Lecture 7: Reinforcement
Learning

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

Part of slide credits: CMU Al & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Example: Double Bandits

4 N

Example: Double Bandits - MDP o discount

100 time steps

Both states have
* Actions: Blue, Red 0.25 $0 Kthe same value

e States: Win, Lose

Example: Double Bandits - Offline Planning

No discount

* Solving MDPs is offline planning
* You determine all quantities through computation Both states have
* You need to know the details of the MDP the same value
o /
* You do not actually play the game!

4 N

Value

100 time steps

Play Red 150

Play Blue 100

\ / 4

Example: Double Bandits - Let’s Play!

S2 S2 SO0 S2 S2
$2 $2 SO SO SO

Example: Double Bandits - Online Planning

* Rules changed! Red’s win chance is different.

?? SO

Example: Double Bandits - Let’s Play!

SO SO SO $2 SO
$2 SO0 SO SO SO

What Just Happened?

* That wasn’t planning, it was learning!
» Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

. : you have to try unknown actions to get information
. . eventually, you have to use what you know

. . even if you learn intelligently, you make mistakes

. : because of chance, you have to try things repeatedly

. . learning can be much harder than solving a known MDP

Reinforcement Learning

* What if we didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration:
Q-iteration:
Policy extraction:

Policy evaluation:

Policy improvement:

Vies1(s) = maxz R D [Beres) + 1V (sD], Vs
Qis1(s,@) = Za@s—m RS +y max Qu(s',a)], ¥sa
Ty (s) = arg;naxi ReHsD[B@rrS) +1V(s)], Vs

Vi (s) =) ReHermtSTI (RS + Y VE(s)], Vs
Tnew (s) = as;ggaaxZW[m Fyvmoa(sh], Vs

Reinforcement Learning 2

Agent

State: s
Reward: r

Environment

* Basic idea:
* Receive feedback in the form of rewards
* Agent’s utility is defined by the reward function
* Must (learn to) act so as to maximize expected rewards
e All learning is based on samples of outcomes!

Actions: a

%———'—_—_;_%

10

—

Reinforcement Learning 3

e Still assume a Markov decision process (MDP):
 Asetof statess €S
* A set of actions (per state) A
A model T(s,a,s’)
* Areward function R(s,a,s’)

e Still looking for a policy n(s)

* New twist: don’t know T or R
* |.e. we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

Overheated

11

Offline (MDPs) vs. Online (RL)

g

s

Offline Solution Online Learning

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004] 13

Example: Learning to Walk 2

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk 3

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk 4

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: The Crawler!

[Demo: Crawler Bot7(L10D1)]

Video of Demo Crawler Bot

DeepMind Atari (©Two Minute Lectures)

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

Model-Based Learning

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

22

Model-Based Reinforcement Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
e Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
* Normalize to give an estimate of 7'(s, a, s’)
* Discover each R(s,a,s’) when we experience (s, a, s’)

e Step 2: Solve the learned MDP

* For example, use value iteration, as before

(and repeat as needed) 23

Example: Model-Based RL

Input Policy w

Assume:y=1

Observed Episodes (Training)

Episode 1

N\

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

N\

/E, north, C, -1

C,east, D, -1
D, exit,

X, +10

~

J

Episode 2

N\

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

N\

g E, north, C, -1

C, east, A, -1
A, exit, x, -10

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00

T(C, east, D) =0.75
T(C, east, A) = 0.25

.

~

)

R(s,a,s")

(" R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

.

~

)

24

Analogy: Expected Age

Goal: Compute expected age of students

Known P(A)
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a;, a5, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this \7 Pla) = num(a) Z Why does this
work? Because N ElA] ~ 1 Za' work? Because
eventually you X N &=~ samples appear
learn the right ElA] = Z P(a)-a Z with the right

model. a j \ frequencies.

Model-Free Learning =\

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
e Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

27

Passive Model-Free Reinforcement Learning

» Simplified task: policy evaluation
* Input: a fixed policy 7(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
e Goal: learn the state values

* In this case:
* Learner is “along for the ride”

and learn from experience
* This is NOT offline planning! You actually take actions in the world

28

Direct Evaluation

e Goal: Compute values for each state under

* |dea: Average together observed sample values
e Act accordingtom

* Every time you visit a state, write down what the sum of discounted rewards
turned out to be

* Average those samples

* This is called direct evaluation

29

Example: Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2
g B, east, C, -1 N[B, east, C, -1)
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
N L J
Episode 3 Episode 4
/E, north, C, -1 N E, north, C, -1)
C,east, D, -1 C, east, A, -1
Assume:y = 1 D, exit, x, +10 A, exit, x,-10 If B and E both go to C
_ VRN) under this policy, how can

their values be different?

Problems with Direct Evaluation

Output Values

* What’s good about direct evaluation?
* |t's easy to understand

* |t doesn’t require any knowledge of T, R

* |t eventually computes the correct average values,
using just sample transitions

 What bad about it?

e |t wastes information about state connections
* Each state must be learned separately

If Band E both go to C
under this policy, how can
* So, it takes a long time to learn their values be different?

31

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
e Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

32

Why Not Use Policy Evaluation?

e Simplified Bellman updates calculate V for a fixed policy:
* Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0
Vk—|—1(5) — ZT(S 7w(s),s)[R(s,7(s),s) + nykW(s)]

s’

5P TE(S) S’

* This approach fully exploited the connections between the states
* Unfortunately, we need T and R to do it!

* Key question: how can we do this update to V without knowing T and R?
* In other words, how do we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation? I/f\ﬁ

* We want to improve our estimate of V by computing these averages:™ >
Viep1(s) < Zj T(s,7m(s),s)[R(s,7(s),s") + Vi (s)]
* |dea: Take sarriples of outcomes s’
(by doing the action!) and average
sample; = R(s,m(s),s7) + vV (s1)
samples = R(s,m(s),s5) + YV (s5)

samplen, = R(s,m(s),s,) + ’YVkW(Sr/n,)

Almost! But we can’t

1 rewind time to /
T ’ get sample
Vk-l—l (s) n Z sample; after sample from state s
)

Temporal Difference Value Learning

S
* Big idea: learn from every experience!
* Update V(s) each time we experience a transition (s, a, s’, r) n(s)
* Likely outcomes s’ will contribute updates more often s, Tt(s)
* Temporal difference learning of values N

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s’) +~V7™(s")
Update to V(s): VT (s) + (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) «+ V™(s) 4+ a(sample — V7 (s))

35

. | FO) =5)2
Gradient Descent View

df
PR
* Goal: find x that minimizes f (x)

1. Start with initial guess, x,

2. Update x by taking a step in the direction that f(x) is changing fastest
(in the negative direction) with respect to x:

x < x —aV,f, where a is the step size or learning rate
3. Repeat until convergence

e TD goal: find value(s), V, that minimizes difference between sample(s) and
Vv

1

36

Gradient Descent View 2

S
* Big idea: learn from every experience! (s)
* Update V(s) each time we experience a transition (s, a, s’, r) s, r(s)
* Likely outcomes s’ will contribute updates more often ’
* Temporal difference learning of values /\ S

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = r + y V*(s")

Update to V(s): Vi(s) « (1 —a)V™(s) + (a) sample

Same update: VT(s) « VT(s) + a [sample — VT(s)] .

Same update: V7(s) « V™(s) — aVError Error = > (sample — V’T(s))2

Exponential Moving Average

* Exponential moving average
* The running interpolation update: I, = (1 — a)V,,_1 + ax,, with V/; = x

* Makes recent samples more important
Vo=ax,+a(l—a)x,;+ +a(l—a)" 2x, + (1 —a)" x,

* Forgets about the past (distant past values were wrong anyway)

* Decreasing Iearning rate (alpha) can give Converging averages
* Note VTL = ApXn + (1 — an)an_lxn_l + ...
+(1—ap)(1 —ap_q) - (1 — az)ayx;
+(1 - an)(l — an—l) e (T—az)(1 —ag)x

Example: Temporal Ditfference Value Learning

States

Observed Transitions

[B, east, C, -2 J [C, east, D, -2 J

EX1DEIEIE

VT(s) + (1 = a)V7(s) + a |R(s,m(s),s) + 4V (s

Problems with TD Value Learning

* TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

* However, if we want to turn values into a (new) policy, we’re sunk:

m(s) = argmax Q(s,a)

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + WV(S,)}

* |dea: learn Q-values, not values
* Makes action selection model-free too!

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Q/learning —learns Q values of (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

Q-Value lteration

 Value iteration: find successive (depth-limited) values
e Start with V,(s) = 0, which we know is right
* GivenV,, calculate the depth k+1 values for all states:

Viet1(s) <+ mC?XZT(S, a,s) {R(s,a, s + nyk(s’)}

S

* But Q-values are more useful, so compute them instead
* Start with Qg(s,a) = 0, which we know is right
* Given Q,, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a)

Model-Free Learning

* Model-free (temporal difference) learning
* Experience world through episodes

(s,a,r,s",a ,r', s" a" r" s"...)

* Update estimates each transition (8, a,rT, S/)

* Over time, updates will mimic Bellman updates

Q-Learning

* Q-Learning: sample-based Q-value iteration
Qt1(s,a) ¢ Y T(s,0,8) |R(s.a,5) +7 maxQy(s',a')

* Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,r) AAA
* Consider your old estimate: Q(s,a)

* Consider your new sample estimate: |\ ..o oicy M.M |

sample = R(s,a,s’) + ~ max Q(s',a’) evaluation! }XK

* Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworl& (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy --
|

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate
small enough
* ... but not decrease it too quickly
e Basically, in the limit, it doesn’t matter how you select actions (!)

45

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

49

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* In this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and find
out what happens...

50

Exploration vs. Exploitation

b7 7

AND
Srennc!

L £T0
G2

Video of Demo Q-learning — Manual
Exploration — Bridge Grid

How to Explore?

* Several schemes for forcing exploration

e Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly
* With (large) probability 1-¢, act on current policy

 Problems with random actions?

* You do eventually explore the space, but keep thrashing around
once learning is done

* One solution: lower € over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge gri% (L10D5)]
[Demo: Q-learning — epsilon-greedy -- crawler (L10D3)]

Video of Demo Q-learning — Epsilon-Greedy —
Crawler

A commonly used ‘exploration function’ is

Exploration Functions — /@m =u+c/ios(1/5) /n, which i

derived by Chernoff-Hoeffding inequality
and ¢ is confidence level

 When to explore?

 Random actions: explore a fixed amount

* Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

e Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,m) = u+ k/n

Regular Q-Update: Q(s,a) < R(s,a,s") + v max Q(s', a")
. Modified Q-Update: Q(s,a) <« R(s,a,s") -I—*ymax f(Q(s',d"), N(s',a"))

 Action selection: Use a « argmax, Q(s,a)
* Note: this propagates the “bonus” back to states that lead to unknown states as well!

55
[Demo: exploration — Q-learning — crawler — exploration function (L10D4)]

Video of Demo Q-learning — Exploration
Function — Crawler

Regret

* Even if ?/ou learn the optimal policy,
you still make mistakes along the
way!

* Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards

* Minimizing regret goes beyond
Iearnin% to be optimal — it requires
optimally learning to be optimal

* Example: random exploration and
exploration functions both end df
optimal, but random exploration
has higher regret

57

Regret 2

* Cumulative regret, i.e., for episodic MDP with fixed horizon

T
R(T) = E (V (se) = V7™E(se))
t=
where s; is the starting state of the t-th interaction game

* The algorithm is learning if the average regret converges, i.e.
R 0, or equivalently R(T) = o(T)

* Smaller order of R(T) means faster learning speed

* Worst-case regret bound R(T) = Q(/T), which holds for a fixed
game with arbitrary transitions and arbitrary (bounded) rewards

The Story So Far: MDPs and RL

Known MDP: Offline Solution

~

&

Goal
Compute V*, Q*, n*

Evaluate a fixed policy

Technique

Value / policy iteration

Policy evaluation

/

Unknown MDP:

Model-Based

-~

Goal

Compute V*, Q*, n*

Evaluate a fixed policy

\

~

Technique

VI/PIl on approx. MDP

PE on approx. MDP

Unknown MDP:

Model-Free

-~

Goal

Compute V*, Q*, n*

Evaluate a fixed policy

-

~

Technique

Q-learning

Value Learning

J

Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

* Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to collect
experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning
e Approximate Reinforcement Learning (= to handle large state spaces)
* Approximate Q-Learning
* Policy Search

60

Generalizing Across States

* Basic Q-Learning keeps a table of all g-values

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
* Too many states to hold the g-tables in memory

* Instead, we want to generalize:
e Learn about some small number of training states from
experience
* Generalize that experience to new, similar situations

* This is a fundamental idea in machine learning, and we’ll
see it over and over again

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D4)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D5)]

Video of Demo Q-Learning Pacman — Tiny —
Watch Al

Video of Demo Q-Learning Pacman — Tiny —
Silent Train

Video of Demo Q-Learning Pacman — Tricky —
Watch Al

Feature-Based Representations

* Solution: describe a state using a vector of features
(properties)
* Features are functions from states to real numbers (often 0/1)
that capture important properties of the state

* Example features:
* Distance to closest ghost
* Distance to closest dot
* Number of ghosts
* 1/ (dist to dot)?
* |s Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

* Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

* Using a feature representation, we can write a g function (or value function)
for any state using a few weights:

V(s) =w1f1(s) +wafo(s) + ...+ wnfn(s)
Q(Sa a) — w1f1(87 CL>—|—’UJ2f2(S, a'>+ . °+wnfn(87 CL)
* Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very different in
value!

Error(w) = %(sample —Q(s,a))?

dError

Approximate Q-Learning

dw;

— = —(sample — Q(s, a))fi(s, a)

[

] Q(s,a) = wy f1(s,a)+wofa(s,a)

wn fn(s,a) J

* Q-learning with linear Q-functions:
transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
Q(s,a) «— Q(s,a) + o [difference] Exact Q’s
w; «— w; + a [difference] f;(s, a) Approximate Qs

* |ntuitive interpretation:
* Adjust weights of active features

* E.g., if something unexpectedly bad happens, blame the features
that were on: disprefer all states with that state’s features

* Formal justification: online least squares

68

Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fgsr(s,a)

fDOT(S, NORTH) = 0.5

fasr(s,NORTH) = 1.0

~

a = NORTH
r = —500

/

Q(s,NORTH) = +1

r + v max Q(s',a’) = -500+0
a

Q(S,a) =0

[difference = —501 >

wpor +— 4.0 + a[-501]0.5
wosy — —1.0 + a[-501] 1.0

Q(Sa a’) — 3°OfDOT(87 CL) — 3°OfGST(87 CL)

[Demo: appsoximate Q-
learning pacman (L11D8)]

Video of Demo Approximate Q-Learning --
Pacman

DeepMind Atari (©Two Minute Lectures)
approximate Q-learning with neural nets

Q-Learning and Least Squares

72

Linear Approximation:

40

20

f1(x)

Prediction:

Yy = wo + wi f1(x)

Regression

Prediction:

y; = wo + wi f1(x) + wafo(x)

73

Optimization: Least Squares

2
total error =) (y; — J;)° = > (yi — th(w))

1

, Error or “residual”
Observation y

Prediction ?/J

0 f1(x) i

Minimizing Error

* Imagine we had only one point x, with features f(x), target value vy,
and weights w:

2
error(w) = (y - Zwkfm)
k
— (y — Zwkfk(ﬂi)> fm(x)

k

Owm
Wi < Wm + « (y — Zwkfk(x)) fm(x)
k

0 error(w)

* Approximate g update explained:

Wi — w4 |1+ yMaxQ(s',a") — Q(s, a) | fm(s,a)

“target” “prediction”

75

Overfitting: Why Limiting Capacity Can Help

25

20

Degree 15 polynomial

15

10

Recent Advancements: Deep Q-Networks

* DeepMind, 2015

* Used a deep learning network to represent Q:
* Inputis last 4 images (84x84 pixel values) plus score

* 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convglution Convglution Fully cgnnected Fully cgnnected

>

° | '
° | .
° .
. °
[a e '\ e)
|/ 41 a \
[/ - / . e .
[, g/ ° e °
° Ve o
— ' . °
1o N
— S . . .
) ° e o
AN ° /e .
A g\ .) ©
\ g I
\ 2 /e .
‘ - j
o ° .
° °
° °

AIMIR<EJe iV I -) T
i B EX B2 EX B2 EX EX 1~ & J >
CLEEEEERE B

Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

* Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to collect
experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning
* Approximate Reinforcement Learning (= to handle large state spaces)
* Approximate Q-Learning
* Policy Search

Policy Search

* Problem: often the feature-based policies that work well
(win games, maximize utilities) aren’t the ones that
approximate V / Q best

* E.g. some value functions have probably horrible estimates of future rewards, but they still
produced good decisions

* Q-learning’s priority: get Q-values close (modeling)

* Action selection priority: get ordering of Q-values right (prediction)

* WEe’ll see this distinction between modeling and prediction again later in the course

* Solution: learn policies that maximize rewards, not the values that predict them

* Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill

climbing on feature weights
79

Policy Search 2

* Simplest policy search:
e Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

* Problems:
 How do we tell the policy got better?
* Need to run many sample episodes!
 If there are a lot of features, this can be impractical

* Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

80

MDPs and RL

Known MDP: Offline Solution
a N

Goal Technique
Compute V*, Q*, n* Value / policy iteration
k Evaluate a fixed policy Policy evaluation J
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning

- AN J

Shuai Li

SU mma ry https://shuaili8.github.io

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

* Model-free Passive RL QUEStiOnS?

* Direct Evaluation & TD Learning
* Qlearning

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Active Q-learning
e Exploration vs Exploitation

* Approximate Reinforcement Learning (= to handle large state spaces)
* Approximate Q-Learning
* Policy Search

https://shuaili8.github.io/

