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Online Learning w/ Full Information

* Can observe feedback of every action
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Online Learning w/ Bandit Information

e Can only observe feedback for the selected action
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Bandits

Time T 2 3 4 5 6 7 8 9 10 11 12
Leftarm  $1 SO 81 $1 SO
Right arm $1 SO

* Five rounds to go. Which arm would you choose next?



What are bandits, and why
should you care



What’s in the name?

* First bandit algorithm proposed by Thompson (1933)

5

Start

* Bush and Mosteller (1953) were interested
in how mice behaved in a T-maze



Why care about bandits?

* Many applications

* They isolate an important component of reinforcement learning:
exploration-vs-exploitation

* Theoretically guaranteed algorithms
* Rich and beautiful mathematics



Applications: Recommendation systems

* Yahoo news [Li et al. (2010)]
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Applications: A part of RL

* A way of isolating an interesting part of reinforcement learning
e Recommending items

Reinforcement BRSNSV Online KV System
[HU et al' (2018)] Learning » 0; :0.231,0.6222,1.532, ...
* Achieved more than 30% growth Component 62 :0.351,1.762,2.141, ..
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Figure 6: RL ranking system of TaoBao search engine



Applications: A component of game-playing

* A component of game-playing algorithms
* Monte-Carlo tree search (MCTS) — AlphaGo [Silver et al. (2016)]
* UCT algorithm [Kocsis and Szepesvari (2006)]

UcT

* Repeat Selection—Expansion—Playout—Backpropagation until
* Reaching the predefined maximum time—length or the maximum number of playouts
* Use UCB1 value in Selection

* Finally select the action associated with the adjacent child node, of the root node,
having maximum number of visits

selection ——> expansion————— > playout ——> backpropagation




Applications: Select policies

 Select the best ranking policy [Yue et al.
* Online interleaving

Showing 1

bandit

N

w

IN

-50 of 1,299 results for all: bandit

Show abstracts @ Hide abstracts

50 v results per page. Sortresults by Announcement date (newest first) v

B

. arXiv:1908.06256 [pdf, other] stat.ML

A Batched Multi-Armed Bandit Approach to News Headline Testing
Authors: Yizhi Mao, Miao Chen, Abhinav Wagle, Junwei Pan, Michael Natkovich, Don Matheson
Submitted 17 August, 2019; originally announced August 2019.

Comments: |[EEE BigData, 2018

.arXiv:1908.06158 [pdf, other] cs:lG

Accelerated learning from recommender systems using multi-armed bandit

Authors: Meisam Hejazinia, Kyler Eastman, Shuqin Ye, Abbas Amirabadi, Ravi Divvela
Submitted 16 August, 2019; originally announced August 2019.

. arXiv:1908.05814 [pdf, other] stat.ML

Linear Stochastic Bandits Under Safety Constraints
Authors: Sanae Amani, Mahnoosh Alizadeh, Christos Thrampoulidis
Submitted 15 August, 2019; originally announced August 2019.

Comments: 23 pages, 7 figures

. arXiv:1908.05531 [pdf, other]

Exponential two-armed bandit problem
Authors: Alexander Kolnogorov, Denis Grunev

Cothmitbad 1C Aimict A010: Aviminalls amnntinen, S

2012

&T&

Bl @ A2 B2 | A3

Combined Ranker A&B

B3



Applications: SAT solvers
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Other applications

* Clinical trials [Villar et al. (2015)]

* Network routing [Le et al. (2014)]

* Experimental design [Rafferty et al. (2018)]

* Hyperparameter tuning [Li et al. (2017)]

* A/B testing [many]

e Ad placement [Yu et al. (2016)]

* Dynamic pricing (eg.,for Amazon products) [Babaioff et al. (2015)]
e Ranking (eg.,for search) [Radlinski et al. (2008)]

* Waiting problems (when to auto-logout your computer) [Lattimore et al.
(2014)]

* Resource allocation [Larrnaaga et al. (2016)]



Finite-armed stochastic bandits



Setting: Finite-armed stochastic bandits

items/products/movies/news/...

CTR/profit/...

* There are L arms
* Each arm a has an unknown reward distribution v, with unknown mean a(a)
* The bestarmis a™ = argmax, a(a)

n I 'nll' " I

AR wﬁ “"\‘-w-\“

At each time t
* The learning agent selects an arm a;
* Observes the reward X, 1~ v,

bandit feedback




Objective

Maximize the expected cumulative reward in T rounds

T
> a(aa]

t=1

E

Minimize the regret in T rounds
R(T)=T:-a(a*) — E

T
2 “(at)]

t=1

Balance the trade-off between exploration and exploitation
* Exploitation: Select arms that yield good results so far
* Exploration: Select arms that have not been tried much before

Smaller order of T in R(T) is better




A/B testing

* There are L = 2 arms (choices/plans/...)

* Suppose
v, = Gaussian(ay, 1)
v = Gaussian(ag, 1)
a, > ag,
A=a, — ag

* Explore-then-commit algorithm

* Select each of A and B for T;; rounds and
then select the one with larger sample mean
for the remaining T — 2T, rounds

exploration

exploitation

The better one
T — 2T, rounds



A/B testing (continued)

* Regret
R(T)
=Ty - (g —ap) + ngi’ < agl(T —2Tp)(ay — ag)
WA

<TOA+TA-eXp(

N > , The better one
( ) Ty = [—log TA ﬂ T — 2T, rounds

=0 \|=logT

A

need the knowledge of A

* R(T) = Q(TA) if Ty = =T
« R(T) = Q(TA) if T, = 1000



A/B testing (continued)

= Explore-Then-Commit
70
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Figure 6.2 Expected regret for Explore-Then-Commit over 10° trials on a Gaussian
bandit with means p; = 0, u2 = —1/10

 Lattimore and Szepesvari (2018)



Epsilon-greedy algorithm

* For each time t exploration

* € € (0’1) / exploitation

* With probability €;, randomly choose an arm
* With probability 1 — €;, choose the one with highest sample mean

* When €; = min {1,1:%2}, regret R(T) = O (ilog T)

S

need the knowledge of A




Epsilon-greedy algorithm 2

Eps-Greedy: Mean Rate of Choosing Best Arm from 5000 Simulations. 5 Arms = [4 x 0.1, 1 x 0.9]
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UCB — Upper confidence bound [Auer et
al.(2002)]

* With high prob

aze|a,(t) —

7L

Hoeffding’s inequality

sample mean

abilit
2logt
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* Principle: optimism in face of uncertainty

* UCB policy:
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UCB — Upper confidence bound 2

* Regret :
R(T)=0 (ZlogT)

* Proof sketch
* Under good event (w/ high probability)
* Ifarm a is pulled, then
a(a*) < UCB,+ < UCB, < a(a) + 2 radius,

ala®)—a(a)
2

2logt
Ta (1)
8logt
° = Ta(t) S AZ

a

= radius, =




UCB — Upper confidence bound 3

Result from 2000 simulations.
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Thompson sampling [Agrawal and Goyal
(2013)]

* Assume each arm has prior Gaussian(0,1)
* Then posterior distribution for a is

Gaussian (07 t), ) N
a(t) 1+ T,(t)
e Sample exploitation lower X . ol
1 lirmit init
., (t)~Gaussian (0? t),
a(D) “/61+Ta(t)) T
and select ~ UCB

a, = argmax,a,(t) exploration




Thompson sampling 2

* Also has optimal regret
bound

e Qutperform UCB
[Chapelle and Li (2011)]
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Thompson sampling 3

Average regret for the 10-armed Beta Bandit
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Finite-armed adversarial bandits



Setting: Adversarial MAB

* There are L arms
* An adversary secretly preselects all loss vectors {lt,a}t . from [0,1]

* The best armis a* = argmin )./, [; 4

A A g S g
ot ¢ - g oy 7
f | - f | - ‘ | -
7Y YK Ll Ll
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Setting: Adversarial MAB 2

* At eachtimet
* The learning agent selects one arm a;
* Observe the loss [; 4,
* Objective:
* Minimize the expected cumulative loss in T rounds E[Z{zl lt,at]
* Minimize the regret in T rounds

T T
R(T) = E lE lt,at] - mlnz lt,a
t=1 ! t=1

* Balance the trade-off between exploration and exploitation
* Exploitation: Select arms that yield good results so far
* Exploration: Select arms that have not been tried much before

30



Exp3: Exponential Weight Algorithm for
Exploration and Exploitation

* Importance-weight estimator
P [{a; = a} - li q,
ha P(a; = a)
* For each time t Learning rate
* Calculate the sampling distribution [
eXp(—nZt—1 a) % Exponential
P(a; =a) = — — weighting
b=1€XP(—7L¢-1p)
* Sample a;~ P(a; = a) and observe [; ,,

* Calculate L, = - lt,a

* Regret bound O (/LT log L)

31



Comparison between Stochastic and
Adversarial Environments

e Stochastic e Adversarial

* Reward fixed distribution on * Loss arbitrary on [0,1]
10,1] with fixed mean

* Bestarm a™ = argmax a(a)
* Regret bound O(logT)

* Runs in adversarial setting
¢ Regret may not even converge

* Bestarm a* = argmin Y,{_; l; 4
* Regret bound O (V/T)

* Runs in stochastic setting
* Regret bound O(WT)



cumulative mean

cumulative mean

Performance comparisons
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Linear bandits



Setting

a set of

items/videos/news/...

* Ateachtimet
* The learning agent receives D; C R4
* Selects anarm a; € D, ¢ R4
* Receives a random reward X+~ v, With mean
a(a,) =0"a,
for some fixed but unknown weight vector 6

* Allow for large-scale applications

bandit feedback w/
linear structure




LinUCB [Li et al. (2010)]

 The observed feedback is
(a1, Xa, 1), (02 Xa, 2)r o (@0 Xay0)s o}
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* With high probability
HH — ét”vt < (C,/logt



How to understand HH — étHVt < C\/logt

* |lxlly, = VxVix

T
-nfvt:[1

| then lixlly, = VTP + Tl
2

e Whena, = [(1)],612 = [(1)]

t
Ve=1+ Z asal =
s=1
logt

la(a)) — aay)| = |61 — 64] < CJ1 + T, () A

X o _dl<c logt
ar) - ales)l = 10, 62 5 € [

1+ Ty, (t)
[ 1+T,, (t)]

implies




How to understand HH — étHVt < C\/logt 2

* For general I/; %

e Confidence ellipse

* Confidence ellipsoid
* narrower direction means less uncertainty




How to use it

* With high probability

e Select

* Regret

la(a) —07al < C/logt lally-

Q.1 = argmax, HTa\+C1/10gt lally-

exploitation

X

exploration

R(T) = 0(dVTlogT)



LinTS [Agrawal and Govyal (2013b)]

* Suppose 8 has prior Gaussian(0, )

* Then the posterior distribution for 0 is
Gaussian(6, V; 1)
* Draw a random sample
0 ~Gaussian(0,V; )
and select
a,., = argmax,0'a



Comparisons
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Shuai Li

SU mma ry https://shuaili8.github.io

* What are bandits, and why should you care

e Many applications Questions?
* Finite-armed bandits

e Explore-then-commit
* epsilon-greedy

. . . ~ 2logt
UCB: a; = argmaxg dq + |7~ 5 .
* Thompson sampling: &, (t)~Gaussian (&a(t)’ 14T (t))

* EXP3

e Linear bandits
* LinUCB, LinTS


https://shuaili8.github.io/
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