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Online Learning w/ Full Information

* Can observe feedback of every action
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Online Learning w/ Bandit Feedback

* Can only observe feedback for the selected action
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Bandits
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* Five rounds to go. Which arm would you choose next?



What are bandits, and why
should you care



What’s in the name?

* First bandit algorithm proposed by Thompson (1933)

5

Start

* Bush and Mosteller (1953) were interested
in how mice behaved in a T-maze



Why care about bandits?

* Many applications

* They isolate an important component of reinforcement learning:
exploration-vs-exploitation

* Theoretically guaranteed algorithms
* Rich and beautiful mathematics



Applications: Recommendation systems

* Yahoo news [Li et al. (2010)]
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Applications: A part of RL

* A way of isolating an interesting part of reinforcement learning

* Recommending items -
H 1. (201 Sg Reinforcement ER§NRIVELE Online KV System
[Hu et al. ( )] Learning N 0, :0.231,0.6222,1.532, ...

* Achieved more than 30% growth Component 62 : 0.351,1.762,2.141, ..
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Figure 6: RL ranking system of TaoBao search engine




Applications: A component of game-playing

* A component of game-playing algorithms
* Monte-Carlo tree search (MCTS) — AlphaGo [Silver et al. (2016)]
* UCT algorithm [Kocsis and Szepesvari (2006)]
. Drlves its search uses a bandlt algorithm at each node

UCT

* Repeat Selection—Expansion—Playout —Backpropagation until
. Reachingthe predeﬂned maximum time—length or the maximum number of playouts
+ Use UCB1 value in Selectio

. F|r‘|f:||1,-r select the action assamated with the adjacent child node, of the root node,
having maximum number of visits

B B B




Applications: Select policies

 Select the best ranking policy [Yue et al. (2012)

* Online interleaving
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Applications: SAT solvers

solved instances (UNSAT)
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Other applications

e Clinical trials [Villar et al. (2015)]

* Network routing [Le et al. (2014)]

e Experimental design [Rafferty et al. (2018)]

* Hyperparameter tuning [Li et al. (2017)]

* A/B testing [many]

* Ad placement [Yu et al. (2016)]

* Dynamic pricing (eg.,for Amazon products) [Babaioff et al. (2015)]
e Ranking (eg.,for search) [Radlinski et al. (2008)]

* Waiting problems (when to auto-logout your computer) [Lattimore et al.
(2014)]

e Resource allocation [Larrnaaga et al. (2016)]



Finite-armed stochastic bandits



Setting: Finite-armed stochastic bandits

items/products/movies/news/...

CTR/profit/...

* There are L arms
* Each arm a has an unknown reward distribution v, with unknown mean a(a)
* Thebestarmis a®™ = argmax,a(a)

'n" I 'nll 'n I

At each time t
* The learning agent selects an arm a;

* Observes the reward X, +~ Vg, — | . it feedback




Objective

Maximize the expected cumulative reward in T rounds

T
E Zcx(at)
_t=1 -
 Minimize the regretin T rounds T T
R(T) =T-a(a) ~E| ) ala,)
t=1

Balance the trade-off between exploration and exploitation
* Exploitation: Select arms that yield good results so far
* Exploration: Select arms that have not been tried much before

Smaller order of T in R(T) is better



A/B testing

* There are L = 2 arms (choices/plans/...)

* Suppose
v, = Gaussian(ay, 1)
vg = Gaussian(ag, 1)
a4 > ap,
A — aA — CZB

* Explore-then-commit algorithm

* Select each of A and B for T, rounds and
then select the one with larger sample mean
for the remaining T — 2T, rounds

exploration

exploitation

The better one
T — 2T, rounds



A/B testing (continued)

* Regret
R(T)
=Ty - (@g — ap) + Pla, S agl(T — 2To)(ay — ap)
< ToA+TA-exp| — TO4A
1 . A2 The better one
=0 (Z log T Ty = Elog (Tﬂ T — 2T, rounds

need the knowledge of A

* R(T) = Q(TA) if Ty = =T
« R(T) = Q(TA) if T, = 1000



A/B testing (continued)

[ xplore-Then-Commit

=]
=]

Expected regret
=
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Figure 6.2 Expected regret for Explore-Then-Commit over 10° trials on a Gaussian
bandit with means p; =0, g2 = —1/10

 Lattimore and Szepesvari (2018)



Epsilon-greedy algorithm

* For each time t
* ¢, €(0,1)
* With probability €;, randomly choose an arm
* With probability 1 — ¢, choose the one with highest sample mean

exploration

exploitation

* When €; = min {1,15%2}, regret R(T) = 0 (i log T)

S

need the knowledge of A




Epsilon-greedy algorithm 2

Eps-Greedy: Mean Rate of Choosing Best Arm from 5000 Simulations. 5 Arms = [4 x 0.1, 1 x 0.9]
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UCB — Upper confidence bound [Auer et
al.(2002)]

* With high prob

abilit
~ 2logt
aze|a,(t) —

/L

Hoeffding’s inequality

sample mean

JTe®

,0,(t) +

round t

2logt

\

Ta(t)

200~

1504 T

100 --

504

\ selection times of arm a

till round t

* Principle: optimism in face of uncertainty

* UCB policy:

a; = argmax, &, +

\\l Ta(t)

2 log

exploitation

exploration

=




UCB — Upper confidence bound 2

* Regret
L
R(T)=0 (Klog T)
* Proof sketch
* Under good event (w/ high probability)

e Ifarm a is pulled, then
a(a*) < UCB,- < UCB, < a(a) + 2 radius,

. 2logt _ radiusa > a(a®)—a(a)
T, (t) 2
]
. — Ta(t) < 8logt

AZ



UCB — Upper confidence bound 3

Result from 2000 simulations.
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Thompson sampling [Agrawal and Goyal
(2013)]

* Assume each arm has prior Gaussian(0,1)

* Then posterior distribution for a is
Gaussian (c’ia (1), . ) N
1+T,(t)
o Sample exploitation :.Ijr:ter | < ' e
a,(t)~Gaussian (&a6 e ;a (t))
and select ~ UCB

exploration

a; = argmax, &,(t)



Thompson sampling 2
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Thompson sampling 3

Average regret for the 10-armed Beta Bandit
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Finite-armed adversarial bandits



Setting: Adversarial MAB

* There are L arms
* An adversary secretly preselects all loss vectors {lt,a}t . from |0,1]

* The bestarmis a* = argmin }/_; [, ,

"TZ&'I 771&{ 'I'IIfI

29



Setting: Adversarial MAB 2

e At each time t

* The learning agent selects one arm a;
* Observe the loss [; ;.

* Objective:
* Minimize the expected cumulative loss in T rounds E[Zle lt’at]
* Minimize the regretin T rounds

[T | T
z a z

* Balance the trade-off between exploration and exploitation
* Exploitation: Select arms that yield good results so far
* Exploration: Select arms that have not been tried much before




Exp3: Exponential Weight Algorithm for
Exploration and Exploitation

* Importance-weight estimator
P [{a; = a} -l q,
ha P(a; = a)
 For each time t Learning rate
* Calculate the sampling distribution V
eXP(—Uzt—1 a) % Exponential
IP)(at = a) = o — weighting
p=1€Xp(—NL¢_1p)

* Sample a;~ P(a; = a) and observe I, ;.

* Calculate L, , = - lt,a

* Regret bound O(\/LT log L)

31



Comparison between Stochastic and
Adversarial Environments

e Stochastic e Adversarial

* Reward fixed distribution on * Loss arbitrary on [0,1]
10,1] with fixed mean

* Bestarm a® = argmax a(a)
* Regret bound O(logT)

e Runs in adversarial setting
* Regret may not even converge

* Bestarm a* = argmin Y{_; l; 4
* Regret bound O (\VT)

* Runs in stochastic setting
* Regret bound O0(VT)



cumulative mean

cumulative mean

Performance comparisons
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Linear bandits



Setting

a set of

items/videos/news/ ...

* At eachtimet
* The learning agent receives D, c R%
e Selects anarm a; € D, c R?
* Receives a random reward X, ;~ v,, With mean
ala,) =0"a,
for some fixed but unknown weight vector 6

* Allow for large-scale applications

% bandit feedback w/
linear structure




LinUCB [Li et al. (2010)]

* The observed feedback is

(a1, Xa, 1), (a2, Xay2)s oos (@t Xayp)s e}

° Let ¢

Vt—1+§ aSaS'bt §Xasas - e

-20 -10

linear regression estimator | S=1 s=1
— 1
Ht — Vt bt

exploitation %

* With high probability i
|6 — etHVt < Cy/logt




How to understand || — ét”vt < C,/logt
* lllly, = xTVex

v, =" | then lxlly, = Vil P + Tyl P
2
0
* Whena, = [0] = [ ]
1+ Ty (t)
S X RPN
implies

logt

la(ay) —ala)l = [6; = 6;] < C\/l + Tg, () A

2 )|_|9 9|<C logt
Ia(az)—a az)l = |2 — Uz = 1+Ta2(t)




How to understand || — étHVt < C,/logt

N

* For general V; %

* Confidence ellipse 4

* Confidence ellipsoid
* narrower direction means less uncertainty




How to use It

* With high probability
AT
‘a(a) — 0, a‘ < C,/logt ”Cl”Vt—l

e Select
A T
a;y1 = argmaxy Hta\-l—(],/logt ||a||12—1
exploitation exploration
* Regret

R(T) = 0(dVTlogT)



LinTS [Agrawal and Goyal (2013b)]

 Suppose 8 has prior Gaussian(0, )

* Then the posterior distribution for 0 is
Gaussian(0, V1)
* Draw a random sample
6 ~Gaussian(8, V1)
and select
a,,,1 = argmax, 6 'a



Comparisons
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Shuai Li

Summary https://shuaili8.github.io

 What are bandits, and why should you care

* Many applications Questions?
* Finite-armed bandits

e Explore-then-commit
* epsilon-greedy

. . _ ~ 2logt
UCB: a; = argmax, &, + T, (t)
e Thompson sampling: &, (t)~Gaussian (&a (t), 1+; (t))

* EXP3

e Linear bandits
* LinUCB, LinTS


https://shuaili8.github.io/
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