Lecture 7: Reinforcement Learning

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

Example: Double Bandits

Example: Double Bandits - MDP

No discount
100 time steps
Both states have
the same value

Example: Double Bandits - Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP

You do not actually play the game!

No discount
100 time steps
Both states have
the same value

0.25

\$0

Example: Double Bandits - Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Example: Double Bandits - Online Planning

• Rules changed! Red's win chance is different.

Example: Double Bandits - Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

• What if we didn't know P(s'|s,a) and R(s,a,s')?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [P(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Reinforcement Learning 2

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Reinforcement Learning 3

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Online Learning

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

Training

Finished

Example: The Crawler!

Video of Demo Crawler Bot

DeepMind Atari (©Two Minute Lectures)

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free.
 we'll cover only in context of Q-learning

Model-Based Learning

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free.
 we'll cover only in context of Q-learning

Model-Based Reinforcement Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

• For example, use value iteration, as before

(and repeat as needed)

Example: Model-Based RL

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s,a,s')$$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25 ...

$$\widehat{R}(s, a, s')$$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

...

Analogy: Expected Age

Goal: Compute expected age of students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free.
 we'll cover only in context of Q-learning

Passive Model-Free Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 Output Values

	-10	
	A	
+8	+4	+10
B	C	D
	-2	
	E	

If B and E both go to C under this policy, how can their values be different?

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & <u>TD Learning</u>
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free.
 we'll cover only in context of Q-learning

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how do we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

 Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$
...
$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Almost! But we can't rewind time to get sample after sample from state s

Temporal Difference Value Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

$f(x) = \frac{1}{2}(y - x)^2$

$$\frac{df}{dx} = -(y - x)$$

- Goal: find x that minimizes f(x)
- 1. Start with initial guess, x_0
- 2. Update x by taking a step in the direction that f(x) is changing fastest (in the negative direction) with respect to x:

 $x \leftarrow x - \alpha \nabla_x f$, where α is the step size or learning rate

- 3. Repeat until convergence
- TD goal: find value(s), V, that minimizes difference between sample(s) and

$$V \leftarrow V - \alpha \nabla_V Error$$

$$Error(V) = \frac{1}{2} (sample - V)^2$$

Gradient Descent View 2

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = r + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha) sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[sample - V^{\pi}(s) \right]$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$$

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[sample - V^{\pi}(s) \right]$$

$$V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error \qquad Error = \frac{1}{2} \left(sample - V_{37}^{\pi}(s) \right)^{2}$$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $V_n = (1 \alpha)V_{n-1} + \alpha x_n$ with $V_1 = x_1$
 - Makes recent samples more important

$$V_n = \alpha x_n + \alpha (1 - \alpha) x_{n-1} + \dots + \alpha (1 - \alpha)^{n-2} x_2 + (1 - \alpha)^{n-1} x_1$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages
 - Note $V_n = \alpha_n x_n + (1 \alpha_n) \alpha_{n-1} x_{n-1} + \cdots + (1 \alpha_n) (1 \alpha_{n-1}) \cdot \cdots \cdot (1 \alpha_3) \alpha_2 x_2 + (1 \alpha_n) (1 \alpha_{n-1}) \cdot \cdots \cdot (1 \alpha_3) (1 \alpha_2) x_1$

Example: Temporal Difference Value Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free.
 we'll cover only in context of Q-learning

Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- Update estimates each transition (s,a,r,s^\prime)
- Over time, updates will mimic Bellman updates

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate: no longer policy $sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$ evaluation!
 - Incorporate the new estimate into a running average: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Active Reinforcement Learning

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free.
 we'll cover only in context of Q-learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Exploration vs. Exploitation

Video of Demo Q-learning — Manual Exploration — Bridge Grid

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε , act randomly
 - With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

[Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

A commonly used 'exploration function' is

 $f(u,n) = u + c\sqrt{\log(1/\delta)/n}$, which is

derived by Chernoff-Hoeffding inequality

and δ is confidence level

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

• Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$ Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a'))$

- Action selection: Use $a \leftarrow \operatorname{argmax}_a Q(s, a)$
- Note: this propagates the "bonus" back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

Video of Demo Q-learning — Exploration Function — Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including useful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Regret 2

Cumulative regret, i.e., for episodic MDP with fixed horizon

$$R(T) = \sum_{t=1}^{T} (V^*(s_t) - V^{\pi_t}(s_t))$$
 where s_t is the starting state of the t -th interaction game

- The algorithm is learning if the average regret converges, i.e. $\frac{R(T)}{T} \to 0$, or equivalently R(T) = o(T)
- Smaller order of R(T) means faster learning speed
- Worst-case regret bound $R(T) = \Omega(\sqrt{T})$, which holds for a fixed game with arbitrary transitions and arbitrary (bounded) rewards

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free. we'll cover only in context of Q-learning
- Approximate Reinforcement Learning (= to handle large state spaces)
 - Approximate Q-Learning
 - Policy Search

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D4)]

[Demo: Q-learning – pacman – tiny – silent train (L11D6)]

[Demo: Q-learning – pacman – tricky – watch all (L11D5)]

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

$$Error(w) = \frac{1}{2}(sample - Q(s, a))^{2}$$

Approximate Q-Learning

$$\frac{dError}{dw_i} = -(sample - Q(s, a))f_i(s, a)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition } = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad \begin{aligned} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned} \quad & \text{Approximate Q's} \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$

$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$

$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Video of Demo Approximate Q-Learning -- Pacman

DeepMind Atari (©Two Minute Lectures) approximate Q-learning with neural nets

Q-Learning and Least Squares

Linear Approximation: Regression

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i)\right)^2$$

Minimizing Error

 Imagine we had only one point x, with features f(x), target value y, and weights w:

error(w) =
$$\frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

 $\frac{\partial \text{ error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$
 $w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$

Approximate q update explained:

Overfitting: Why Limiting Capacity Can Help

Recent Advancements: Deep Q-Networks

- DeepMind, 2015
- Used a deep learning network to represent Q:
 - Input is last 4 images (84x84 pixel values) plus score
- 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
 - Applies to both model-based and model-free. we'll cover only in context of Q-learning
- Approximate Reinforcement Learning (= to handle large state spaces)
 - Approximate Q-Learning
 - Policy Search

Policy Search

 Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best

- E.g. some value functions have probably horrible estimates of future rewards, but they still produced good decisions
- Q-learning's priority: get Q-values close (modeling)
- Action selection priority: get ordering of Q-values right (prediction)
- We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search 2

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

*use features
Goal to generalize Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

*use features
Goal to generalize Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Summary

Shuai Li

https://shuaili8.github.io

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Model-free Passive RL
 - Direct Evaluation & TD Learning
 - Q learning
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
 - Active Q-learning
 - Exploration vs Exploitation
- Approximate Reinforcement Learning (= to handle large state spaces)
 - Approximate Q-Learning
 - Policy Search

Questions?