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Today
• Agents that Plan Ahead
• Search Problems
• Uninformed Search Methods
• Depth-First Search
• Breadth-First Search
• Uniform-Cost Search

• Informed Search
• Heuristics
• Greedy Search
• A* Search
• Graph Search
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Agents that Plan

3



Rationality

•What is rational depends on:
• Performance measure
• Agent’s prior knowledge of environment
• Actions available to agent
• Percept/sensor sequence to date

• Being rational means maximizing your expected utility
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Rational Agents

• Are rational agents omniscient? 无所不知的
• No – they are limited by the available percepts

• Are rational agents clairvoyant? 透视的
• No – they may lack knowledge of the environment dynamics

• Do rational agents explore and learn?
• Yes – in unknown environments these are essential

• So rational agents are not necessarily successful, but they are 
autonomous (i.e., control their own behavior)
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Planning Agents

• Planning agents:
• Ask “what if”
• Decisions based on (hypothesized or predicted) 

consequences of actions
• Must have a transition model of how the world evolves 

in response to actions
• Must formulate a goal (test)
• Consider how the world WOULD BE

• Spectrum of deliberativeness:
• Generate complete, optimal plan offline, then execute
• Generate a simple, greedy plan, start executing, replan 

when something goes wrong

• Optimal vs. complete planning
• Planning vs. replanning
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[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]



Video of Demo Replanning
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Video of Demo Mastermind
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Search 
Problems
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Search Problems
• A search problem consists of:
• A state space

• For each state, a set 
Actions(s) of successors/actions

• A successor function
• A transition model T(s,a)
• A step cost(reward) function c(s,a,s’)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

{N, E}
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Search Problems Are Models
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Example: Traveling in Romania
• State space:

• Cities

• Successor function:
• Roads: Go to adjacent city with 

cost = distance

• Start state:
• Arad

• Goal test:
• Is state == Bucharest?

• Solution?
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What’s in a State Space?

• Problem: Pathing
• States: (x,y) location
• Actions: NSEW
• Successor: update location 

only
• Goal test: is (x,y)=END

• Problem: Eat-All-Dots
• States: {(x,y), dot booleans}
• Actions: NSEW
• Successor: update location 

and possibly a dot boolean
• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
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State Space Sizes?
• World state:

• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?

120x(230)x(122)x4
• States for pathing?

120
• States for eat-all-dots?

120x(230)
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Safe Passage

• Problem: eat all dots while keeping the ghosts perma-scared
• What does the state space have to specify?
• (agent position, dot booleans, power pellet booleans, remaining scared time)
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State Space Graphs 
and Search Trees
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State Space Graphs
• State space graph: A mathematical 

representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only 
once!

• We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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More Examples
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Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures
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State Space Graphs vs. Search Trees
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State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
S

a b

G G ab

G a Gb
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Tree Search
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Search Example: Romania
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Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible
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General Tree Search
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function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question
• which fringe nodes to explore?



Example: Tree Search
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Depth-First (Tree) Search
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Implementation: 
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Breadth-First (Tree) Search
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Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + … + bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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Depth-First Search (DFS) Properties
• What nodes DFS expand?

• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles 

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of 

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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Breadth-First Search (BFS) Properties
• What nodes does BFS expand?

• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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DFS vs BFS
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• When will BFS outperform DFS?
• When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Video of Demo Maze Water DFS/BFS
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Iterative Deepening
• Idea: get DFS’s space advantage with BFS’s 

time / shallow-solution advantages
• Run a DFS with depth limit 1.  If no solution…
• Run a DFS with depth limit 2.  If no solution…
• Run a DFS with depth limit 3.  …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level 

searched, so not so bad!

…
b
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A Note on Implementation

• Nodes have
• state, parent, action, path-cost

• A child of node by action a has
• state =   Transition(node.state, a)
• parent =   node
• action =   a
• path-cost =   node.path_cost +  step_cost(node.state, a, self.state)

• Extract solution by tracing back parent pointers, collecting actions
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Uniform Cost Search
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Finding a Least-Cost Path

• BFS finds the shortest path in terms of number of actions, but not the 
least-cost path
• A similar algorithm would find the least-cost path  
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Uniform Cost Search
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Uniform Cost Search 2

40

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost = 0
loop do 

if the frontier is empty then
return failure

choose a node (with minimal path_cost) and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with path_cost = path_cost(node) + cost(node, child)
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Walk-through UCS
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Walk-through UCS
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…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least e , then the 

“effective depth” is roughly C*/e
• Takes time O(bC*/e) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/e)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

• Is it optimal?
• Yes!  (Proof next via A*)

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1
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Uniform Cost Issues
• Remember: UCS explores increasing cost 

contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

• We’ll fix that soon! Start Goal

…

c £ 3
c £ 2

c £ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow 
water DFS/BFS/UCS (L2D7)]
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Video of Demo Empty UCS (same cost)
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DFS, BFS, or UCS? 
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Video of Demo Maze with Deep/Shallow 
Water
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The One Queue
• All these search algorithms are the 

same except for fringe strategies
• Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities)
• Practically, for DFS and BFS, you can 

avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues
• Can even code one implementation that 

takes a variable queuing object
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Search and Models
• Search operates over models 

of the world
• The agent doesn’t actually try 

all the plans out in the real 
world!
• Planning is all “in simulation”
• Your search is only as good as 

your models…
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Search Gone Wrong?

50



Informed Search
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Informed Search
• Uninformed Search
• DFS
• BFS
• UCS

52

• Informed Search
• Heuristics
• Greedy Search
• A* Search
• Graph Search



Search Heuristics

• A heuristic is:
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• Pathing? 
• Examples: Manhattan distance, Euclidean distance for pathing

53
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Example: Heuristic Function (Euclidean 
distance to Bucharest)

54
h(state) à value



Effect of heuristics

• Guide search towards the goal instead of all over the place

55
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Example: Heuristic Function 2

• Heuristic? 
• E.g. the index of the 

largest pancake that is 
still out of place
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Greedy Search
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Greedy Search

• Expand the node that seems closest to the goal, or least ℎ(𝑛) value

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!
• Why?
• Heuristics might be wrong
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Greedy Search 2
• Strategy: expand a node that you think 

is closest to a goal state
• Heuristic: estimate of distance to nearest goal 

for each state

• A common case:
• Best-first takes you straight to the (wrong) goal
• (It chooses a node even if it’s at the end of a very 

long and winding road)

• Worst-case: like a badly-guided DFS
• (It takes ℎ literally even if it’s completely wrong)

59

…
b

…
b

[Demo: contours greedy empty (L3D1)] 
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Empty)
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Video of Demo Contours Greedy (Pacman 
Small Maze)
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A* Search
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A* Search

63

UCS Greedy

A*



Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost 𝑔(𝑛)
• Greedy orders by goal proximity, or forward cost ℎ(𝑛)

• A* Search orders by the sum: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
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When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal
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A* Search
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function A-STAR-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with f(n)=g(n)+h(n) 
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Is A* Optimal?

• What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than actual costs!
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The Price is Wrong…
• Closest bid without going over…

69https://www.youtube.com/watch?v=9B0ZKRurC5Y



Admissible Heuristics: Ideas

70

Inadmissible (pessimistic) heuristics
break optimality by trapping 

good plans on the fringe

Admissible (optimistic) heuristics 
slow down bad plans but
never outweigh true costs



Admissible Heuristics

• A heuristic ℎ is admissible (optimistic) if
0 ≤ ℎ 𝑛 ≤ ℎ∗ 𝑛

where ℎ∗(𝑛) is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s involved in 
using A* in practice

71
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Optimality of A* Tree Search

• Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

• Claim:
• A will exit the fringe before B

72
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Optimality of A* Tree Search: Blocking

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

73

Definition of f-cost
Admissibility of h

…

h = 0 at a goal



Optimality of A* Tree Search: Blocking 2

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

74

B is suboptimal
h = 0 at a goal

…



Optimality of A* Tree Search: Blocking 3

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B
• A expands before B
• A* search is optimal
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UCS vs A*

• Uniform-cost expands equally in all 
“directions”

• A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

76

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

…
b

…
b



Video of Demo Contours (Empty) -- UCS
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Video of Demo Contours (Empty) -- Greedy
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Video of Demo Contours (Empty) – A*

79



Video of Demo Contours (Pacman Small Maze) 
– A*
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Comparison

81

Greedy Uniform Cost A*



A* Applications

• Video games
• Pathing / routing problems
• Resource planning problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition
• …

82
[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Image: maps.google.com



Video of Demo Pacman (Tiny Maze) – UCS / 
A*
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Video of Demo Empty Water Shallow/Deep
– Guess Algorithm
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Creating Heuristics

• Most of the work in solving hard search problems 
optimally is in coming up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available

• Inadmissible heuristics are often useful too
85
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Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• How many successors from the start state?
• What should the costs be? 86

Start State Goal State
Actions

Admissible
heuristics?



Example: 8 Puzzle - 2

• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) =
• This is a relaxed-problem heuristic

87

8

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



Example: 8 Puzzle - 3

• What if we had an easier 8-puzzle 
where any tile could slide any 
direction at any time, ignoring 
other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) =
88

3 + 1 + 2 + … = 18

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



Example: 8 Puzzle - 4

• How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but 

usually do more work per node to compute the heuristic itself

89



Combining Heuristics, Dominance

• Dominance: ℎ" ≥ ℎ# if

• Roughly speaking, larger is better as long as 
both are admissible

• Heuristics form a semi-lattice:
• Max of admissible heuristics is admissible

• Trivial heuristics
• Bottom of lattice is the zero heuristic 

(what does this give us?)
• Top of lattice is the exact heuristic, but 

usually too expensive
90



Graph Search
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Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work

92

State Graph Search Tree



Graph Search

• In BFS, for example, we shouldn’t bother expanding the circled nodes 
(why?)
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Graph Search 2

• Idea: never expand a state twice
• How to implement: 
• Tree search + set of expanded states (“closed set”, “explored set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been 

expanded before
• If not new, skip it, if new add to closed/explored set

• Important: store the closed/explored set as a set, not a list
• Can graph search wreck completeness?  Why/why not?
• How about optimality?
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function GRAPH_SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier



Graph Search 3

• This graph search algorithm overlays a tree on a graph
• The frontier states separate the explored states from never seen 

states

Images: AIMA, Figure 3.8, 3.9



Quiz

• What is the relationship between these sets of states after each loop 
iteration in GRAPH_SEARCH?
• (Loop invariants!!!)

97
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function UNIFORM-COST-GRAPH-SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost = 0
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

else if the child is already in the frontier with higher path_cost then
replace that frontier node with child



function A-STAR-GRAPH-SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
add initial state of problem to frontier with priority f(S) = 0 + h(S)
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

else if the child is already in the frontier with higher f(n) then
replace that frontier node with child



A* Tree Search
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Quiz: A* Graph Search

• What paths does A* graph search consider during its search?
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Quiz: A* Graph Search 2

• What does the resulting graph tree look like?
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A* Graph Search Gone Wrong?
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Explored Set: S B C A
-Simple check against explored set blocks C
-Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants



Consistency of Heuristics

• Main idea: estimated heuristic costs ≤ actual 
costs
• Admissibility: heuristic cost ≤ actual cost to goal

• h(A) ≤ actual cost from A to G
• Consistency: heuristic “arc” cost ≤ actual cost for 

each arc
• h(A) – h(C) ≤ cost(A to C)
• triangle inequality: h(A) ≤ c(A-C) + h(C)

• Consequences of consistency:
• The f value along a path never decreases

• h(A) ≤ cost(A to C) + h(C)
• A* graph search is optimal
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Optimality of A* Graph Search

• Sketch: consider what A* does with a 
consistent heuristic:
• Fact 1: In tree search, A* expands nodes in 

increasing total f value (f-contours)

• Fact 2: For every state s, nodes that reach s 
optimally are expanded before nodes that 
reach s suboptimally

• Result: A* graph search is optimal
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Optimality of A* Graph Search: Proof

• For any 𝑛 on path to 𝐺∗, let 𝑛’ be a worse 
node for the same state
• Let 𝑝 be the ancestor of 𝑛 that was on the 

queue when 𝑛’ was added in the queue
• Claim: 𝑝 will be expanded before 𝑛’
• 𝑓(𝑝) ≤ 𝑓(𝑛) because of consistency
• 𝑓(𝑛) < 𝑓(𝑛’) because 𝑛’ is suboptimal
• 𝑝 would have been expanded before 𝑛’

• Thus 𝑛 will be expanded before 𝑛’
• All ancestors of 𝐺∗ are not blocked
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Optimality of A* Search

• Tree search:
• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

• Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h = 0 is consistent)

• Consistency implies admissibility

• In general, most natural admissible heuristics 
tend to be consistent, especially if from relaxed 
problems
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Summary of A*

• A* uses both backward costs and (estimates of) forward costs
• A* is optimal with admissible / consistent heuristics
• Heuristic design is key: often use relaxed problems
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Summary

• Rational agents
• Search problems
• Uninformed Search Methods

• Depth-First Search

• Breadth-First Search
• Uniform-Cost Search

• Informed Search Methods
• Heuristics
• Greedy Search
• A* Search
• Graph Search

Questions?

https://shuaili8.github.io
Shuai Li
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https://shuaili8.github.io/

