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Vertex cut set and connectivity

* A proper subset S of vertices is a vertex cut set if the graph G — S is
disconnected

* The connectivity, k(G), is the minimum size of a vertex set S of G such that
G — S is disconnected or has only one vertex

* The graph is k-connected if k < k(G)
*k(K,):=n—1
* If G is disconnected, k(G) =0

= Agraphis connected = k(G) > 1

* |If ¢ is connected, non-complete graph of order n, then 0.
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* For convention, k(K;) = 0
(4.1.3, W) For k-dimensional cube Q;, = {0,1}*, k(Qx) = k



Edge-connectivity

disconnecting set edge cut

* A disconnecting set of edgesisaset F € E(G) such that G — F has
more than one component

* A graph is k-edge-connected if every disconnecting set has at least k edges

* The edge-connectivity of G, written A(G), is the minimum size of a
disconnecting set

* Given S, T € V(G), we write |S, T] for the set of edges having one
endpoint in S and the otherin T

* An edge cut is an edge set of the form [S,S¢] where S is a nonempty proper
subset of V(G)

* Every edge cut is a disconnecting set, but not vice versa

(4.1.8, W) Every minimal disconnecting set of edges is an
edge cut



Connectivity and edge-connectivity

o (1.4.2, D) If G is non-trivial, then k(G) < A(G) < 6(6)‘
* If§(G) =n—2,thenk(G) = 6(G)

thatis k(G) = A(G) = 6(G)

(4.1.11, W) If G is a 3-regular graph, then k(G) = A(G)



Properties of edge cut

* When A(G) < 6(G), a minimum edge cut cannot isolate a vertex
 Similarly for (any) edge cut
(4.1.12, W) If S is a set of vertices in a graph G, then
5,5 = ) d() - 2e(GIS])

VES
. (4.1.13, W) If G is a simple graph and |[S, S¢]| < 6(G), then
S| > 8(G)

* |S| must be much larger than a single vertex




Blocks

* A block of a graph G is a maximal connected subgraph of G that has
no cut-vertex. If G itself is connected and has no cut-vertex, then G is

a block 1214 W) —>

° Example An edge e is a bridge < e lies on no cycle of G

* Or equivalently, an edge e is not a bridge < e lies on a cycle of G

* An edge of a cycle cannot itself be a block
* An edge is block & it is a bridge @
* The blocks of a tree are its edges

* |If a block has more than two vertices, then it is 2-connected

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs



Intersection of two blocks

(4.1.19, W) Two blocks in a graph share at most one
vertex

* When two blocks share a vertex, it must be a cut-vertex

* Every edge is a subgraph with no cut-vertex and hence is in a block.
Thus blocks in a graph decompose the edge set



Block-cutpoint graph

* The block-cutpoint graph of a graph G is a bipartite graph H in which
one partite set consists of the cut-vertices of G, and the other has a
vertex b; for each block B; of G. We include vb; as an edge of H &
V€ Bi

* (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a
tree



Depth-first search (DFS)

* Depth-first search | i M

u a b c

(4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices
v, w such that v lies on the u, w-path in T



Finding blocks by DFS

* Input: A connected graph G

* Idea: Build a DFS tree T of G, discarding portions of T as blocks are
identified. Maintain one vertex called ACTIVE

* Initialization: Pick a root x € IV(H); make x ACTIVE; set T = {x}

 lteration: Let v denote the current active vertex

* |If v has an unexplored incident edge vw, then
 Ifw & V(T), then add vw to T, mark vw explored, make w ACTIVE
* Ifw € V(T), then w is an ancestor of v; mark vw explored

* If v has no more unexplored incident edges, then

e If v # x and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T’
rooted at v has an explored edge to an ancestor above w, then V(T") U {w} is the vertex
set of a block; record this information and delete V(T")

e if v = x, terminate



Example
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Strong orientation

(2.5, L; 4.2.14, W, Robbins 1939) A graph has a strong
orientation, i.e. an orientation that is a strongly connected digraph
& it is 2-edge-connected

* A directed graph is strongly connected if for every pair of vertices (v, w),
there is a directed path fromvtow

(2.4, L) Let xy € T which is not a bridge in G and x is a parent of
y. Then there exists an edge in G but not in T joining some descendant a of y
and some ancestor b of x

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs

2 (4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices

v, w such that v lies on the u, w-pathin T .




2-Connected Graphs



2-connected graphs

* Two paths from u to v are internally disjoint if they have no common
internal vertex

(4.2.2, W, Whitney 1932)
A graph G having at least three vertices is 2-connected < for each
pair u, v € V(G) there exist internally disjoint u, v-paths in G




Equivalent definitions for 2-connected graphs

(4.2.3, W; Expansion Lemma) If G is a k-connected graph, and
G’ is obtained from G by adding a new vertex y with at least k

neighbors in G, then G’ is k-connected @
G
e

(4.2.4, W) For a graph G with at least three vertices, TFAE

G is connected and has no cut-vertex
Forall x,y € V(G), there are internally disjoint x, y-paths
Forall x,y € V(G), there is a cycle through x and y

6(G) = 1 and every pair of edges in G lies on a common cycle ¥ X
w@z
v

y



Ear decomposition

* An ear of a graph G is a maximal path whose internal q v
vertices have degree 2 in G

* An ear decomposition of G is a decomposition Py, ...
such that P, is a cycle and P; fori = 1 is an ear of PO P;

(4.2.8, W)
A graph is 2-connected < it has an ear decomposition.
Furthermore, every cycle in a 2-connected graph is the initial cycle in
some ear decomposition

(4.2.6, W) If G is 2-connected, then the graph G’ obtained by

subdividing an edge of G is 2-connected @ 5 @

(Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle




Closed-ear

* A closed ear of a graph G is a cycle C such that all
vertices of C except one have degree 2 in G

* A closed-ear decomposition of ¢ is a decomposition
Py, ..., P, such that Py is a cycle and P; fori = 1 is an

(open) ear or a closed earin Py U -- U P, p, (open)

P, (closed)
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Closed-ear decomposition

(4.2.10, W)
A graph is 2-edge-connected < it has a closed-ear decomposition.
Every cycle in a 2-edge-connected graph is the initial cycle in some

such decomposition

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge & e lies on a cycle of G



Strong orientation (Revisited)

Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong
orientation, i.e. an orientation that is a strongly connected digraph
& it is 2-edge-connected

P, (closed)
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k-Connected and k-Edge-
Connected graphs



X, y-Cut

* Givenx,y € V(G),asetS € V(G) — {x,y}is an x, y-separator or
x,y-cut if G — S has no x, y-path
* Let k(x, y) be the minimum size of an x, y-cut

 Let A(x, y) be the maximum size of a set of pairwise internally disjoint x, y-
paths

* k(x,y) = A(x,y)

*ForX,Y C V(G), an X, Y-path is a path having first vertex in X, last
vertex in Y, and no other vertexin X UY



Example (4.2.16, W)

«S=1{b,c,zd}

* k(x,y) = Ax,y) =4
cx(w,z) = A(w,z) =3




Menger’s Theorem

(4.2.17, W; 3.3.1, D; Menger, 1927) If x, y are vertices of a
graph G and xy € E(G), then k(x,y) = A(x,y)
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(3.1.16, W; 1.53, H; 2.1.1, D; K6nig 1931; Egevary 1931)
Let G be a bipartite graph. The size of a matching in G is
equal to the size of a vertex cover of its edges
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Edge version

(4.2.19, W) If x and y are distinct vertices of a graph G, then
the minimum size x'(x, y) of an x, y-disconnecting set of edges
equals the maximum number A'(x, y) of pairwise edge-disjoint x, y-
paths

* The line graph L(G) of a graph G is the graph whose vertices are the edges of
G withef € E(L(G)) whene =uvand f =vwinG




Back to connectivity

(4.2.21, W)
k(G) = BLLR Alx,y), AG) = BLL A'(x,y)

(4.2.20, W) Deletion of an edge reduces connectivity by at most 1




Application of Menger’s Theorem



CSDR

*letA=44,..,4,, and B = B4, ..., B, be two family of sets. A
common system of distinct representatives (CSDR) is a set of m

elements that is both an system of distinct representatives (SDR) for
A and an SDR for B

* Given some family of sets X, a system of distinct representatives for
the sets in X is a ‘representative’ collection of distinct elements from

the sets of X Si = {2.8)
Sy = {81,
Ss =145, (),
94 = 12,4, 8)
Ss = {2,4]}.
The family X; = {5;.52.53.54} does have an SDR. namely {2.8,7,4}. The

family Xo = {57. 55,54, S5} does not have an SDR.

* Theorem(1.52, H) Let S4, S5, ..., S be a collection of finite, nonempty
sets. This collection has SDR < for every t € [k], the union of any t of
these sets contains at least t elements




Equivalent condition for CSDR

(4.2.25, W; Ford-Fulkerson 1958) Families A = {A4, ..., A}
and B = {By, ..., B,;} have a common system of distinct
representatives (CSDR) &

(UAi) N (U B,-) >[I + |J| - m

i€l j€J
for every pair I,] € [m]




summary

e Connectivity, edge-connectivity
* Blocks, block-cutpoint graph, DFS

e 2-connectivity
* Equivalent definitions for 2-connected graphs
* (Closed) Ear decomposition

 k-connectivity
* Menger’s Theorem, for xy & E(G), k(x,y) = A(x,y)

* k' (x,y) = A(x,y)

* k(G) = i, G)/l(x, y), A(G) = i, (;)’1 (x,y)

* Application: CSDR
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