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Bayes Rule
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Bayes’ Rule

• Two ways to factor a joint distribution over two variables:

• Dividing, we get:

• Why is this at all helpful?

• Lets us build one conditional from its reverse
• Often one conditional is tricky but the other one is simple
• Foundation of many systems (e.g. ASR, MT)

• In the running for most important AI equation!
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That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Inference with Bayes’ Rule

• Example: Diagnostic probability from causal probability:

• Example:
• M: meningitis, S: stiff neck

• Note: posterior probability of meningitis still very small
• Note: you should still get stiff necks checked out!  Why?
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Example
givens



Quiz: Bayes’ Rule

• Given:

• What is P(W | dry) ? 
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R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Quiz: Bayes’ Rule 2

• Given:

• What is P(W | dry) ? 
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R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(sun|dry) ∝ P(dry|sun)P(sun) = .9*.8 = .72
P(rain|dry) ∝ P(dry|rain)P(rain) = .3*.2 = .06
P(sun|dry)=12/13
P(rain|dry)=1/13



Ghostbusters, Revisited

• Let’s say we have two distributions:
• Prior distribution over ghost location: P(G)

• Let’s say this is uniform

• Sensor reading model: P(R | G)
• Given: we know what our sensors do

• R = reading color measured at (1,1)

• E.g. P(R = yellow | G=(1,1)) = 0.1

• We can calculate the posterior distribution P(G|r) over 
ghost locations given a reading using Bayes’ rule:
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[Demo: Ghostbuster – with probability (L12D2) ]



Video of Demo Ghostbusters with Probability
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Inference
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Recall: Bayes’ Net Representation

• A directed, acyclic graph, one node per random 
variable

• A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each 
combination of parents’ values

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:

10



Inference

• Inference: calculating some 
useful quantity from a joint 
probability distribution
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▪ Examples:

▪ Posterior probability

▪ Most likely explanation:



Queries

• What is the probability of this given what I know?

𝑃 𝑞 𝑒 =
𝑃(𝑞, 𝑒)

𝑃(𝑒)
=
σℎ1

σℎ2
𝑃 𝑞, ℎ1, ℎ2, 𝑒

𝑃(𝑒)

• What are the probabilities of all the possible outcomes (given what I know)?

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒

𝑃 𝑒
=
σℎ1

σℎ2
𝑃 𝑄, ℎ1, ℎ2, 𝑒

𝑃(𝑒)

• Which outcome is the most likely outcome (given what I know)?

argmax𝑞∈𝑄 𝑃 𝑞 𝑒 = argmax𝑞∈𝑄
𝑃 𝑞, 𝑒

𝑃 𝑒

= argmax𝑞∈𝑄
σℎ1

σℎ2
𝑃 𝑞, ℎ1, ℎ2, 𝑒

𝑃(𝑒)
12



Inference by Enumeration in Joint 
Distributions
• General case:

• Evidence variables: 
• Query* variable:
• Hidden variables:
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All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration in Bayes’ Net

• Given unlimited time, inference in BNs is easy
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B E

A

MJ



Example: Traffic Domain

• Random Variables
• R: Raining

• T: Traffic

• L: Late for class!
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T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Inference by Enumeration: Procedural Outline

• Track objects called factors

• Initial factors are local CPTs (one per node)

• Any known values are selected
• E.g. if we know                     , the initial factors are

• Procedure: Join all factors, then sum out all 
hidden variables
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+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.3

-t +l 0.1

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9



Operation 1: Join Factors

• First basic operation: joining factors

• Combining factors:
• Just like a database join

• Get all factors over the joining variable
• Build a new factor over the union of the variables involved

• Example: Join on R

• Computation for each entry: pointwise products
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+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Example: Multiple Joins
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T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

Join T



Example: Joining two conditional factors
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• Example: P(J|A)  x  P(M|A)  =  P(J,M|A)

P(J|A)

A \ J true false

true 0.99 0.01

false 0.145 0.855

x =

P(M|A)

A \ M true false

true 0.97 0.03

false 0.019 0.891 A=true

A=false

P(J,M|A)



Example: Making larger factors
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• Example: f1(U,V)  x  f2(V,W) x  f3(W,X)  =  f4(U,V,W,X)

• Sizes: [10,10]  x  [10,10] x  [10,10] =  [10,10,10,10] 

• i.e., 300 numbers blows up to 10,000 numbers!

• Factor blowup can make joining very expensive



Operation 2: Eliminate

• Second basic operation: marginalization

• Take a factor and sum out a variable

• Shrinks a factor to a smaller one

• A projection operation

• Example:
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+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination
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Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134
-l 0.866



Thus Far: Multiple Join, Multiple Eliminate (= 
Inference by Enumeration)
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Thus Far: Multiple Join, Multiple Eliminate (= 
Inference by Enumeration)
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Inference by Enumeration in Bayes Net

• Reminder of inference by enumeration:
• Any probability of interest can be computed by summing entries 

from the joint distribution
• Entries from the joint distribution can be obtained from a BN by 

multiplying the corresponding conditional probabilities

P(B | j, m) =  α P(B, j, m) 
=  α e,a P(B, e, a, j, m) 
=  α e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)

• So inference in Bayes nets means computing sums of 
products of numbers: sounds easy!!

• Problem: sums of exponentially many products!
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Can we do better?

• Consider
• 𝑥1𝑦1𝑧1 + 𝑥1𝑦1𝑧2 + 𝑥1𝑦2𝑧1 + 𝑥1𝑦2𝑧2 + 𝑥2𝑦1𝑧1 + 𝑥2𝑦1𝑧2 + 𝑥2𝑦2𝑧1 + 𝑥2𝑦2𝑧2
• 16 multiplies, 7 adds
• Lots of repeated subexpressions!

• Rewrite as
• (𝑥1 + 𝑥2)(𝑦1 + 𝑦2)(𝑧1 + 𝑧2)
• 2 multiplies, 3 adds



𝑒



𝑎

𝑃 𝐵 𝑃 𝑒 𝑃 𝑎 𝐵, 𝑒 𝑃 𝑗 𝑎 𝑃 𝑚 𝑎)

• Lots of repeated subexpressions!
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= 𝑃 𝐵 𝑃(+𝑒) 𝑃 +𝑎 𝐵,+𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 +𝑎 𝐵,−𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(+𝑒) 𝑃 −𝑎 𝐵,+𝑒 𝑃 𝑗 −𝑎 𝑃(𝑚 | − 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 −𝑎 𝐵,−𝑒 𝑃 𝑗 −𝑎 𝑃 𝑚 − 𝑎



Variable Elimination
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Inference by Enumeration vs. Variable 
Elimination
• Why is inference by enumeration so 

slow?
• You join up the whole joint distribution 

before you sum out the hidden variables

28

▪ Idea: interleave joining and marginalizing!
▪ Called “Variable Elimination”

▪ Still NP-hard, but usually much faster than 
inference by enumeration



Marginalizing Early (= Variable Elimination)

29



Answer Any Query from Bayes Net (Previous)
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Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Next: Answer Any Query from Bayes Net
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Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Inference by Enumeration

• General case:
• Evidence variables: 
• Query* variable:
• Hidden variables:
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All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize

▪ Compute joint

▪ Sum out hidden variables



Variable Elimination

• General case:
• Evidence variables: 
• Query* variable:
• Hidden variables:
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All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize

▪ Interleave joining and summing out



Marginalizing Early! (aka VE)
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Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Traffic Domain
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• Inference by Enumeration
T

L

R

▪ Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t



Inference Overview

36

• Given random variables 𝑄,𝐻, 𝐸 (query, hidden, evidence)

• We know how to do inference on a joint distribution

𝑃 𝑞 𝑒 = 𝛼 𝑃 𝑞, 𝑒

= 𝛼σℎ∈{ℎ1,ℎ2}
𝑃(𝑞, ℎ, 𝑒)

• We know Bayes nets can break down joint in to CPT factors

𝑃 𝑞 𝑒 = 𝛼σℎ∈{ℎ1,ℎ2}
𝑃 ℎ 𝑃 𝑞 ℎ 𝑃(𝑒|𝑞)

= 𝛼 [𝑃 ℎ1 𝑃 𝑞 ℎ1 𝑃 𝑒 𝑞 + 𝑃 ℎ2 𝑃 𝑞 ℎ2 𝑃 𝑒 𝑞 ]

• But we can be more efficient

𝑃 𝑞 𝑒 = 𝛼 𝑃(𝑒|𝑞)σℎ∈{ℎ1,ℎ2}
𝑃 ℎ 𝑃 𝑞 ℎ

= 𝛼 𝑃 𝑒 𝑞 [𝑃 ℎ1 𝑃 𝑞 ℎ1 + 𝑃 ℎ2 𝑃 𝑞 ℎ2 ]

= 𝛼 𝑃 𝑒 𝑞 𝑃(𝑞)

• Now just extend to larger Bayes nets and a variety of queries

𝐻 𝑄 𝐸
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Variable Elimination: The basic ideas

• Move summations inwards as far as possible
• P(B | j, m) =  α eaP(B) P(e) P(a|B,e) P(j|a) P(m|a)

=  α P(B) e P(e) a P(a|B,e) P(j|a) P(m|a)

• Do the calculation from the inside out
• I.e., sum over a first, then sum over e
• Problem: P(a|B,e) isn’t a single number, it’s a bunch of different numbers 

depending on the values of B and e
• Solution: use arrays of numbers (of various dimensions) with appropriate 

operations on them; these are factors
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General Variable Elimination

• Query:

• Start with initial factors:
• Local CPTs (but instantiated by evidence)

• While there are still hidden variables (not Q or 
evidence):
• Pick a hidden variable H
• Join all factors mentioning H
• Eliminate (sum out) H

• Join all remaining factors and normalize
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Variable Elimination

function VariableElimination(Q , e, bn) returns a distribution over Q

factors ← [ ]

for each var in ORDER(bn.vars) do

factors ← [MAKE-FACTOR(var, e)|factors] 

if var is a hidden variable then

factors ← SUM-OUT(var,factors) 

return NORMALIZE(POINTWISE-PRODUCT(factors)) 
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Evidence

• If evidence, start with factors that select that evidence
• No evidence, uses these initial factors:

• Computing                            , the initial factors become:

• We eliminate all vars other than query + evidence
40

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r 0.1 +r +t 0.8

+r -t 0.2

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



Evidence II

• Result will be a selected joint of query and evidence
• E.g. for P(L | +r), we would end up with:

• To get our answer, just normalize this!

• That ’s it!
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+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



Example
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marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Example (cont’d)
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Choose A



Example (cont’d)
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Choose E

Finish with B

Normalize



Another Variable Elimination Example
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Computational complexity critically 
depends on the largest factor being 
generated in this process.  Size of factor 
= number of entries in table.  In 
example above (assuming binary) all 
factors generated are of size 2 --- as 
they all only have one variable (Z, Z, 
and X3 respectively). 



Variable Elimination Ordering

• For the query P(Xn|y1,…,yn) work through the following two different orderings as done in previous 
slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the maximum factor generated for each of the 
orderings?

• Answer: 2n versus 2 (assuming binary)

• In general: the ordering can greatly affect efficiency 46

…

…



Detail of size 4

• Elimination order: C, B, A, Z
• P(D) =  α z,a,b,c P(D|z) P(z) P(a|z) P(b|z) P(c|z)
• =  α z P(D|z) P(z) a P(a|z)b P(b|z)c P(c|z)
• Largest factor has 2 variables (D,Z)

• Elimination order: Z, C, B, A
• P(D) =  α a,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 
• =  α a b c z P(a|z) P(b|z) P(c|z) P(D|z) P(z)
• Largest factor has 4 variables (A,B,C,D)

• In general, with n leaves, factor of size 2n

47

D

Z

A B C



VE: Computational and Space Complexity

• The computational and space complexity of variable elimination is determined by 
the largest factor

• The elimination ordering can greatly affect the size of the largest factor
• E.g., previous slide’s example 2n vs. 2

• Does there always exist an ordering that only results in small factors?
• No!

48



Worst Case Complexity?

• CSP:  

• If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution

• Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general 49

…

…



“Easy” Structures: Polytrees

• A polytree is a directed graph with no undirected cycles

• For poly-trees you can always find an ordering that is efficient 
• Try it!!

• Cut-set conditioning for Bayes’ net inference

• Choose set of variables such that if removed only a polytree remains

• (Exercise) Think about how the specifics would work out!

50



Sampling

51



Recall: Bayes’ Net Representation

• A directed, acyclic graph, one node per random 
variable

• A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each 
combination of parents’’values

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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Recap: Bayesian Inference (Exact)
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• Inference by Enumeration
T

L

R

▪ Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t



Approximate Inference: Sampling
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Sampling

• Sampling is a lot like repeated 
simulation
• Predicting the weather, basketball 

games, …

• Basic idea
• Draw N samples from a sampling 

distribution S
• Compute an approximate posterior 

probability
• Show this converges to the true 

probability P

55

• Why sample?
• Learning: get samples from a 

distribution you don’t know

• Inference: getting a sample is 
faster than computing the right 
answer (e.g. with variable 
elimination)



Sampling 2

• Sampling from given distribution
• Step 1: Get sample u from uniform 

distribution over [0, 1)
• E.g. random() in python

• Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome 
associated with a sub-interval of [0,1) 
with sub-interval size equal to 
probability of the outcome

56

C P(C)

red 0.6

green 0.1

blue 0.3

• Example

• If random() returns u = 0.83, then our 
sample is C = blue

• E.g, after sampling 8 times:



Sampling in Bayes’ Nets

• Prior Sampling

• Rejection Sampling

• Likelihood Weighting

• Gibbs Sampling

57



Prior Sampling: Example
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Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5

-c 0.5

+c

+s 0.1

-s 0.9

-c

+s 0.5

-s 0.5

+c

+r 0.8

-r 0.2

-c

+r 0.2

-r 0.8

+s +r

+w 0.99

-w 0.01

-r

+w 0.90

-w 0.10

-s +r

+w 0.90

-w 0.10

-r

+w 0.01

-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…



Prior Sampling: Algorithm
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Prior Sampling

• This process generates samples with probability:

• …i.e. the BN’s joint probability

• Let the number of samples of an event be

• Then

• i.e., the sampling procedure is consistent
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Example

• We’ll get a bunch of samples from the BN:
• +c, -s, +r, +w
• +c, +s, +r, +w
• -c, +s, +r,  -w
• +c, -s, +r, +w
• -c,  -s,  -r, +w

• If we want to know P(W)
• We have counts <+w:4, -w:1>
• Normalize to get P(W) = <+w:0.8, -w:0.2>
• This will get closer to the true distribution with more samples
• Can estimate anything else, too

• P(C | +w)?   P(C | +r, +w)?  
• Can also use this to estimate expected value of f(X) - Monte Carlo Estimation

• What about P(C | -r, -w)?

61

S R

W

C



Rejection Sampling

• Let’s say we want P(C)
• Just tally counts of C as we go

• Let’s say we want P(C | +s)
• Same thing: tally C outcomes, but ignore (reject) 

samples which don’t have S=+s

• This is called rejection sampling

• We can toss out samples early!

• It is also consistent for conditional probabilities 
(i.e., correct in the limit)

62

S R

W

C



Rejection Sampling: Algorithm
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Likelihood Weighting
• Problem with rejection sampling:

• If evidence is unlikely, rejects lots of 
samples

• Consider P( Shape | blue )

64

• Idea: fix evidence variables and 
sample the rest
• Problem: sample distribution not 

consistent!

• Solution: weight by probability of 
evidence given parents

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting: Example

65

+c 0.5

-c 0.5

+c

+s 0.1

-s 0.9

-c

+s 0.5

-s 0.5

+c

+r 0.8

-r 0.2

-c

+r 0.2

-r 0.8

+s +r

+w 0.99

-w 0.01

-r

+w 0.90

-w 0.10

-s +r

+w 0.90

-w 0.10

-r

+w 0.01

-w 0.99

Samples:

+c, +s, +r, +w

-c, +s, -r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

w = 1.0 x 0.1 x 0.99
w = 1.0 x 0.5 x 0.90



Likelihood Weighting: Algorithm
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Likelihood Weighting

• Sampling distribution if z sampled and e fixed evidence

• Now, samples have weights

• Together, weighted sampling distribution is consistent
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Cloudy

R

C

S

W



Likelihood Weighting

• Likelihood weighting is helpful
• We have taken evidence into account as we 

generate the sample

• E.g. here, W’s value will get picked based on 
the evidence values of S, R

• More of our samples will reflect the state of 
the world suggested by the evidence
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• Likelihood weighting doesn’t solve all our 
problems
• Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

• We would like to consider evidence when we 
sample every variable (leads to Gibbs 
sampling)

S R

W

C



Gibbs Sampling: Example P( S | +r)
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▪ Step 2: Initialize other variables 
▪ Randomly

• Step 1: Fix evidence
• R = +r

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

• Steps 3: Repeat
• Choose a non-evidence variable X
• Resample X from P( X | all other variables)*



Gibbs Sampling
• Procedure

• Keep track of a full instantiation 𝑥1, … , 𝑥𝑛
• Start with an arbitrary instantiation consistent with the evidence
• Sample one variable at a time, conditioned on all the rest, but keep evidence fixed
• Keep repeating this for a long time

• Property
• In the limit of repeating this infinitely many times the resulting samples come from the 

correct distribution (i.e. conditioned on evidence)

• Rationale
• Both upstream and downstream variables condition on evidence

• In contrast: 
• Likelihood weighting only conditions on upstream evidence, and hence weights obtained in 

likelihood weighting can sometimes be very small
• Sum of weights over all samples is indicative of how many “effective” samples were obtained, 

so we want high weight
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S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Resampling of One Variable

• Sample from P(S | +c, +r, -w)

• Many things cancel out – only CPTs with S remain!

• More generally: only CPTs that have resampled variable need to be considered, 
and joined together
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S +r

W

C



More Details on Gibbs Sampling*

• Gibbs sampling belongs to a family of sampling methods called 
Markov chain Monte Carlo (MCMC)
• Specifically, it is a special case of a subset of MCMC methods called 

Metropolis-Hastings

• You can read more about this here:
• https://ermongroup.github.io/cs228-notes/inference/sampling/

72

https://ermongroup.github.io/cs228-notes/inference/sampling/


Bayes’ Net Sampling Summary
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• Prior Sampling P(Q)

• Likelihood Weighting P(Q|e)

• Rejection Sampling P(Q|e)

• Gibbs Sampling P(Q|e)



Decision Networks
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Decision Networks

75

Weather

Forecast

Umbrella

U



Decision Networks 2

• MEU: choose the action which maximizes the expected utility given the evidence

• Can directly operationalize this with decision networks

• Bayes nets with nodes for utility and actions

• Lets us calculate the expected utility for each action

• New node types:

• Chance nodes (just like BNs)

• Actions (rectangles, cannot have parents, act as observed evidence)

• Utility node (diamond, depends on action and chance nodes)
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Weather

Forecast

Umbrella

U



Decision Networks 3

• Action selection

• Instantiate all evidence

• Set action node(s) each possible way

• Calculate posterior for all parents of 
utility node, given the evidence

• Calculate expected utility for each 
action

• Choose maximizing action

77

Weather

Forecast

Umbrella

U



Maximum Expected Utility
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Weather

Umbrella

U

W P(W)

sun 0.7

rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70



Decisions as Outcome Trees
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• Almost exactly like expectimax / MDPs

• What’s changed?

U(t,s)

Weather | {} Weather | {}

{}

U(t,r) U(l,s) U(l,r)

Weather

Umbrella

U



Maximum Expected Utility
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Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave



Maximum Expected Utility 2
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Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



Decisions as Outcome Trees
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U(t,s)

W | {b} W | {b}

U(t,r) U(l,s) U(l,r)

{b}

Weather

Forecast
=bad

Umbrella

U



Video of Demo Ghostbusters with Probability
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Ghostbusters Decision Network
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Ghost Location

Sensor (1,1)

Bust

U

Sensor (1,2) Sensor (1,3) Sensor (1,n)

Sensor (2,1)

Sensor (m,1) Sensor (m,n)…

…

…

…
Demo: Ghostbusters with probability 



Value of Information
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Value of Information

• Idea: compute value of acquiring evidence
• Can be done directly from decision network

• Example: buying oil drilling rights
• Two blocks A and B, exactly one has oil, worth k
• You can drill in one location
• Prior probabilities 0.5 each, & mutually exclusive
• Drilling in either A or B has EU = k/2, MEU = k/2

• Question: what’s the value of information of O?
• Value of knowing which of A or B has oil
• Value is expected gain in MEU from new info
• Survey may say “oil in a” or “oil in b,” prob 0.5 each
• If we know OilLoc, MEU is k (either way)
• Gain in MEU from knowing OilLoc?
• VPI(OilLoc) = k/2
• Fair price of information: k/2
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OilLoc

DrillLoc

U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2



Value of Perfect Information
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Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution



Value of Information

• Assume we have evidence E=e.  Value if we act now:

• Assume we see that E’ = e’.  Value if we act then:

• BUT E’ is a random variable whose value is

unknown, so we don’t know what e’ will be

• Expected value if E’ is revealed and then we act:

• Value of information: how much MEU goes up

by revealing E’ first then acting, over acting now:
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P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)

U

{+e}

P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a



Value of Information 2
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P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)

U

{+e}

P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a



VPI Properties

• Nonnegative

• Nonadditive 
(think of observing Ej twice)

• Order-independent
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Quick VPI Questions

• The soup of the day is either clam chowder or split 
pea, but you wouldn’t order either one.  What’s 
the value of knowing which it is?

• There are two kinds of plastic forks at a picnic.  
One kind is slightly sturdier.  What’s the value of 
knowing which?

• You’re playing the lottery.  The prize will be $0 or 
$100.  You can play any number between 1 and 
100 (chance of winning is 1%).  What is the value 
of knowing the winning number?
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Value of Imperfect Information?

• No such thing

• Information corresponds to the observation 
of a node in the decision network

• If data is “noisy” that just means we don’t 
observe the original variable, but another 
variable which is a noisy version of the 
original one
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VPI Question

• VPI(OilLoc) ?

• VPI(ScoutingReport) ?

• VPI(Scout) ?

• VPI(Scout | ScoutingReport) ?

• Generally: 
If Parents(U)        Z   |   CurrentEvidence
Then VPI( Z | CurrentEvidence) = 0 
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OilLoc

DrillLoc

U

Scouting
Report

Scout



POMDPs
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POMDPs

• MDPs have:
• States S
• Actions A
• Transition function P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’)

• POMDPs add:
• Observations O
• Observation function P(o|s) (or O(s,o))

• POMDPs are MDPs over belief

states b (distributions over S)
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a

s

s, a

s,a,s’

s’

a

b

b, a

o

b’



Example: Ghostbusters

• In (static) Ghostbusters:
• Belief state determined by evidence to date {e}
• Tree really over evidence sets
• Probabilistic reasoning needed to predict new 

evidence given past evidence

• Solving POMDPs
• One way: use truncated expectimax to 

compute approximate value of actions
• What if you only considered busting or one 

sense followed by a bust?
• You get a VPI-based agent!
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a

{e}

e, a

e’

{e, e’}

a

b

b, a

b’

abust

{e}

{e}, asense

e’

{e, e’}

asense

U(abust, {e})

abust

U(abust, {e, e’})

Demo: Ghostbusters with VPI 

e’



Video of Demo Ghostbusters with VPI
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More Generally*

• General solutions map belief functions to 
actions
• Can divide regions of belief space (set of belief 

functions) into policy regions (gets complex quickly)
• Can build approximate policies using discretization 

methods
• Can factor belief functions in various ways

• Overall, POMDPs are very (actually PSACE-) 
hard

• Most real problems are POMDPs, but we can 
rarely solve then in general!
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Summary

• Bayes rule

• Inference

• Variable Elimination

• Sampling

• Decision Networks

Questions?

https://shuaili8.github.io

Shuai Li
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https://shuaili8.github.io/

