™~

|

Approach:

Each intersection is a variable

Adjacent intersections impose
constraints on each other

Solutions are physically realizable 3D
interpretations
10

Example: Cryptarithmetic

e Variables:
FTUWRO X1 Xo X3

e Domains:
{0,1,2,3,4,5,6,7,8,9}

* Constraints:
LalldifF(F,T,U,W,R,O)J F T) (U) (W) (R) 1O

" O+0=R+10-X1

11

Example: Sudoku

* Variables:
* Each (open) square
* Domains:
* {1,2,..,9}
* Constraints:
9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region

(or can have a bunch of pairwise
inequality constraints)

12

Varieties of CSPs

e Discrete Variables We will cover in this lecture

* Finite domains
* Size d means 0(d") complete assignments
* E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)(
* InTInIte domains (Integers, strings, etc.)

* E.g., job scheduling, variables are start/end times for each job
. Imear constraints solvablef nonlinear undecidable

Related with linear programming

e Continuous variables
* E.g., start/end times for Hubble Telescope observations

*| Linear constraints solvable in polynomial time by LP
methods

13

Varieties of Constraints 2

* Varieties of Constraints

* Unary constraints involve a single variable (equivalent
reducing domains), e.g.:

SA # green Focus of this lecture
i/

* | Binary constraints involve pairs of variables, e.g.:
SA = WA

* Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

* Preferences (soft constraints):
* E.g., redis better than green

* Often representable by a cost for each variable
assignment

* Gives constrained optimization problems
* (We’ll ignore these until we get to Bayes’ nets)

14

Constraint Graphs

* Binary CSP: each constraint relates (at most)
two variables

* Binary constraint graph: nodes are variables,
arcs show constraints @

e General-purpose CSP algorithms use the ww

graph structure to speed up search. E.g.,
Tasmania is an independent subproblem! °

Solving CSPs

Standard Search Formulation

e Standard search formulation of CSPs

e States defined by the values assigned so
far (partial assignments)
* |nitial state: the empty assignment, {}

e Successor function: assign a value to an
|unassigned variable| —Can be any unassigned variable

* Goal test: the current assignment is
complete and satisfies all constraints

* We'll start with the straightforward,
naive approach, then improve it

17

Search Methods: BFS

* What would BFS do?
{}

[[WA=g} {WA=r} .. {NT=g} ..]

Search Methods: BFS 2

WA NT Q NSW \' SA
(] T] T T]
| | | | | |

* Any one variable

Search Methods: BFS 3

SA

NSW

|

NT

WA

| Any two variables

Search Methods: BFS 4

Q NSW \' SA

NT

WA

* Any assignment
for all variables

—1

Search Methods: DFS

* At each node, assign a value from the
domain to the variable

——
\.\
* Check feasibility (constraints) when A

* What problems does the naive search
have?

[Demo: coloring -- dfs]

Search Methods: DFS 2

SA

NSW

NT

WA

—1

Backtracking Searc!

Backtracking Search

Backtracking search is the basic uninformed algorithm for
solving CSPs

Backtracking search = DFS + two improvements

Idea 1: One variable at atime iT=—#

* Variable assighnments are commutative, so fix ordering -> better
branching factor! (from O(nd) to O(d))

* |.e., [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go B —
* |.e. consider only values which do not conflict previous assignments
* Might have to do some computation to check the constraints
* “Incremental goal test”

Can solve N-queens for N = 25

Example

- & ¢

BACKTRACKING_SEARCH(csp) a solution, or failure
RECURSIVE_BACKTRACKING({}, csp)

RECURSIVE_BACKTRACKING(assignment, csp) a solution, or failure
assignment is complete
assignment
var «<— SELECT_UNASSIGNED_ VARIABLE(VARIABLES[csp], assignment, csp)
each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
value is consistent with assignment given CONSTRAINTS[csp]
add {var=value} to assignment
result «— RECURSIVE_BACKTRACKING(assignment, csp)
result # failure
result
remove {var=value} from assignment
failure

function BACKTRACKING _SEARCH(csp) returns a solution, or failure
return RECURSIVE_BACKTRACKIN csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then No need to check consistency for a
return assignment complete assignment
var «— SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp) | What are choice
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do points?

‘if value is consistent with assignment given CONSTRAINTS[csp] then ‘

add {var=value} to assignment Checks consistency at each assignment
result «— RECURSIVE_BACKTRACKING(assignment, csp)

it result # failure then

return result

remove {var=value} from assignment Backtracking = DFS + variable-ordering +

. fail-on-violation
return failure all-o olatio

Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* |In what order should its values be tried?

 Structure: Can we exploit the problem structure?

31

Filtering

Keep track of domains for unassigned variables and cross off bad options

32

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment failure is detected if some variables have no values remaining

WA NT| q
SA INsW
Vv
WA NT Q NSW VvV SA

[Demo: coloring -- forward checking]

Filtering: Forward Checking 2

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

WA NT Q NSW \' SA

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints [Demo: coloring -- forward cHecking]

Filtering: Forward Checking 3

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

G W_L’Q?_F‘\‘ O F‘_L’?
o

cliPa

@‘@ WA NT Q NSW Vv SA
I I I i irei
— 1 MM iren 1

[Demo: coloring -- forward checking]

Filtering: Forward Checking 4

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

AT W_L;Q:_""‘\l e —40

@‘@ FAIL — variable with
) WA NT Q NSW vV sa No possible values

O EEEEPE[EIE[ESE[ES =D N
— 1 MM iren 1
— 1 1 [m E[E T] H|

[Demo: coloring -- forward chlecking]

Filtering: Constraint Propagation

* Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

WA NT Q NSW \ SA
NT i I I ICE ICECIrErirerl
‘ A T B PRI EErEEEE] e
kA = IEmL] [mmem] (m]
—)

* NT and SA cannot both be blue!
 Why didn’t we detect this yet?
* Constraint propagation: reason from constraint to constraint

38

Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the
head which could be assigned without violating a constraint
NSW

‘ V

S—@
@-‘@'éo@
®

Forward checking?
A special case
Enforcing consistency of arcs pointing to each new assignment

NT WA NT Q NSW \ SA
Q

3 e _TEErEErTEEr .

Delete from the tail!

39

Arc Consistency of an Entire CSP

* Asimple form of propagation makes sure all arcs are consistent:

NT [i g WA NT Q NSW Vv SA
A o] N [m _J_=omE] _]

v 1\ w

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment
What's the downside of enforcing arc consistency?

Remember: Delete
from the tail!

40

Arc Consistency of an Entire CSP 2

* A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-
consistency, repeating the cycle until no domains change for a whole
cycle

* AC-3 (Arc Consistency Algorithm #3):

* A more efficient algorithm ignoring constraints that have not been modified

since they were last analyzed Ll |
Q
SN @
] ELE
ke]
\ (v)[EEm

T @Iﬁ[41

AC-3(csp) the CSP, possibly with reduced domains
initialize a queue of all the arcs in csp
gueue is not empty
(X;, X;) < REMOVE_FIRST(queue)
REMOVE_INCONSISTENT_VALUES(Xl-,Xj)
for each X, in NEIGHBORSI[X;] do
add (X, X;) to queue

REMOVE_INCONSISTENT_VALUES(X;, X;) true iff succeeds
removed «— false
each x in DOMAIN[X;]
no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;
delete x from DOMAIN[X;]; removed «— true
removed

AC-3(csp) the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

gueue is not empty
(X;, X;) < REMOVE_FIRST(queue)
[REMOVE_INCONSISTENT_VALUES(Xl-,Xj)] Constraint Propagation!
for each X, in NEIGHBORSI[X;] do
add[(Xk,Xi)]to queue

REMOVE_INCONSISTENT_VALUES(X;, X;) true iff succeeds
removed «— false
each x in DOMAIN[X;]
no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;
delete x from DOMAIN[X;]; removed «— true
removed

function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp e An arcis added after a removal of
while queue is not empty do value at a node
(X;, X;) < REMOVE_FIRST(queue) * nnode in total, each has < d values
[if REMOVE_INCONSISTENT_VALUES(X;, X;) then] * Total times of removal: O (nd)
for each X;. in NEIGHBORS[X;] do * After aremoval, < n arcs added
[add (X, X;) to queue J e Total times of adding arcs: 0(n?d)

function REMOVE_INCONSISTENT_VALUES(X;, X;) returns true iff succeeds
removed « false * Check arc consistency per arc: 0(d?)

[for each x in DOMAIN[X;] do] e Complexity: 0(n?d?)
T no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; <> X; then
delete x from DOMAIN[X;]; removed < true * Can be improved to O(n*d?)

return removed ... but detecting all possible future
problems is NP-hard — why?

Example of AC-3

Queue:

SA->WA
NT->WA

Remember: Delete from the tail!

45
45

Example of AC-3 2

L

Queue:
SA>WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

46

Example of AC-3 3

L

Queue:
SA>WA
NT>WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

47

Example of AC-3 4

L

NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

48

Example of AC-3 5

Example of AC-3 6

b = 0

Quiz: What would be added to the queue?

¢

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

Queue:

NSW

- II
@

ar @"} -

Vv

Example of AC-3 7
Queue:
‘ NT ‘ NT->Q

SA->Q
NSW->Q

SA

Example of AC-3 8

¢

SA

.\

NSW

Vv

T

Queue:

SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

53

Example of AC-3 9

‘-‘

Queue:

N—Q
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

SA
NSW

Vv

T

Example of AC-3 10

55

Example of AC-3 11

¢

SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

56

Example of AC-3 12

|11
* Backtrack on the assignment of Q
* Arc consistency detects failure earlier than forward checking

Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

57

Limitations of Arc Consistency

» After enforcing arc consistency: O %
* Can have one solution left %
(- mw

e Can have multiple solutions left
* Can have no solutions left (and not know it)

* Arc consistency still runs inside a
backtracking search!

* And will be called many times

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consis’gféncy]

BACKTRACKING_SEARCH(csp) a solution, or failure
RECURSIVE_BACKTRACKING({}, csp)

RECURSIVE_BACKTRACKING(assignment, csp) a solution, or failure
assignment is complete
assignment
var «<— SELECT_UNASSIGNED_ VARIABLE(VARIABLES[csp], assignment, csp)
each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
value is consistent with assignment given CONSTRAINTS[csp]
add {var=value} to assignment
AC-3(csp)
result «— RECURSIVE_BACKTRACKING(assignment, esp)
result # failure,
result
remove {var=value} from assignment
failure

K-Consistency

* Increasing degrees of consistency O

e 1-Consistency (Node Consistency): Each single
node’s domain has a value which meets that node’s

unary constraints ‘ =) ‘
e 2-Consistency (Arc Consistency): For each pair of
nodes, any consistent assignment to one can be R
extended to the other ‘
* k-Consistency: For each k nodes, any consistent 20\
assignment to k-1 can be extended to the k" node. : - ‘

* Higher k more expensive to compute \
* (You need to know the k=2 case: arc consistency)

Strong K-Consistency

» Strong k-consistency: also k-1, k-2, ... 1 consistent

* Claim: strong n-consistency means we can solve without backtracking!
* Why?

Choose any assignment to any variable

Choose a new variable

By 2-consistency, there is a choice consistent with the first
Choose a new variable

By 3-consistency, there is a choice consistent with the first 2

 Lots of middle ground between arc consistency and n-consistency! (e.g.
k=3, called path consistency)

Ordering

Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* In what order should its values be tried?

 Structure: Can we exploit the problem structure?

64

Backtracking Search

* fix ordering _L’:

* check constraints as you go — T

¢ & ¢

Quiz

* What is good/bad to fix the ordering of variables?
* What is good/bad to fix the ordering of values?

Variable Ordering: Minimum Remaining
Values

* Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

==

* Why min rather than max?

* Also called “most constrained variable”
* “Fail-fast” ordering

Value Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value
* Given a choice of variable, choose the least constraining

value
* |l.e., the one that rules out the fewest values in the
remaining variables ‘\ I‘

* Note that it may take some computation to determine
this! (E.g., rerunning filtering)

* Why least rather than most?

* Combining these ordering ideas makes
1000 queens feasible

Quiz

7, el
* How we order variables and /V/ \/ /V\ /L\
why =, @l B G Apige Ky h
* How we order values and JIN AN N\ /\\/\
why Mow chaws (o R B TR | 2R B G
« Why different on variables e \\ AR
andyvalues o :@;{é Q/g RE | % Ji/i 14,!{\&}2;

U 1
An:R R RRRRRRR \/VM
J OVO{U{Vﬂ

Structure

Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* |In what order should its values be tried?

e Structure: Can we exploit the problem structure?

73

Problem Structure

* For general CSPs, worst-case complexity with backtracking
algorithm is O(d")

* When the problem has special structure, we can often solve
the problem more efficiently

e Special Structure 1: Independent subproblems
* Example: Tasmania and mainland do not interact
* Connected components of constraint graph

e Suppose a graph of n variables can be broken into
subproblems, each of only ¢ variables:

» Worst-case complexity is O((n/c)(d®)), linear in n
* Eg,n=80,d=2,c=20

e 280 =4 billion years at 10 million nodes/sec

* (4)(22%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

(80
C F)

* Theorem: if the constraint graph has no cycles, the CSP can be solved in O(nd?)
time
 Compare to general CSPs, where worst-case time is O(d")
* How?

* This property also applies to probabilistic reasoning (later): an example of the
relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs 2

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

A E)
8)—0;
© ()

Tree-Structured CSPs 3

 Algorithm for tree-structured CSPs:

* Order: Choose a root variable, order variables so that parents precede children

»

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X))

77

+ Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X,),X;)
— « Assign forward: For i = 1:n, assign X; consistently with Parent(X;)

= Runtime: O (nd?) (why?)
o]

= Can always find a solution when there is one (why?)

e Algorithm for tree-structured CSPs:
e Order: Choose a root variable, order variables so that parents precede children

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X,)
* Assign forward: For i = 1:n, assign X, consistently with Parent(X,)

Remove backward 0(nd?) : 0(d?) per arc and O(n) arcs
* Runtime: 0 (nd?) (why?) Assign forward O(nd): O(d) per node and 0(n) nodes

* Can always find a solution when there is one (why?) 78

Tree-Structured CSPs 5

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once

* a. Parent(X;) — X; was made consistent when X; was visited

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

79

Tree-Structured CSPs 6

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once

* a. Parent(X;) — X; was made consistent when X; was visited

* When X; was visited, we enforced arc consistency of Parent(X;) — X; by reducing the domain
of Parent(X;). By definition, for every value in the reduced domain of Parent(X;), there was
some x in the domain of X; which could be assigned without violating the constraint involving
Parent(X;) and X;

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

Tree-Structured CSPs 7

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once.
* a. Parent(X;) — X; was made consistent when X; was visited

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

* Domain of X; would not have been reduced after X; is visited because X;’s children were
visited before X;. Domain of Parent(X;) could have been reduced further. Arc consistency
would still hold by definition.

81

Tree-Structured CSPs 8

* Assign forward: For i=1:n, assign X; consistently with Parent(X;)

* Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

* Proof: Follow the backtracking algorithm (on the reduced domains and with the same
ordering). Induction on position Suppose we have successfully reached node X;. In the
current step, the potential failure can only be caused by the constraint between X; and
Parent(X;), since all other variables that are in a same constraint of X; have not
assigned a value yet. Due to the arc consistency of Parent(X;) — X;, there exists a
value x in the domain of X; that does not violate the constraint. So we can successfully
assign value to X; and go to the next node. By induction, we can successfully assign a
value to a variable in each step of the algorithm. A solution is found in the end. ,

What if there are cycles

* Why doesn’t this algorithm work with cycles in the constraint graph?

29@2

* We can still apply the algorithm (choose and draw
).

* For remove backward, what would happen?

* For assign forward, what would happen?

Note: We'll see a similar idea with Bayes’ nets in later lectures

83

What if there are cycles 2

 Why doesn’t this algorithm work with cycles in the constraint graph?

* We can still apply the algorithm (choose an arbitrary order and draw
“forward” arcs).

* For remove backward, what would happen?

* We can enforce all arcs pointing to X; when X; is visited. The complexity is
0(n?d?). After backward pass, the reduced domains do not exclude any
solution and all the forward arcs are consistent

* For assign forward, what would happen? 84

What if there are cycles 3

 Why doesn’t this algorithm work with cycles in the constraint graph?

e We can still apply the algorithm (choose an arbitrary order and draw
“forward” arcs).
* For remove backward, what would happen? '1."1.

* For assign forward, what would happen?

* |n a step of assigning values, we may encounter failure because we need to
make sure the constraints mvolvmg the current node and any parent node
E saktlsflekd which could be impossible. Therefore, we may need to o

acktrac

Improving Structure

Nearly Tree-Structured CSPs
O— O—@
c P C
65 = 5
O O

@ O,

* Conditioning: instantiate a variable, prune its neighbors' domains

* Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

* Cutset size c gives runtime O((d¢) (n-c) d?), very fast for small c

Cutset Conditioning

]

M

/°‘@

Choose a cutset J

/
@‘@""

&—©

Instantiate the cutset
(all possible ways)

]

9‘:‘9
K

d

|
|
|
|

Compute residual CSP O
for each assignment l l l
O—@ O—@ O—@
Solve the residual CSPs (1 () ()
(tree structured) () () ®
O O O

Quiz

* Find the smallest cutset for the graph below

89

Tree Decomposition @‘

* |dea: create a tree-structured graph of mega-variables
* Each mega-variable encodes part of the original CSP
e Subproblems overlap to ensure consistent solutions

sien paseyd uo 928y

sien paseyy uo 2248y

SJIEeA paJleyy uo BBJSV

{(WA=r,SA=g,NT=Db), {(NT=r,SA=g,Q=b),
(WA=b,SA=r,NT=g), (NT=b,SA=g,Q=r),
v} v}

Non-binary CSPs

Example: Cryptarithmetic

e Variables:
FTUWRO X1 Xo X3

e Domains:
{0,1,2,3,4,5,6,7,8,9}

* Constraints:
LalldifF(F,T,U,W,R,O)J F T) (U) (W) (R) 1O

" O+0=R+10-X1

92

Constraint graph for non-binary CSPs

 Variable nodes: nodes to represent the variables
* Constraint nodes: auxiliary nodes to represent the constraints
* Edges: connects a constraint node and its corresponding variables

* Constraints:
alldiff(F, T, U, W, R, O) T u) (W) (R
T
O

+
O—I—OIR—l-].O-Xl F
g &

Clz =
|0 O

Example: N-Queens
T e I e =sicll

File Edit View CSP Options Help File Edit View Insert Actions Tools Help

al | | 2 @ HAd3Hde Pl 00 A

Fine Step Step Auto Arc-Consistency | AutoSolve Stop Step Back Backtrack Reset

m

Click on a variable to splitits domain.
Click on a constraint to reorder its variables. -
Click on an arc to make it arc-consistent. u g’ e’ N_S
-~
A
(12345) \ L 3 L{ 5
Queens 4 Queens 1 7«(‘) {
Queens 3
B: B
{12345} am
Queens 3 Queens 2 C ‘
by ~
Queens 1 Queens 2 Queens 2 Queens 1 E
Y
i
D: C:
{12345} Queens 1 {12345}
1/1

m

L

L@» 1

Solve non-binary CSPs 0) W R

* Naive search?
* Yes! X X4

* Backtracking?
* Yes!

* Forward Checking?
* Need to generalize the original FC operation

* (nFCO) After a variable is assigned a value, find all constraints with only one
unassigned variable and cross off values of that unassigned variable which
violate the constraint

* There exist other ways to do generalized forward checking

Solve non-binary CSPs 2

* AC-3? Need to generalize the definition of AC and enforcement of AC

* Generalized arc-consistency (GAC)

* A non-binary constraint is GAC iff for every value for a variable there exist
consistent value combinations for all other variables in the constraint

* Reduced to AC for binary constraints

e Enforcing GAC
* Simple schema: enumerate value combination for all other variables
 O(d¥) on k-ary constraint on variables with domains of size d

* There are other algorithms for non-binary constraint propagation, e.g., (i,j)-
consistency [Freuder, JACM 85]

Local Search

Local Search

e Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

* Typically use a complete-state formulation
e e.g., all variables assigned in a CSP (may not satisfy all the constraints)

* Different “ -
* An assignment is means that all variables are assigned a value
* An algorithm is means that it will output a solution if there exists

one

iterative Algorithms for CSPs

* To apply to CSPs:
* Take an assignment with unsatisfied constraints
* Operators reassign variable values
* No fringe! Live on the edge

* Algorithm: While not solved,

* Variable selection: randomly select any
conflicted variable
* Value selection: min-conflicts heuristic
* Choose a value that violates the fewest constraints

* v.s., hill climb with h(x) = total number of violated
constraints (break tie randomly)

Example: 4-Queens

h=2

e States: 4 queens in 4 columns (44 = 256 states)
* Operators: move queen in column

* Goal test: no attacks

 Evaluation: h(n) = number of attacks/conflicts

100

Video of Demo Iterative Improvement — n
Queens

Performance of Min-Conflicts

* Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)!

* The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

o number of constraints
number of variables

/N

|
crltlcal 103
ratio

CPU
time

Local Search vs Tree Search

* Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

* Local search: improve a single option until you can’t make it better
(no fringe!)

* New successor function: local changes

| o

1999

* Generally much faster and more memory efficient (but incomplete
and suboptimal)

104

Example

* Local search may get stuck in a local optima

Hill Climbing

e Simple, general idea:
* Start wherever
* Repeat: move to the best neighboring state
* |f no for current, quit

* What’s bad about this approach?
Complete? No!

Optimal? No!

* What’s good about it? <

106

Hill Climbing Diagram
In identification problems, could be a function measuring how close you are to a

valid solution, e.g., —1 X #conflicts in n-Queens/CSP
lobjective function lobal maximum

What’s the difference between
shoulder and flat local maximum

shoulder (both are plateau)?

N

local maximum

"flat" local maximum

»state space

current
state

107

Objective Function

Quiz ‘ /\

State Space
-

X A B CY D E £

e Starting from X, where do you end up ?
e Starting from Y, where do you end up ?
e Starting from Z, where do you end up ?

108

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «+— MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current < neighbor

How to apply Hill Climbing to n-Queens? How is it different from Iterative Improvement?

Define a state as a board with n queens on it, one in each column
Define a (neighbor) of a state as one that is generated by moving a
single queen to another square in the same column

109

Hill Climbing (Greedy Local Search) 2

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE) What if there is a tie?
lOOf) do '
7

eighbor < a highest-valued successor of current Typically break ties randomly
if neighbor. VALUE < current. VALUE thenfreturn current.STATE |
current < neighbor

What if we do not stop here?

* In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
* Takes 4 steps on average when it succeeds, and 3 steps when it fails

* When allow for <100 consecutive sideway moves, solves 94% of problem instances
* Takes 21 steps on average when it succeeds, and 64 steps when it fails

110

Variants of Hill Climbing

* Random-restart hill climbing
* “If at first you don’t succeed, try, try again.”
e Complete!
 What kind of landscape will random-restarts hill climbing work the best?

 Stochastic hill climbing

* Choose randomly from the , with probability dependent on the
“steepness” (i.e., amount of improvement)

* Converge slower than steepest ascent, but

* First-choice hill climbing
e Generate successors randomly (one by one)
 Suitable when there are too many successors to enumerate

111

Variants of Hill Climbing 2

* What if variables are continuous, e.g. find x € [0,1] that maximizes f(x)?
* Gradient ascent
* Use gradient to find best direction
* Use the magnitude of the gradient to determine how big a step you move

objectixe function lobal maximum

shoulder

N

local maximum

"flat" local maximum

» Value space of variables

current 112

state

Random Walk

e Uniformly randomly choose a neighbor to move to
 Stop according to the goal test

 Complete but inefficient!

113

Simulated Annealing

* Combines random walk and hill climbing

* Complete and efficient
* Inspired by statistical physics

* Annealing — Metallurgy
* Heating metal to high temperature then cooling
e Reaching low energy state

e Simulated Annealing — Local Search
* Allow for downhill moves and make them rarer as time goes on
e Escape local maxima and reach global maxima

Simulated Annealing 2

* |dea: Escape local maxima by allowing downhill moves

* But make them rarer as time goes on
function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
1’ a “temperature’ controlling prob. of downward steps

current «— MAKE-NODE(INITIAL-STATE[problem])

for t— 1 to oo do Control the change of
T schedule[f] temperature T (over time)
il Uthenretuen el Almost the same as hill climbing

next«—a randomly selected successor of current
AE«— VALUE[nexzt] — VALUE[current] except for a random successor

if AE > 0 then current — neat Unlike hill climping, move
else current — next only with probability e® £/7 downhill with some prob.

115

Simulated Annealing 3

* P[move downhill] = eAE/T

* Bad moves are more likely to be allowed when T is high (at the beginning
of the algorithm)

* Worse moves are less likely to be allowed

* Theoretical guarantee: E(x)
* Stationary distribution: P() o< e kT

* If T decreased slowly enough, will converge to optimal state!

* |s this an interesting guarantee?

* Sounds like magic, but reality is reality:

* The more downhill steps you need to escape a local optimum, the less likely you are
to ever make them all in a row

* People think hard about ridge operators which let you jump around the space in
better ways

Genetic Algorithms

* Inspired by evolutionary biology

* Nature provides an objective function (reproductive fitness) that Darwinian (
1A /R 3C) evolution could be seen as attempting to optimize

e A variant of stochastic beam search

» Successors are generated by combining two parent states instead of
modifying a single state (sexual reproduction rather than asexual
reproduction)

117

Genetic Algorithms 2

Fithess Selection Pairs Cross—-Over
24748552 | 24 31% 327@52411 32748552 | 3274812
32752411 | 23 29% 247?48552 >_< 24752411 24752411
24415124 h‘ 327.52é411 32752124 322124
32543213 | 11 14% 24415;124 >_< 24415411 244154

* State Representation: 8-digit string, each digitin {1.. 8}
* Fitness Function: #Nonattacking pairs

 Selection: Select k individuals randomly with probability proportional to
their fitness value (random selection with replacement)

* Crossover: For each pair, choose a crossover point € {1..7}, generate two
offsprings by crossing over the parent strings

* Mutation (With some prob.): Choose a digit and change it to a different
valuein {1.. 8} What if k is an odd number? 1

Example: N-Queens

* Why does crossover make sense here?
* When wouldn’t it make sense?
* What would mutation be?

* What would a good fitness function be?

119

Genetic Algorithms 3

 Start with a population of k individuals (states)

* |n each iteration
* Apply a fitness function to each individual in the current population
* Apply a selection operator to select k pairs of parents
* Generate k offsprings by applying a crossover operator on the parents

* For each offspring, apply a mutation operation with a (usually small) independent
probability

* For a specific problem, need to design these functions and operators

 Successful use of genetic algorithms require careful engineering of the
state representation!

e Possibly the most misunderstood, misapplied (and even maligned)
technique around

120

Genetic Algorithms 4

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new_population «— empty set
for : = 1 to SIZE(population) do
x < RANDOM-SELECTION(population, FITNESS-FN)
y «— RANDOM-SELECTION(population, FITNESS-FN)
| child — REPRODUCE(z, 3) |
if (small random probability) then child < MUTATE(child)
add child to new_population
population «— new_population
I until some individual is fit enough, or enough time has elapsed
return the best individual 1n population, according to FITNESS-FN

How is this different from the illustrated procedure on 8-Queens?

121

Quiz: Traveling Salesman Problem

* Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to
the origin city?

* Input: ¢;;, Vi,j €1{0,...,n — 1}

* Qutput: An ordered sequence {vg, V4, ..., VU, } Wwith vy = 0, v,, = 0 and
all other indices show up exactly once

* Question: How to apply Local Search algorithms to this problem?

Local Search: Summary

 Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration
* Do not maintain a search tree or multiple paths
* Typically do not retain the path to the node

* Advantages
e Use little memory

e Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

Shuai Li

S umimna ry https://shuaili8.github.io
* CSPs
* A special kind of search problem: Questions?

 States are partial assignments
* Goal test defined by constraints
* Planning vs ldentification problems

* Basic solution: backtracking search
e Speed-ups:

* Filtering: Forward checking & arc consistency |
e Ordering: MRV & LCV w | T | g
 Structure: Independent subproblems/Trees _

e Local Search

* Iterative algorithm/hill climb/simulated
annealing/genetic algorithm

124

https://shuaili8.github.io/

