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Background Part
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Probability
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Random Variables

• A random variable is some aspect of the world about which we (may) have uncertainty

• R = Is it raining?
• T = Is it hot or cold?
• D = How long will it take to drive to work?
• L = Where is the ghost?

• We denote random variables with capital letters

• Like variables in a CSP, random variables have domains

• R in {true, false}   (often write as {+r, -r})
• T in {hot, cold}
• D in [0, )
• L in possible locations, maybe {(0,0), (0,1), …}
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Probability Distributions

• Associate a probability with each value

• Temperature:
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▪ Weather: 

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Probability Distributions 2

• Unobserved random variables have distributions

• A distribution is a TABLE of probabilities of values

• A probability (lower case value) is a single number

• Must have:                                                 and
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Shorthand notation:

OK if all domain entries are unique

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

• A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

• Must obey:

• Size of distribution if n variables with domain sizes d?

• For all but the smallest distributions, impractical to write out!
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Models

• A probabilistic model is a joint distribution 
over a set of random variables

• Probabilistic models:
• (Random) variables with domains 
• Assignments are called outcomes
• Joint distributions: say whether assignments 

(outcomes) are likely
• Normalized: sum to 1.0
• Ideally: only certain variables directly 

interact

• Constraint satisfaction problems:
• Variables with domains
• Constraints: state whether assignments are 

possible
• Ideally: only certain variables directly 

interact
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W



Events

• An event is a set E of outcomes

• From a joint distribution, we can calculate the 
probability of any event

• Probability that it’s hot AND sunny?

• Probability that it’s hot?

• Probability that it’s hot OR sunny?

• Typically, the events we care about are partial 
assignments, like P(T=hot)
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

• P(+x, +y) ?

• P(+x) ?

• P(-y OR +x) ?
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Quiz: Events 2

• P(+x, +y) ?

• P(+x) ?

• P(-y OR +x) ?
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

.2

.2+.3=.5

.1+.3+.2=.6



Marginal Distributions

• Marginal distributions are sub-tables which eliminate 
variables 

• Marginalization (summing out): Combine collapsed rows 
by adding
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: Marginal Distributions
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y



Quiz: Marginal Distributions 2
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x .5

-x .5

Y P

+y .6

-y .4



Conditional Probabilities

• A simple relation between joint and conditional probabilities
• In fact, this is taken as the definition of a conditional probability
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

• P(+x | +y) ?

• P(-x | +y) ?

• P(-y | +x) ?
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Quiz: Conditional Probabilities 2

• P(+x | +y) ?

• P(-x | +y) ?

• P(-y | +x) ?
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

.2/.6=1/3

.4/.6=2/3

.3/.5=.6



Conditional Distributions

• Conditional distributions are probability distributions over some 
variables given fixed values of others
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution



Normalization Trick
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



Normalization Trick 2
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SELECT the joint 
probabilities 
matching the 

evidence

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Normalization Trick 3
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SELECT the joint 
probabilities 
matching the 

evidence

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)

• Why does this work? Sum of selection is P(evidence)!  (P(T=c), here)



Quiz: Normalization Trick

• P(X | Y=-y) ?
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)



Quiz: Normalization Trick 2

• P(X | Y=-y) ?
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X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)X Y P

+x -y 0.3

-x -y 0.1

X P

+x 0.75

-x 0.25



To Normalize

• (Dictionary) To bring or restore to a normal condition

• Procedure:
• Step 1: Compute Z = sum over all entries

• Step 2: Divide every entry by Z

• Example 1
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All entries sum to ONE

W P

sun 0.2

rain 0.3 Z = 0.5

W P

sun 0.4

rain 0.6

• Example 2

T W P

hot sun 20

hot rain 5

cold sun 10

cold rain 15

Normalize

Z = 50

Normalize

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Inference
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Inference by Enumeration

• P(W)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration 2

• P(W)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65



Inference by Enumeration 3

• P(W)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65
P(rain)=1-.65=.35



Inference by Enumeration 4

• P(W | winter, hot)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration 5

• P(W | winter, hot)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun|winter,hot) ∝ .1
P(rain|winter,hot) ∝ .05



Inference by Enumeration 6

• P(W | winter, hot)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun|winter,hot) ∝ .1
P(rain|winter,hot) ∝ .05
P(sun|winter,hot)=2/3
P(rain|winter,hot)=1/3



Inference by Enumeration 7

• P(W | winter)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration 8

• P(W | winter)?
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S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun|winter) ∝ .1+.15=.25
P(rain|winter) ∝ .05+.2=.25
P(sun|winter)=.5
P(rain|winter)=.5



Main Part

34



Inference in Ghostbusters

• A ghost is in the grid somewhere

• Sensor readings tell how close a square is 
to the ghost
• On the ghost: red

• 1 or 2 away: orange

• 3 or 4 away: yellow

• 5+ away: green

• Sensors are noisy, but we know P(Color | Distance)

35

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3



Video of Demo Ghostbuster – No probability
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Uncertainty

• General situation:

• Observed variables (evidence): Agent knows certain things 
about the state of the world (e.g., sensor readings or 
symptoms)

• Unobserved variables: Agent needs to reason about other 
aspects (e.g. where an object is or what disease is present)

• Model: Agent knows something about how the known 
variables relate to the unknown variables

• Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge

37



Probabilistic Inference

• Probabilistic inference: compute a desired probability from other known 
probabilities (e.g. conditional from joint)

• We generally compute conditional probabilities 
• P(on time | no reported accidents) = 0.90

• These represent the agent’s beliefs given the evidence

• Probabilities change with new evidence:
• P(on time | no accidents, 5 a.m.) = 0.95

• P(on time | no accidents, 5 a.m., raining) = 0.80

• Observing new evidence causes beliefs to be updated

38



Inference by Enumeration

• General case:
• Evidence variables: 
• Query* variable:
• Hidden variables:

39

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Answer Any Query from Joint Distributions

• Two tools to go from joint to query

1. Definition of conditional probability

𝑃 𝐴 𝐵 =
𝑃 𝐴, 𝐵

𝑃 𝐵
2. Law of total probability (marginalization, summing out)

𝑃 𝐴 =෍

𝑏

𝑃(𝐴, 𝑏)

𝑃 𝑌 ∣ 𝑈, 𝑉 =෍

𝑥

෍

𝑧

𝑃(𝑥, 𝑌, 𝑧 ∣ 𝑈, 𝑉)

40



Answer Any Query from Joint Distributions 2

• Two tools to go from joint to query

• Joint: 𝑃(𝐻1, 𝐻2, 𝑄, 𝐸)

• Query: 𝑃(𝑄 ∣ 𝑒)

1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒

𝑃 𝑒
2. Law of total probability (marginalization, summing out)

𝑃 𝑄, 𝑒 =෍

ℎ1

෍

ℎ2

𝑃(ℎ1, ℎ2, 𝑄, 𝑒)

𝑃 𝑒 =෍

𝑞

෍

ℎ1

෍

ℎ2

𝑃(ℎ1, ℎ2, 𝑞, 𝑒)

Only need to compute 𝑃 𝑄, 𝑒 then normalize
41



Answer Any Query from Joint Distributions 3

• Joint distributions are the best!

42

Joint

Query

𝑃 𝑞1, 𝑞2 𝑒1, 𝑒2, 𝑒3)



Answer Any Query from Joint Distributions 4

• Joint distributions are the best!

• Problems with joints
• We aren’t given the joint table

• Usually some set of conditional probability 
tables

• Problems with inference by enumeration
• Worst-case time complexity O(dn) 
• Space complexity O(dn) to store the joint distribution

43

Joint

Query

𝑃 𝑎 𝑒)



Build Joint Distribution Using 
Chain Rule

44



The Product Rule

• Sometimes have conditional distributions but want the joint

45



The Product Rule 2

• Example:

46

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

• More generally, can always write any joint distribution as an 
incremental product of conditional distributions

47



Build Joint Distribution Using Chain Rule

48

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Build Joint Distribution Using Chain Rule 2

• Two tools to construct joint distribution
1. Product rule

• 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵

• 𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

2. Chain rule

• 𝑃 𝑋1, 𝑋2, … , 𝑋𝑛 = ς𝑖 𝑃 𝑋𝑖 𝑋1, … , 𝑋𝑖−1

• 𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 for ordering A, B, C

• 𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝑃 𝐶 𝐴 𝑃 𝐵 𝐴, 𝐶 for ordering A, C, B

• 𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐶 𝑃 𝐵 𝐶 𝑃 𝐴 𝐶, 𝐵 for ordering C, B, A

• … 49



Example

• Binary random variables
• Fire
• Smoke
• Alarm

50



Quiz

• Variables
• B:   Burglary
• A:   Alarm goes off
• M:  Mary calls
• J:    John calls
• E:   Earthquake!

How many different ways can we write the chain rule?
A. 1
B. 5
C. 5 𝑐ℎ𝑜𝑜𝑠𝑒 5
D. 5!
E. 55

51



Answer Any Query from Conditional 
Probability Tables
• Process to go from (specific) conditional probability tables to query

1. Construct the joint distribution

1. Product Rule or Chain Rule

2. Answer query from joint

1. Definition of conditional probability

2. Law of total probability (marginalization, summing out)

52



Answer Any Query from Condition Probability 
Tables 2
• Bayes’ rule as an example
• Given: 𝑃 𝐸 𝑄 , 𝑃 𝑄 Query: 𝑃(𝑄 ∣ 𝑒)
1. Construct the joint distribution

1. Product Rule or Chain Rule
𝑃 𝐸, 𝑄 = 𝑃 𝐸 𝑄 𝑃(𝑄)

2. Answer query from joint
1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄

𝑃 𝑒
2. Law of total probability (marginalization, summing out)

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄

σ𝑞𝑃(𝑒, 𝑞)

Only need to compute 𝑃 𝑒, 𝑄 then normalize 53



Bayesian Networks

54



Bayesian Networks

• One node per random variable, directed acyclic graph (DAG)

• One conditional probability table (CPT) per node: 
P(node | Parents(node) )

55

Bayes net

𝐴

𝐵

𝐶

𝐷
𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))



Build Bayes Net Using Chain Rule

• Binary random variables

• Fire
• Smoke
• Alarm

56



Build Bayes Net Using Chain Rule 2

• Variables
• B:   Burglary

• A:   Alarm goes off

• M:  Mary calls

• J:    John calls

• E:   Earthquake!

Given the Bayes net, write the joint distribution?

57

𝐵

𝐴

𝐸

𝐽

𝑀



Answer Any Query from Bayes Net

58

Bayes Net and 
Conditional 

Probability Tables

Joint

Query

𝑃 𝑎 𝑒)

𝐴

𝐵

𝐶

𝐷



Answer Any Query from Conditional 
Probability Tables

59

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Answer Any Query from Conditional 
Probability Tables 2

60

Conditional Probability Tables 
and Chain Rule

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

• Problems

▪ Huge

• 𝑛 variables with 𝑑
values

• 𝑑𝑛 entries

▪ We aren’t given the 
right tables



Do We Need the Full Chain Rule?

• Binary random variables

• Fire
• Smoke
• Alarm

61



Answer Any Query from Conditional 
Probability Tables

62

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))



Probabilistic Models

• Models describe how (a portion of) the world 
works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between 

variables
• “All models are wrong; but some are useful.”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown 

variables, given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information 63



(General) Bayesian Networks

• One node per random variable, DAG

• One conditional probability table (CPT) per node: 
P(node | Parents(node) )

64

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

Bayes net

𝐴

𝐵

𝐶

𝐷
𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶



Conditional Independence

65



Independence

• Two variables are independent if:

• This says that their joint distribution factors into a product 
two simpler distributions

• Another form:

• We write: 

• Independence is a simplifying modeling assumption

• Empirical joint distributions: at best “close” to independent

• What could we assume for {Weather, Traffic, Cavity, 
Toothache}?

66



Example: Independence?

67

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

• N fair, independent coin flips:

68

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence

• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
• P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I don’t have a cavity:
• P(+catch | +toothache, -cavity) = P(+catch| -cavity)

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Equivalent statements:
• P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
• P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | 

Cavity)
• One can be derived from the other easily 69



Conditional Independence (cont.)

• P(Birds, Sunny, Sunglasses)

• If it is sunny, the probability that birds are out doesn't 
depend on whether you wear sunglasses:
• P(+birds | +sunglasses, +sunny) = P(+birds | +sunny)

• The same independence holds if it isn’t sunny:
• P(+birds | +sunglasses, -sunny) = P(+birds | -sunny)

• Birds is conditionally independent of Sunglasses given 
Sunny:
• P(Birds | Sunglasses, Sunny) = P(Birds | Sunny)

70



Conditional Independence (cont.)

• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of knowledge about 
uncertain environments.

• X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Conditional Independence (cont.)

• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of knowledge about 
uncertain environments.

• X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Conditional Independence (cont.)

• What about this domain:

• Traffic
• Umbrella
• Raining
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Conditional Independence (cont.) 

• What about this domain:

• Fire
• Smoke
• Alarm
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Conditional Independence and the Chain Rule

• Chain rule: 

• Trivial decomposition:

• With assumption of conditional independence:

• Bayes’nets / graphical models help us express conditional independence assumptions

75



Ghostbusters Chain Rule

• Each sensor depends only
on where the ghost is

• That means, the two sensors 
are conditionally independent, 
given the ghost position

• T: Top square is red
B: Bottom square is red
G: Ghost is in the top

• Givens:
P( +g ) = 0.5
P(  -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  |  -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

76

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16

+t +b -g 0.16

+t -b +g 0.24

+t -b -g 0.04

-t +b +g 0.04

-t +b -g 0.24

-t -b +g 0.06

-t -b -g 0.06



Bayes’ Nets
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Bayes’ Nets: Big Picture

• Two problems with using full joint distribution tables 
as our probabilistic models:
• Unless there are only a few variables, the joint is WAY too big 

to represent explicitly
• Hard to learn (estimate) anything empirically about more 

than a few variables at a time

• Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect 

interactions
• We first look at some examples
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Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

• Nodes: variables (with domains)
• Can be assigned (observed) or 

unassigned (unobserved)

• Arcs: interactions
• Similar to CSP constraints
• Indicate “direct influence” between 

variables
• Formally: encode conditional 

independence (more later)

• For now: imagine that arrows mean 
direct causation (in general, they 
don’t!)
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Sunny

BirdsSunglasses



Example: Coin Flips

• N independent coin flips

• No interactions between variables: absolute independence
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X1 X2 Xn



▪ Model 2: rain causes traffic

Example: Traffic

• Variables:
• R: It rains
• T: There is traffic

• Model 1: independence

• Why is an agent using model 2 better?
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R

T

R

T



Example: Alarm Network

• Let’s build a causal graphical model!

• Variables
• B: Burglary

• A: Alarm goes off

• M: Mary calls

• J: John calls

• E: Earthquake!
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Example: Alarm Network 2

• Variables
• B: Burglary

• A: Alarm goes off

• M: Mary calls

• J: John calls

• E: Earthquake!
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Burglary Earthqk

Alarm

John 
calls

Mary 
calls



Example: Humans

• G: human’s goal / human’s reward parameters

• S: state of the physical world

• A: human’s action
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G

S
A



Example: Traffic II

• Variables
• T: Traffic

• R: It rains

• L: Low pressure

• D: Roof drips

• B: Ballgame

• C: Cavity
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Bayes’ Net Semantics

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node

• A collection of distributions over X, one for each 
combination of parents’ values

• CPT: conditional probability table

• Description of a noisy “causal” process
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A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, multiply all the relevant conditionals 
together:

• Example:
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=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)



Probabilities in BNs 2

• Why are we guaranteed that setting

results in a proper joint distribution?  

• Chain rule (valid for all distributions): 

• Assume conditional independences: 

→ Consequence:

• Not every BN can represent every joint distribution

• The topology enforces certain conditional independencies
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Example: Coin Flips
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Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)



Example: Traffic
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R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = (1/4) *(1/4) 



Example: Traffic 2

• Causal direction
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R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

• Reverse causality?
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T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Alarm Network

• Joint distribution factorization example

• Generic chain rule
• 𝑃 𝑋1…𝑋2 = ς𝑖 𝑃 𝑋𝑖 𝑋1…𝑋𝑖−1)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝐵 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐵, 𝐸, 𝐴 𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐴 𝑃(𝑀|𝐴)

• Bayes nets
• 𝑃 𝑋1…𝑋2 = ς𝑖 𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
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Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Example: Alarm Network
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Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)P
(A|B,E)



Example: Alarm Network 2
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B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Example: Alarm Network 3
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B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Quiz

• Compute 𝑃 −𝑐,+𝑠, −𝑟, +𝑤

A. 0.0

B. 0.0004

C. 0.001

D. 0.036

E. 0.18

F. 0.198

G. 0.324
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Quiz 2

• Match the product of CPTs to the Bayes net.

• I.

• II.

• III.
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𝐴

𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴𝑃 𝐴 𝑃 𝐵|𝐴 𝑃 𝐶 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵



Conditional Independence Semantics

• For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)
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𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶



Conditional Independence Semantics 2

• For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)
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𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }



Causal Chains

• This configuration is a “causal chain”
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X: Low pressure          Y: Rain                          Z: Traffic

▪ Guaranteed X independent of Z ?  
▪ No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

▪ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains 2

• This configuration is a “causal chain”
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▪ Guaranteed X independent of Z given Y?

▪ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Causes

• This configuration is a “common cause”
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▪ Guaranteed X independent of Z ?  
▪ No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Project due causes both forums busy 
and lab full 

▪ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Cause 2

• This configuration is a “common cause”
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▪ Guaranteed X and Z independent given Y?

▪ Observing the cause blocks influence 
between effects

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Effect

• Last configuration: two causes of 
one effect (v-structures)
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Z: Traffic

▪ Are X and Y independent?

▪ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

▪ Proof:
X: Raining Y: Ballgame



Common Effect 2

• Last configuration: two causes of 
one effect (v-structures)
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Z: Traffic

▪ Are X and Y independent?

▪ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

▪ (Proved previously)

▪ Are X and Y independent given Z?

▪ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

▪ This is backwards from the other cases

▪ Observing an effect activates influence between 
possible causes

X: Raining Y: Ballgame



Causality?

• When Bayes’ nets reflect the true causal patterns:

• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

• BNs need not actually be causal

• Sometimes no causal net exists over the domain (especially if 
variables are missing)

• E.g. consider the variables Traffic and Drips
• End up with arrows that reflect correlation, not causation

• What do the arrows really mean?

• Topology may happen to encode causal structure
• Topology really encodes conditional independence
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Bayes Nets: Independence
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Bayes Nets

• A Bayes net is an efficient encoding

of a probabilistic model of a domain

• Questions we can ask:

• Inference: given a fixed BN, what is P(X | e)?

• Representation: given a BN graph, what kinds of distributions can it encode?

• Modeling: what BN is most appropriate for a given domain?
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Bayes Net Semantics

• A directed, acyclic graph, one node per random 
variable

• A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each 
combination of parents’ values

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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Size of a Bayes Net

• How big is a joint distribution over N 
Boolean variables?

2N

• How big is an N-node net if nodes have up 
to k parents?

O(N * 2k+1)
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▪ Both give you the power to calculate

▪ BNs: Huge space savings!

▪ Also easier to elicit local CPTs

▪ Also faster to answer queries



Bayes Nets: Assumptions

• Assumptions we are required to make to define the 
Bayes net when given the graph:

• Beyond those “chain rule → Bayes net” conditional 
independence assumptions 

• Often additional conditional independences

• They can be read off the graph

• Important for modeling: understand assumptions 
made when choosing a Bayes net graph
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Example

• Conditional independence assumptions directly from simplifications 
in chain rule:

• Additional implied conditional independence assumptions?
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X Y Z W

How?



Independence in a BN

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example
• Example:

• Question: are X and Z necessarily independent?
• Answer: no.  Example: low pressure causes rain, which causes traffic.
• X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?
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X Y Z



The General Case

• General question: in a given BN, are two variables independent (given 
evidence)?

• Solution: analyze the graph

• Any complex example can be broken

into repetitions of the three canonical cases
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Reachability

• Recipe: shade evidence nodes, look for 
paths in the resulting graph

• Attempt 1: if two nodes are connected 
by any undirected path not blocked by 
a shaded node, they are not 
conditionally independent

• Almost works, but not quite
• Where does it break?

• Answer: the v-structure at T doesn’t count 
as a link in a path unless “active”
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R

T

B

D

L



Active / Inactive Paths

• Question: Are X and Y conditionally independent 
given evidence variables {Z}?
• Yes, if X and Y “d-separated” by Z
• Consider all (undirected) paths from X to Y
• No active paths = independence!

• A path is active if each triple is active:
• Causal chain A ->  B -> C where B is unobserved (either 

direction)
• Common cause A <- B -> C where B is unobserved
• Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

• All it takes to block a path is a single inactive 
segment
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Active Triples Inactive Triples



Bayes Ball / D-separation

• Question: Are X and Y conditionally independent 
given evidence variables {Z}?

• Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining 
Irrelevance and Requisite Information in Belief Networks and 
Influence Diagrams)." Proceedings of the Fourteenth conference 
on Uncertainty in Artificial Intelligence. 1998. 120

Active Triples Inactive Triples

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Bayes Ball 2

• Question: Are X and Y conditionally independent 
given evidence variables {Z}?

1. Shade in Z

2. Drop a ball at X

3. The ball can pass through any active path and 
is blocked by any inactive path (ball can move 
either direction on an edge)

4. If the ball reaches Y, then X and Y are NOT
conditionally independent given Z
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Active Triples Inactive Triples



Bayes Ball 3
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Active Paths Inactive Paths



More Variables

▪Query:

▪ Check all (undirected!) paths between        and 

▪ If one or more active, then independence not guaranteed

▪ Otherwise (i.e. if all paths are inactive),

then independence is guaranteed
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?



Example
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Yes R

T

B

T’



Example 2
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R

T

B

D

L

T’

Yes

Yes

Yes



Example 3

• Variables:
• R: Raining

• T: Traffic

• D: Roof drips

• S: I’m sad

• Questions:
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T

S

D

R

Yes



Quiz

• Is 𝑋1 independent from 𝑋6 given 𝑋2?
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Quiz (cont.)

• Is 𝑋1 independent from 𝑋6 given 𝑋2?

• No, the Bayes ball can travel through 𝑋3 and 𝑋5.
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Quiz 2

• Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?
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Quiz 2 (cont.)

• Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?

• No, the Bayes ball can travel through 𝑋5 and 𝑋6.
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Structure Implications

• Given a Bayes net structure, can run Bayes 
ball/d-separation algorithm to build a 
complete list of conditional independences 
that are necessarily true of the form

• This list determines the set of probability 
distributions that can be represented 

131



Computing All Independences
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X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z



Topology Limits Distributions

• Given some graph topology G, 
only certain joint distributions 
can be encoded

• The graph structure guarantees 
certain (conditional) 
independences

• (There might be more 
independence)

• Adding arcs increases the set of 
distributions, but has several 
costs

• Full conditioning can encode any 
distribution 133
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Bayes Nets Representation Summary

• Bayes nets compactly encode joint distributions (by making use of 
conditional independences!) 

• Guaranteed independencies of distributions can be deduced from BN 
graph structure

• Bayes ball/D-separation gives precise conditional independence guarantees 
from graph alone

• A Bayes net’s joint distribution may have further (conditional) 
independence that is not detectable until you inspect its specific 
distribution
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Summary

• Probability
• Joint/marginal/conditional probabilities

• Answer any query from joint distributions

• Build Joint Distribution Using Chain Rule

• Bayes Nets

• Conditional independence, Semantics

• Causality

• Bayes nets independence, Bayes Nets Representation 

Questions?

https://shuaili8.github.io

Shuai Li
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https://shuaili8.github.io/

