Lecture 7: Reinforcement
Learning

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

Part of slide credits: CMU Al & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Example: Double Bandits

e N

Example: Double Bandits - MDP o discount

100 time steps

Both states have
e Actions: Blue, Red 0.25 S0 \the same value

 States: Win, Lose

Example: Double Bandits - Offline Planning

. . . . No discount
* Solving MDPs is offline planning 100 time steps
* You determine all quantities through computation Both states have
* You need to know the details of the MDP \the same value/
* You do not actually play the game! 0.25 $0
Value
Play Red 150

Play Blue 100

N % :

Example: Double Bandits - Let’s Play!

S2 S2 SO S2 S2
$2 $2 SO0 SO SO

Example: Double Bandits - Online Planning

* Rules changed! Red’s win chance is different.

?? SO

Example: Double Bandits - Let’s Play!

S0 SO SO S2 SO
$2 SO0 SO SO SO

What Just Happened?

* That wasn’t planning, it was learning!
» Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

. : you have to try unknown actions to get information
. : eventually, you have to use what you know

. : even if you learn intelligently, you make mistakes

. : because of chance, you have to try things repeatedly

. : learning can be much harder than solving a known MDP

Reinforcement Learning

* What if we didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration:

Q-iteration:
Policy extraction:

Policy evaluation:

Policy improvement:

Vie41(s) = maxz Beo4sTh) [BesrrS) + yVi(sD], Vs
Qusa(s, @) = ZW [BLorrs) +y max Qu (s, @)], ¥s,a
my (s) = arggaxZW[m PPV, Vs

Vi (s) =) BlottormtSTI[ResrmeIT) +YVE(s)], Vs
Tnew(s) = :;gznaxz:m[w +yVmod(s)], Vs

Reinforcement Learning 2

Agent

State: s
Reward: r

Actions: a

Environment

* Basic idea:
* Receive feedback in the form of rewards
e Agent’s utility is defined by the reward function
* Must (learn to) act so as to maximize expected rewards
* All learning is based on samples of outcomes!

10

Reinforcement Learning 3

e Still assume a Markov decision process (MDP):
 Asetof statess €S
* A set of actions (per state) A
A model T(s,a,s’)
* A reward function R(s,a,s’)

* Still looking for a policy 7t(s)

* New twist: don’t know T or R
* |.e. we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

Overheated

11

Offline (MDPs) vs. Online (RL)

&

g S

Offline Solution Online Learning

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004] 13

Example: Learning to Walk 2

F\V

Initial 14
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk 3

Training

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK = training]

Example: Learning to Walk 4
|| S

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK = finished]

Example: The Crawler!

[Demo: Crawler Bot7(L10D1)]

Video of Demo Crawler Bot

DeepMind Atari (©OTwo Minute Lectures)

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL
* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

e Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

Model-Based Learning

Reinforcement Learning -- Overview

e Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL
* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
e Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

22

Model-Based Reinforcement Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
* Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a

* Normalize to give an estimate of T'(s, a,s’)
 Discover each R(s,a, s’) when we experience (s, a, ')

e Step 2: Solve the learned MDP

* For example, use value iteration, as before

(and repeat as needed) 23

Example: Model-Based RL

Input Policy &

Observed Episodes (Training)

Episode 1

8 B, east, C, -1

Assume: y=1

-

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

-

/E, north, C, -1

C,east, D, -1
D, exit,

X, +10

~

Episode 2

8 B, east, C, -1

J

-

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

-

8 E, north, C, -1

C, east, A -1
A, exit, x, -10

~

Learned Model

T(s,a,s")

(" T(B, east, C) = 1.00

T(C, east, D) = 0.75
T(C, east, A) =0.25

J

o

~

)

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

o

~

)

24

Analogy: Expected Age

Goal: Compute expected age of students

Known P(A)
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this \7 }3({1) _ num(a) Z Why does this
work? Because N E[A] ~ i Za' work? Because
eventually you X N &= samples appear
learn the right E[A] ~ Z P(a)-a ?’ with the right

model. a j \ frequencies.

Model-Free Learning -

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL
e Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

e Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

27

Passive Model-Free Reinforcement Learning

* Simplified task: policy evaluation
* Input: a fixed policy 7(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
e Goal: learn the state values

* In this case:
* Learner is “along for the ride”
* No choice about what actions to take
* Just execute the policy and learn from experience
* This is NOT offline planning! You actually take actions in the world

28

Direct Evaluation

e Goal: Compute values for each state under «

 |dea: Average together observed sample values

e Act accordingtom

e Every time you visit a state, write down what the sum of discounted rewards
turned out to be

* Average those samples

* This is called direct evaluation

29

Example: Direct Evaluation

Input Policy &

Assume:y=1

Observed Episodes (Training)

Episode 2

g B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 1
g B, east, C, -1 b
C, east, D, -1
D, exit, x, +10
\ J
Episode 3
/E, north, C, -1 b
C,east, D, -1
D, exit, x, +10
\ J

"

Episode 4

-

"

E, north, C, -1
C, east, A -1

A, exit,

X, -10

Output Values

If Band E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

Output Values

* What’s good about direct evaluation?
* |t's easy to understand

|t doesn’t require any knowledge of T, R

* |t eventually computes the correct average values,
using just sample transitions

 What bad about it?

e |t wastes information about state connections
* Each state must be learned separately

If Band E both go to C
under this policy, how can
* So, it takes a long time to learn their values be different?

31

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL
e Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

e Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

32

Why Not Use Policy Evaluation?

* Simplified Bellman updates calculate V for a fixed policy:
* Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0
Vk—l—l(s) — ZT(S 7(s),s)[R(s,7(s),s) + 'kaW(S’)]

7 57 TC(S) s’

* This approach fully exploited the connections between the states
* Unfortunately, we need T and R to do it!

e Key question: how can we do this update to V without knowing T and R?
* In other words, how do we take a weighted average without knowing the weights?

ka_l_l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + 'kaW(S/)]

S

* |dea: Take samples of outcomes s’
(by doing the action!) and average

sample; = R(s,w(s), 8’1) -+ ’)/V/;T(Sll)
samplesr = R(s,m(s),sh) + ’YV]I(SIQ)

samplen, = R(s,7(s), sh) + YV (sh)

Almost! But we can’t
rewind time to get sample
after sample from st“atge4 S

1
Vig1(s) < - > sample;
)

Temporal Difference Value Learning

S
* Bigidea: learn from every experience! (s)
* Update V(s) each time we experience a transition (s, a, s, r) s
* Likely outcomes s’ will contribute updates more often s, T(s)
* Temporal difference learning of values A s

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s") +~V7™(s)
Update to V(s): VTi(s) + (1 —a)V"(s) + (a)sample

Same update: V™(s) + V™(s) + a(sample — V" (s))

35

| | FG) = 5 (y —x)
Gradient Descent View

df
Ix —(y —x)

* Goal: find x that minimizes f (x)
1. Start with initial guess, xg

2. Update x by taking a step in the direction that f(x) is changing fastest
(in the negative direction) with respect to x:

x < x —aV,f, where a is the step size or learning rate
3. Repeat until convergence

e TD goal: find value(s), V, that minimizes difference between sample(s) and
V

1
V <V —aVyError Error(V) = > (— V)2

36

Gradient Descent View 2

S
* Bigidea: learn from every experience! 7(s)
» Update V(s) each time we experience a transition (s, a, s,) s, 7i(s)
* Likely outcomes s’ will contribute updates more often ’
* Temporal difference learning of values VANES

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = r +y V™(s’)

Update to V(s): Vi(s) « (1 —a)V™(s) + (a) sample

Same update: VE(s) « V™(s) + a[sample — V™(s)]

Same update: V™(s) « V™(s) — aVError Error = > (Sample — V’T(s))2

Exponential Moving Average

* Exponential moving average
* The running interpolation update: V,, = (1 — a)V,,_; + ax,, with V; = x;

* Makes recent samples more important
Vo=ax, +a(l—a)x,_;+ +a(l—a)" %x, + (1-—a)" Ix

* Forgets about the past (distant past values were wrong anyway)

¢ Decreasing Iearning rate (alpha) can give Converging dverages
* NoteV, = apx,, + (1 — a)a,_1X,_1 +
+(1—a)1 —ap_q) - (1 —az)azx,
(1 —a)(1—ap_1) - (1 —a3)(1 —az)x

Example: Temporal Difference Value Learning

States

Observed Transitions

[B, east, C, -2 } [C, east, D, -2 J

EEIEEIEIE

V7(s) = (1 = a)V7™(s) + a |R(s,m(s),s") +4V7(s")

Problems with TD Value Learning

* TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

 However, if we want to turn values into a (new) policy, we’re sunk:

m(s) = argmax Q(s,a)

Q(s,a) = ZT(S, a,s’) {R(S, a,s) + WV(S’)}

* |dea: learn Q-values, not values
* Makes action selection model-free too!

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL
* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

e Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

Q-Value lteration

* Value iteration: find successive (depth-limited) values

* Start with Vy(s) =0, which we know is right
* GivenV,, calculate the depth k+1 values for all states:

Viet1(8) < maaXZT(s, a,s’) {R(s,a,) + nyk(s’)}

e But Q-values are more useful, so compute them instead
* Start with Qy(s,a) = 0, which we know is right
* Given Qy, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) = S T(s,a,8) | R(s,a,8) +9 maxQu(s'sa)

Model-Free Learning

* Model-free (temporal difference) learning
e Experience world through episodes

(s,a,r,s",a’,r",s" a" r" """ ...

. " /
* Update estimates each transition (8, a,r,s)

* Over time, updates will mimic Bellman updates

Q-Learning

* Q-Learning: sample-based Q-value iteration
Qt1(s,a) = S T(s,a,8) |R(s,a,5) + 7 maxQu(s)|

S
e Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,r)
« Consider your old estimate: Q(s,a)
* Consider your new sample estimate: longer policy

sample = R(s,a,s’) +~ max Q(s',a’) evaluation!
a

* Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworlﬂl (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy --
!

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate
small enough
... but not decrease it too quickly
e Basically, in the limit, it doesn’t matter how you select actions (!)

45

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL
* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

49

Active Reinforcement Learning

* Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* |In this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and find
out what happens...

50

Exploration vs. Exploitation

b7

GRAND

i
P
=

Video of Demo Q-learning — Manual
Exploration — Bridge Grid

How to Explore?

* Several schemes for forcing exploration

e Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly
* With (large) probability 1-¢, act on current policy

* Problems with random actions?

* You do eventually explore the space, but keep thrashing around
once learning is done

* One solution: lower € over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grld (L10D5)]
[Demo: Q-learning — epsilon-greedy -- crawler (L10D3)]

Video of Demo Q-learning — Epsilon-Greedy —
Crawler

A commonly used ‘exploration function’ is

Exploration Functions 7w =+ e/loed/s) /n, which s

derived by Chernoff-Hoeffding inequality
and & is confidence level

* When to explore?

 Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

* Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u -+ k/n

Regular Q-Update: Q(s,a) <« R(s,a,s) + 7~ max Q(s',a)
. Modified Q-Update: Q(s,a) <o R(s,a,s') +’Yma>< f(Q(s',a"), N(s',a"))

 Action selection: Use a < argmax, Q(s,a)
* Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration functioSn5 (L10D4)]

Video of Demo Q-learning — Exploration
Function — Crawler

Regret

e Even if ?/ou learn the optimal policy,
you Istil make mistakes along the
way!

* Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including useful suboptimality, and
optimal%expected) rewards

* Minimizing regret goes beyond
Iear_ninﬁ to be optimal — it requires
optimally learning to be optimal

* Example: random exploration anc
exploration functions both end T
optimal, but random exploration
has higher regret

57

Regret 2

 Cumulative regret, i.e., for episodic MDP with fixed horizon

T
R(T) =) (V(se) =V™(50))
where s; is the starting state of the t-th interaction game

* The algorithm is learning if the average regret converges, i.e.
R, 0, or equivalently R(T) = o(T)
* Smaller order of R(T) means faster learning speed

» Worst-case regret bound R(T) = Q(/T), which holds for a fixed
game with arbitrary transitions and arbitrary (bounded) rewards

The Story So Far: MDPs and RL

Known MDP: Offline Solution

~

&

Goal

Compute V*, Q*, n*

Evaluate a fixed policy &

Technique

Value / policy iteration

Policy evaluation

/

Unknown MDP: Model-Based

-~

Goal

Compute V*, Q*, n*

Evaluate a fixed policy ©t

"

Technique

~

VI/Pl on approx. MDP

PE on approx. MDP

J

Unknown MDP:

Model-Free

-

"

Goal
Compute V*, Q*, n*

Evaluate a fixed policy ©t

Technique
Q-learning

Value Learning

~

v

Reinforcement Learning -- Overview

e Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
e Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to collect
experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

e Approximate Reinforcement Learning (= to handle large state spaces)
* Approximate Q-Learning
e Policy Search

60

Generalizing Across States

* Basic Q-Learning keeps a table of all g-values

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
* Too many states to hold the g-tables in memory

* |Instead, we want to generalize:

* Learn about some small number of training states from
experience
* Generalize that experience to new, similar situations

* This is a fundamental idea in machine learning, and we’ll
see it over and over again

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D4)]
[Demo: Q-learning — pacman —tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D5)]

Video of Demo Q-Learning Pacman — Tiny —
Watch Al

Video of Demo Q-Learning Pacman — Tiny —
Silent Train

Video of Demo Q-Learning Pacman — Tricky —
Watch Al

Feature-Based Representations

» Solution: describe a state using a vector of features
(properties)
* Features are functions from states to real numbers (often 0/1)
that capture important properties of the state

* Example features:
* Distance to closest ghost
* Distance to closest dot
* Number of ghosts
* 1/ (dist to dot)?
* Is Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

e Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

* Using a feature representation, we can write a g function (or value function)
for any state using a few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)
Q(s,a) = wyf1(s,a)twafo(s,a)+...Fwnfn(s,a)
* Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very different in
value!

Error(w) = %(sample — Q(s,a))?

Approximate Q-Learning = = —(sample - (s,)fi(s. @
Q(s,a) = wif1(s,@)+wafo(s, @)+ Fwnfals,a)

* Q-learning with linear Q-functions:

transition = (s,a,r,s’)

difference = [r + v max Q(s',d)| —Q(s,a)
Q(s,a) +— Q(s,a) + «[difference] Exact Q's
w; «— w; + a [difference] f;(s, a) Approximate Q's

* Intuitive interpretation:

* Adjust weights of active features

* E.g., if something unexpectedly bad happens, blame the features
that were on: disprefer all states with that state’s features

* Formal justification: online least squares

68

Example: Q-Pacman

Q(S,CL) — 4'OfDOT(Sa CL) —]..OfGST(S,CL)

fDOT(S: NORTH) = 0.5

fasT(s, NORTH) =1.0

~

a = NORTH
r = —500

/

O(s, NORTH) = 41
r + v max Q(s',a’) = —500

a

0

Q(Sla) =0

[difference — —501 >

wpor — 4.0+ a[-501]0.5
wagr +— —1.04+ a[-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fGsT(5,a) (emo: approrimate -

learning pacman (L11D8)]

Video of Demo Approximate Q-Learning --
Pacman

DeepMind Atari (©OTwo Minute Lectures)
approximate Q-learning with neural nets

Q-Learning and Least Squares

72

Linear Approximation: Regression

40

20

f1(x)

Prediction: Prediction:

Yy = wo + wiy f1(x) y; = wo + wi f1(x) + wafolx)

73

Optimization: Least Squares

2
total error = Z (yz — 3]},)2 — Z (y@ - Zwkfk(ﬂii))
p k

]

, Error or “residual”
Observation y

Prediction :(/j

° f1(z) ;

Minimizing Error

* Imagine we had only one point x, with features f(x), target value vy,
and weights f/:

2
error(w) = % y— w-fk(:?c))
k
s,
e;jr(w) — = (’y - Zw&fk(’ﬂ)) fm(x) N
m k
Wiy, — Wm + @ (’u - wkfk-(ﬁ'f)) fm(x)
k
* Approximate q update explained:

W — wn + o [+ymMaxQ(s', a’) — Q(s,a)| fm(s,a)

“target” “prediction”

75

Overfitting: Why Limiting Capacity Can Help

25+

20

15~

10~

-10~

-15

a
|

(\ r\, 'l-“"'; 1\}

Degree 15 polynomial f;d,w \

Recent Advancements: Deep Q-Networks

* DeepMind, 2015

* Used a deep learning network to represent Q:
* Inputis last 4 images (84x84 pixel values) plus score

* 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Camrglutinn Gun-.r_c;lutinn Fully cg_nnected Fully cgnnected
=

ED

B —
=D

E» [==
3

[&

B & o & : @
o 0
L+

O 1: \@
0

afr
'S E3 E3 K
ORC

77

Reinforcement Learning -- Overview

e Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL

* Forego learning the MDP model, directly learn Vor Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
e Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to collect
experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

* Approximate Reinforcement Learning (= to handle large state spaces)
* Approximate Q-Learning
e Policy Search

Policy Search

* Problem: often the feature-based policies that work well
(win games, maximize utilities) aren’t the ones that
approximate V / Q best

* E.g. some value functions have probably horrible estimates of future rewards, but they still
produced good decisions

* Q-learning’s priority: get Q-values close (modeling)

» Action selection priority: get ordering of Q-values right (prediction)

* WEe'll see this distinction between modeling and prediction again later in the course

* Solution: learn policies that maximize rewards, not the values that predict them

* Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

79

Policy Search 2

* Simplest policy search:
 Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

* Problems:
 How do we tell the policy got better?
* Need to run many sample episodes!
* If there are a lot of features, this can be impractical

* Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

80

MDPs and RL

Known MDP: Offline Solution

~

&

Goal
Compute V*, Q*, *

Evaluate a fixed policy &

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP: Model-Based

-~

Goal

Compute V*, Q*, n*

Evaluate a fixed policy &

"

~

Technique

VI/Pl on approx. MDP

PE on approx. MDP

J

Unknown MDP:

Model-Free

-

"

Goal
Compute V*, Q*, n*

Evaluate a fixed policy &

~

Technique

Q-learning

Value Learning

v

Shuai Li

Summary https://shuaili8.github.io

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

* Model-free Passive RL QUEStiOnS?

e Direct Evaluation & TD Learning
* Qlearning

» Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Active Q-learning
* Exploration vs Exploitation

* Approximate Reinforcement Learning (= to handle large state spaces)

* Approximate Q-Learning
* Policy Search

https://shuaili8.github.io/

	Slide 1: Lecture 7: Reinforcement Learning
	Slide 2: Example: Double Bandits
	Slide 3: Example: Double Bandits - MDP
	Slide 4: Example: Double Bandits - Offline Planning
	Slide 5: Example: Double Bandits - Let’s Play!
	Slide 6: Example: Double Bandits - Online Planning
	Slide 7: Example: Double Bandits - Let’s Play!
	Slide 8: What Just Happened?
	Slide 9: Reinforcement Learning
	Slide 10: Reinforcement Learning 2
	Slide 11: Reinforcement Learning 3
	Slide 12: Offline (MDPs) vs. Online (RL)
	Slide 13: Example: Learning to Walk
	Slide 14: Example: Learning to Walk 2
	Slide 15: Example: Learning to Walk 3
	Slide 16: Example: Learning to Walk 4
	Slide 17: Example: The Crawler!
	Slide 18: Video of Demo Crawler Bot
	Slide 19: DeepMind Atari (©Two Minute Lectures)
	Slide 20: Reinforcement Learning -- Overview
	Slide 21: Model-Based Learning
	Slide 22: Reinforcement Learning -- Overview
	Slide 23: Model-Based Reinforcement Learning
	Slide 24: Example: Model-Based RL
	Slide 25: Analogy: Expected Age
	Slide 26: Model-Free Learning
	Slide 27: Reinforcement Learning -- Overview
	Slide 28: Passive Model-Free Reinforcement Learning
	Slide 29: Direct Evaluation
	Slide 30: Example: Direct Evaluation
	Slide 31: Problems with Direct Evaluation
	Slide 32: Reinforcement Learning -- Overview
	Slide 33: Why Not Use Policy Evaluation?
	Slide 34: Sample-Based Policy Evaluation?
	Slide 35: Temporal Difference Value Learning
	Slide 36: Gradient Descent View
	Slide 37: Gradient Descent View 2
	Slide 38: Exponential Moving Average
	Slide 39: Example: Temporal Difference Value Learning
	Slide 40: Problems with TD Value Learning
	Slide 41: Reinforcement Learning -- Overview
	Slide 42: Q-Value Iteration
	Slide 43: Model-Free Learning
	Slide 44: Q-Learning
	Slide 45: Q-Learning Properties
	Slide 46: Video of Demo Q-Learning -- Gridworld
	Slide 47: Video of Demo Q-Learning -- Crawler
	Slide 48: Active Reinforcement Learning
	Slide 49: Reinforcement Learning -- Overview
	Slide 50: Active Reinforcement Learning
	Slide 51: Exploration vs. Exploitation
	Slide 52: Video of Demo Q-learning – Manual Exploration – Bridge Grid
	Slide 53: How to Explore?
	Slide 54: Video of Demo Q-learning – Epsilon-Greedy – Crawler
	Slide 55: Exploration Functions
	Slide 56: Video of Demo Q-learning – Exploration Function – Crawler
	Slide 57: Regret
	Slide 58: Regret 2
	Slide 59: The Story So Far: MDPs and RL
	Slide 60: Reinforcement Learning -- Overview
	Slide 61: Generalizing Across States
	Slide 62: Example: Pacman
	Slide 63: Video of Demo Q-Learning Pacman – Tiny – Watch All
	Slide 64: Video of Demo Q-Learning Pacman – Tiny – Silent Train
	Slide 65: Video of Demo Q-Learning Pacman – Tricky – Watch All
	Slide 66: Feature-Based Representations
	Slide 67: Linear Value Functions
	Slide 68: Approximate Q-Learning
	Slide 69: Example: Q-Pacman
	Slide 70: Video of Demo Approximate Q-Learning -- Pacman
	Slide 71: DeepMind Atari (©Two Minute Lectures) approximate Q-learning with neural nets
	Slide 72: Q-Learning and Least Squares
	Slide 73: Linear Approximation: Regression
	Slide 74: Optimization: Least Squares
	Slide 75: Minimizing Error
	Slide 76: Overfitting: Why Limiting Capacity Can Help
	Slide 77: Recent Advancements: Deep Q-Networks
	Slide 78: Reinforcement Learning -- Overview
	Slide 79: Policy Search
	Slide 80: Policy Search 2
	Slide 81: MDPs and RL
	Slide 82: Summary

