
Lecture 2: Search
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS3317/index.html

Today
• Agents that Plan Ahead
• Search Problems
• Uninformed Search Methods
• Depth-First Search
• Breadth-First Search
• Uniform-Cost Search

• Informed Search
• Heuristics
• Greedy Search
• A* Search
• Graph Search

2

Agents that Plan

3

Rationality

•What is rational depends on:
• Performance measure
• Agent’s prior knowledge of environment
• Actions available to agent
• Percept/sensor sequence to date

• Being rational means maximizing your expected utility

4

Rational Agents

• Are rational agents omniscient? 无所不知的
• No – they are limited by the available percepts

• Are rational agents clairvoyant? 透视的
• No – they may lack knowledge of the environment dynamics

• Do rational agents explore and learn?
• Yes – in unknown environments these are essential

• So rational agents are not necessarily successful, but they are
autonomous (i.e., control their own behavior)

5

Planning Agents

• Planning agents:
• Ask “what if”
• Decisions based on (hypothesized or predicted)

consequences of actions
• Must have a transition model of how the world evolves

in response to actions
• Must formulate a goal (test)
• Consider how the world WOULD BE

• Spectrum of deliberativeness:
• Generate complete, optimal plan offline, then execute
• Generate a simple, greedy plan, start executing, replan

when something goes wrong

• Optimal vs. complete planning
• Planning vs. replanning

6
[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Replanning

7

Video of Demo Mastermind

8

Search
Problems

9

Search Problems
• A search problem consists of:
• A state space

• For each state, a set
Actions(s) of successors/actions

• A successor function
• A transition model T(s,a)
• A step cost(reward) function c(s,a,s’)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

{N, E}

10

Search Problems Are Models

11

Example: Traveling in Romania
• State space:

• Cities

• Successor function:
• Roads: Go to adjacent city with

cost = distance

• Start state:
• Arad

• Goal test:
• Is state == Bucharest?

• Solution?

12

What’s in a State Space?

• Problem: Pathing
• States: (x,y) location
• Actions: NSEW
• Successor: update location

only
• Goal test: is (x,y)=END

• Problem: Eat-All-Dots
• States: {(x,y), dot booleans}
• Actions: NSEW
• Successor: update location

and possibly a dot boolean
• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

13

State Space Sizes?
• World state:

• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?

120x(230)x(122)x4
• States for pathing?

120
• States for eat-all-dots?

120x(230)

14

Safe Passage

• Problem: eat all dots while keeping the ghosts perma-scared
• What does the state space have to specify?
• (agent position, dot booleans, power pellet booleans, remaining scared time)

15

State Space Graphs
and Search Trees

16

State Space Graphs
• State space graph: A mathematical

representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

17

More Examples

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

18

More Examples
R

L
S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

19

Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

20

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible

Each NODE in in
the search tree is
an entire PATH in
the state space

graph

Search TreeState Space Graph

21

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
S

a b

G G ab

G a Gb

22

Tree Search

23

Search Example: Romania

24

Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible

25

General Tree Search

26

function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question
• which fringe nodes to explore?

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s à d
s à e
s à p
s à d à b
s à d à c
s à d à e
s à d à e à h
s à d à e à r
s à d à e à r à f
s à d à e à r à f à c
s à d à e à r à f à G 27

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

28

Breadth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

29

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + … + bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

30

Depth-First Search (DFS) Properties
• What nodes DFS expand?

• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

31

Breadth-First Search (BFS) Properties
• What nodes does BFS expand?

• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

32

DFS vs BFS

33

• When will BFS outperform DFS?
• When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS

34

Iterative Deepening
• Idea: get DFS’s space advantage with BFS’s

time / shallow-solution advantages
• Run a DFS with depth limit 1. If no solution…
• Run a DFS with depth limit 2. If no solution…
• Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level

searched, so not so bad!

…
b

35

A Note on Implementation

• Nodes have
• state, parent, action, path-cost

• A child of node by action a has
• state = Transition(node.state, a)
• parent = node
• action = a
• path-cost = node.path_cost + step_cost(node.state, a, self.state)

• Extract solution by tracing back parent pointers, collecting actions

36

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Uniform Cost Search

37

Finding a Least-Cost Path

• BFS finds the shortest path in terms of number of actions, but not the
least-cost path
• A similar algorithm would find the least-cost path

38

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2 How?

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

39

Uniform Cost Search 2

40

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost = 0
loop do

if the frontier is empty then
return failure

choose a node (with minimal path_cost) and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with path_cost = path_cost(node) + cost(node, child)

S

A

B

C

D

G

1

4

2
4

1

3

Walk-through UCS

S

A

B

C

D

G

1

4

2
4

1

3

41

Walk-through UCS

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2
4

4

15

1

3 2
2

42

…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
• Takes time O(bC*/e) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/e)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

• Is it optimal?
• Yes! (Proof next via A*)

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1

43

Uniform Cost Issues
• Remember: UCS explores increasing cost

contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

• We’ll fix that soon! Start Goal

…

c £ 3
c £ 2

c £ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

44

Video of Demo Empty UCS (same cost)

45

DFS, BFS, or UCS?

46

Video of Demo Maze with Deep/Shallow
Water

47

The One Queue
• All these search algorithms are the

same except for fringe strategies
• Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)
• Practically, for DFS and BFS, you can

avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues
• Can even code one implementation that

takes a variable queuing object

48

Search and Models
• Search operates over models

of the world
• The agent doesn’t actually try

all the plans out in the real
world!
• Planning is all “in simulation”
• Your search is only as good as

your models…

49

Search Gone Wrong?

50

Informed Search

51

Informed Search
• Uninformed Search
• DFS
• BFS
• UCS

52

• Informed Search
• Heuristics
• Greedy Search
• A* Search
• Graph Search

Search Heuristics

• A heuristic is:
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• Pathing?
• Examples: Manhattan distance, Euclidean distance for pathing

53

10

5
11.2

Example: Heuristic Function (Euclidean
distance to Bucharest)

54
h(state) à value

Effect of heuristics

• Guide search towards the goal instead of all over the place

55

Start GoalStart Goal

UninformedInformed

Example: Heuristic Function 2

• Heuristic?
• E.g. the index of the

largest pancake that is
still out of place

56

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Greedy Search

57

Greedy Search

• Expand the node that seems closest to the goal, or least ℎ(𝑛) value

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!
• Why?
• Heuristics might be wrong

58

Greedy Search 2
• Strategy: expand a node that you think

is closest to a goal state
• Heuristic: estimate of distance to nearest goal

for each state

• A common case:
• Best-first takes you straight to the (wrong) goal
• (It chooses a node even if it’s at the end of a very

long and winding road)

• Worst-case: like a badly-guided DFS
• (It takes ℎ literally even if it’s completely wrong)

59

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

60

Video of Demo Contours Greedy (Pacman
Small Maze)

61

A* Search

62

A* Search

63

UCS Greedy

A*

Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost 𝑔(𝑛)
• Greedy orders by goal proximity, or forward cost ℎ(𝑛)

• A* Search orders by the sum: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

64

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

65

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

A* Search

66

function A-STAR-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with f(n)=g(n)+h(n)

67

Is A* Optimal?

• What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than actual costs!

68

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S 0 7 7
S->A 1 6 7

S->G 5 0 5

The Price is Wrong…
• Closest bid without going over…

69https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics: Ideas

70

Inadmissible (pessimistic) heuristics
break optimality by trapping

good plans on the fringe

Admissible (optimistic) heuristics
slow down bad plans but
never outweigh true costs

Admissible Heuristics

• A heuristic ℎ is admissible (optimistic) if
0 ≤ ℎ 𝑛 ≤ ℎ∗ 𝑛

where ℎ∗(𝑛) is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s involved in
using A* in practice

71

15 11.5
0.0

Optimality of A* Tree Search

• Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

• Claim:
• A will exit the fringe before B

72

…

Optimality of A* Tree Search: Blocking

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

73

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking 2

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

74

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search: Blocking 3

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B
• A expands before B
• A* search is optimal

75

…

UCS vs A*

• Uniform-cost expands equally in all
“directions”

• A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

76

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

…
b

…
b

Video of Demo Contours (Empty) -- UCS

77

Video of Demo Contours (Empty) -- Greedy

78

Video of Demo Contours (Empty) – A*

79

Video of Demo Contours (Pacman Small Maze)
– A*

80

Comparison

81

Greedy Uniform Cost A*

A* Applications

• Video games
• Pathing / routing problems
• Resource planning problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition
• …

82
[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Image: maps.google.com

Video of Demo Pacman (Tiny Maze) – UCS /
A*

83

Video of Demo Empty Water Shallow/Deep
– Guess Algorithm

84

Creating Heuristics

• Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

• Inadmissible heuristics are often useful too
85

15
366

Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• How many successors from the start state?
• What should the costs be? 86

Start State Goal State
Actions

Admissible
heuristics?

Example: 8 Puzzle - 2

• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) =
• This is a relaxed-problem heuristic

87

8

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

Example: 8 Puzzle - 3

• What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) =
88

3 + 1 + 2 + … = 18

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State

Example: 8 Puzzle - 4

• How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but

usually do more work per node to compute the heuristic itself

89

Combining Heuristics, Dominance

• Dominance: ℎ" ≥ ℎ# if

• Roughly speaking, larger is better as long as
both are admissible

• Heuristics form a semi-lattice:
• Max of admissible heuristics is admissible

• Trivial heuristics
• Bottom of lattice is the zero heuristic

(what does this give us?)
• Top of lattice is the exact heuristic, but

usually too expensive
90

Graph Search

91

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work

92

State Graph Search Tree

Graph Search

• In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

93

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search 2

• Idea: never expand a state twice
• How to implement:
• Tree search + set of expanded states (“closed set”, “explored set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been

expanded before
• If not new, skip it, if new add to closed/explored set

• Important: store the closed/explored set as a set, not a list
• Can graph search wreck completeness? Why/why not?
• How about optimality?

94

function GRAPH_SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

Graph Search 3

• This graph search algorithm overlays a tree on a graph
• The frontier states separate the explored states from never seen

states

Images: AIMA, Figure 3.8, 3.9

Quiz

• What is the relationship between these sets of states after each loop
iteration in GRAPH_SEARCH?
• (Loop invariants!!!)

97

A
Explored Never Seen

Frontier

B
Explored Never Seen

Frontier

C
Explored Never Seen

Frontier

function UNIFORM-COST-GRAPH-SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost = 0
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

else if the child is already in the frontier with higher path_cost then
replace that frontier node with child

function A-STAR-GRAPH-SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
add initial state of problem to frontier with priority f(S) = 0 + h(S)
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

else if the child is already in the frontier with higher f(n) then
replace that frontier node with child

A* Tree Search

100

S

A

C

G

1

3

1

3
h=2

h=4

h=1

h=0

S (0+2)

A (1+4)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Quiz: A* Graph Search

• What paths does A* graph search consider during its search?

101

S

A

C

G

1

3

1

3
h=2

h=4

h=1

h=0

A) S, S-A, S-C, S-C-G

C) S, S-A, S-A-C, S-A-C-G

D) S, S-A, S-C, S-A-C, S-A-C-G

B) S, S-A, S-C, S-A-C, S-C-G

Quiz: A* Graph Search 2

• What does the resulting graph tree look like?

102

S
A

C

G

S
A

C

G

A)

B)

C & D)

S
A

C

G

S

A

C

G

1

3

1

3
h=2

h=4

h=1

h=0

A* Graph Search Gone Wrong?

103

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Explored Set: S B C A
-Simple check against explored set blocks C
-Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

Consistency of Heuristics

• Main idea: estimated heuristic costs ≤ actual
costs
• Admissibility: heuristic cost ≤ actual cost to goal

• h(A) ≤ actual cost from A to G
• Consistency: heuristic “arc” cost ≤ actual cost for

each arc
• h(A) – h(C) ≤ cost(A to C)
• triangle inequality: h(A) ≤ c(A-C) + h(C)

• Consequences of consistency:
• The f value along a path never decreases

• h(A) ≤ cost(A to C) + h(C)
• A* graph search is optimal

104

3

A

C

G

h=4 h=1
1

h=2

Optimality of A* Graph Search

• Sketch: consider what A* does with a
consistent heuristic:
• Fact 1: In tree search, A* expands nodes in

increasing total f value (f-contours)

• Fact 2: For every state s, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

• Result: A* graph search is optimal

105

…

f £ 3

f £ 2

f £ 1

Optimality of A* Graph Search: Proof

• For any 𝑛 on path to 𝐺∗, let 𝑛’ be a worse
node for the same state
• Let 𝑝 be the ancestor of 𝑛 that was on the

queue when 𝑛’ was added in the queue
• Claim: 𝑝 will be expanded before 𝑛’
• 𝑓(𝑝) ≤ 𝑓(𝑛) because of consistency
• 𝑓(𝑛) < 𝑓(𝑛’) because 𝑛’ is suboptimal
• 𝑝 would have been expanded before 𝑛’

• Thus 𝑛 will be expanded before 𝑛’
• All ancestors of 𝐺∗ are not blocked

106

Optimality of A* Search

• Tree search:
• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

• Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h = 0 is consistent)

• Consistency implies admissibility

• In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems

107

Summary of A*

• A* uses both backward costs and (estimates of) forward costs
• A* is optimal with admissible / consistent heuristics
• Heuristic design is key: often use relaxed problems

108

Summary

• Rational agents
• Search problems
• Uninformed Search Methods

• Depth-First Search

• Breadth-First Search
• Uniform-Cost Search

• Informed Search Methods
• Heuristics
• Greedy Search
• A* Search
• Graph Search

Questions?

https://shuaili8.github.io
Shuai Li

109

https://shuaili8.github.io/

