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Motivation: Scheduling and coloring

• University examination timetabling
• Two courses linked by an edge if they have the 

same students

• Meeting scheduling
• Two meetings are linked if they have same 

member
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Definitions

• Given a graph 𝐺 and a positive integer 𝑘, a 𝑘-coloring is a function 
𝐾: 𝑉(𝐺) ⟶ 1, … , 𝑘  from the vertex set into the set of positive 
integers less than or equal to 𝑘. If we think of the latter set as a set of 
𝑘 “colors,” then 𝐾 is an assignment of one color to each vertex. 

• We say that 𝐾 is a proper 𝑘-coloring of 𝐺 if for every pair 𝑢, 𝑣 of 
adjacent vertices, 𝐾(𝑢) ≠ 𝐾(𝑣) — that is, if adjacent vertices are 
colored differently. If such a coloring exists for a graph 𝐺, we say that 
𝐺 is 𝑘-colorable

• In a proper coloring, each color class is an independent set. Then 
𝐺 is 𝑘-colorable ⟺ 𝑉(𝐺) is the union of 𝑘 independent sets
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Chromatic number

• Given a graph 𝐺, the chromatic number of 𝐺, denoted by 𝜒(𝐺), is the 
smallest integer 𝑘 such that 𝐺 is 𝑘-colorable. 𝐺 is said to be 𝑘-chromatic

• Examples

• (Ex5, S1.6.1, H) A graph 𝐺 of order at least two is bipartite ⟺ it is 2-
colorable
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Bounds on Chromatic number

• Theorem (1.41, H) For any graph 𝐺 of order 𝑛, 𝜒(𝐺) ≤ 𝑛

• It is tight since 𝜒 𝐾𝑛 = 𝑛

• 𝜒 𝐺 = 𝑛 ⟺ 𝐺 = 𝐾𝑛
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Greedy algorithm

• First label the vertices in some order—call them 𝑣1, 𝑣2, … , 𝑣𝑛

• Next, order the available colors (1,2, … , 𝑛) in some way
• Start coloring by assigning color 1 to vertex 𝑣1 

• If 𝑣1 and 𝑣2 are adjacent, assign color 2 to vertex 𝑣2; otherwise, use color 1

• To color vertex 𝑣𝑖, use the first available color that has not been used for any 
of 𝑣𝑖’s previously colored neighbors
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Examples: Different orders result in different 
number of colors
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Bound using the greedy algorithm

• Theorem (1.42, H) For any graph G, 𝜒 𝐺 ≤ ∆ 𝐺 + 1
The equality is obtained for complete graphs and odd cycles
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Brooks’s theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) 
If G is a connected graph that is neither an odd cycle or a complete 
graph, then 𝜒 𝐺 ≤ ∆ 𝐺

• ⇒The Petersen graph is 3-colorable
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Chromatic number and clique number

• The clique number 𝜔(𝐺) of a graph is defined as the order of the 
largest complete graph that is a subgraph of 𝐺

• Example: 𝜔 𝐺1 = 3, 𝜔 𝐺2 = 4

• Theorem (1.44, H; 5.1.7, W) For any graph 𝐺, 𝜒 𝐺 ≥ 𝜔(𝐺)

• Example (5.1.8, W) For 𝐺 = 𝐶2𝑟+1 ∨ 𝐾𝑠, 𝜒 𝐺 > 𝜔(𝐺)

10



Chromatic number and independence 
number
• Theorem (1.45, H; 5.1.7, W; Ex6, S1.6.2, H) For any graph 𝐺 of order 

𝑛, 
𝑛

𝛼(𝐺)
≤ 𝜒 𝐺 ≤ 𝑛 + 1 − 𝛼(𝐺)
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Extremal properties for 𝑘-chromatic graphs

• Proposition (5.2.5, W) Every 𝑘-chromatic graph with 𝑛 vertices has at least
𝑘
2

 edges

• Equality holds for a complete graph plus isolated vertices.

• The Turán graph 𝑇𝑛,𝑟 is the complete 𝑟-partite graph with 𝑛 vertices whose 
partite sets differ by at most 1 vertex
• Every partite set has size 𝑛/𝑟  or 𝑛/𝑟

• Lemma (5.2.8, W) Among simple 𝑟-partite (that is, 𝑟-colorable) graphs with 
𝑛 vertices, the Turán graph is the unique graph with the most edges

• Turán’s Theorem (5.2.9, W; Turán 1941) Among the 𝑛-vertex simple 𝐾𝑟+1-
free graphs, 𝑇𝑛,𝑟 has the maximum number of edges 12



Color-critical

• If 𝜒 𝐻 < 𝜒 𝐺 = 𝑘 for every proper subgraph 𝐻, then 𝐺 is color-
critical or 𝑘-critical

• 𝐾2 is the only 2-critical graph
𝐾1 is the only 1-critical graph

• (5.2.12, W) A graph with no isolated vertices is color-critical ⇔ 
𝜒 𝐺 − 𝑒 < 𝜒 𝐺  for every edge 𝑒 ∈ 𝐸(𝐺)

• Proposition (5.2.13, W) Let 𝐺 be a 𝑘-critical graph
(a) For every 𝑣 ∈ 𝑉(𝐺), there is a proper coloring such that 𝑣 has a 
unique color and other 𝑘 − 1 colors all appear on 𝑁 𝑣
⇒ 𝛿 𝐺 ≥ 𝑘 − 1
(b) For every 𝑒 ∈ 𝐸(𝐺), every proper (𝑘 − 1)-coloring of 𝐺 − 𝑒 gives 
the same color to the two endpoints of 𝑒  
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Color-critical has edge-connectivity

• Theorem (5.2.16, W; Dirac 1953) Every 𝑘-critical graph is (𝑘 − 1)-
edge-connected

• Lemma (5.2.15, W; Kainen) Let 𝐺 be a graph with 𝜒 𝐺 > 𝑘 and let 
𝑋, 𝑌 be a partition of 𝑉(𝐺). If 𝐺[𝑋] and 𝐺[𝑌] are 𝑘-colorable, then 
the edge cut [𝑋, 𝑌] has at least 𝑘 edges
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Color-critical and vertex cut set

• Let 𝑆 be a set of vertices in a graph 𝐺. An 𝑆-lobe of 𝐺 is an induced 
subgraph of 𝐺 whose vertex set consists of 𝑆 and the vertices of a 
component in 𝐺 − 𝑆

• Proposition (5.2.18, W) If 𝐺 is 𝑘-critical, then 𝐺 has no clique cutset. 
In particular, if 𝐺 has a cutset 𝑆 = {𝑥, 𝑦}, then 𝑥, 𝑦 are non-adjacent 
and 𝐺 has an 𝑆-lobe 𝐻 such that 𝜒 𝐻 + 𝑥𝑦 = 𝑘
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Chromatic number 4 has a 𝐾4-subdivision

• Theorem (5.2.20, W; Dirac 1952) Every graph with chromatic number 
at least 4 contains a 𝐾4-subdivision

16



Hajós' conjecture

• Hajós' conjecture [1961]: Every 𝑘-chromatic graph contains a 
subdivision of 𝐾𝑘

• 𝑘 = 2: Every 2-chromatic graph has a nontrivial path

• 𝑘 = 3: Every 3-chromatic graph has a cycle

• It is open for 𝑘 = 5,6

• Exercise (Ex5.2.40, W) It is false for 𝑘 = 7 or 8
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Chromatic Polynomials
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Definition and examples

• It is brought up by George David Birkhoff in 1912 in an attempt to prove 
the four color theorem

• Define 𝜒 𝐺; 𝑘  to be the number of different colorings of a graph 𝐺 using 
at most 𝑘 colors

• Examples:
• How many different colorings of 𝐾4 using 4 colors?

• 4 × 3 × 2 × 1

• 𝜒 𝐾4; 4 = 24

• How many different colorings of 𝐾4 using 6 colors?
• 6 × 5 × 4 × 3

• 𝜒 𝐾4; 6 = 360

• How many different colorings of 𝐾4 using 2 colors?
• 0

• 𝜒 𝐾4; 2 = 0
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Examples

• If 𝑘 ≥ 𝑛
𝜒 𝐾𝑛; 𝑘 = 𝑘(𝑘 − 1) ⋯ (𝑘 − 𝑛 + 1)

• If 𝑘 < 𝑛
𝜒 𝐾𝑛; 𝑘 = 0

• 𝐺 is 𝑘-colorable ⟺  𝜒 𝐺 ≤ 𝑘 ⟺ 𝜒 𝐺; 𝑘 > 0

• 𝜒 𝐺 = min 𝑘 ≥ 1: 𝜒 𝐺; 𝑘 > 0
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Chromatic recurrence

• 𝐺 − 𝑒 and 𝐺/𝑒

• Theorem (1.48, H; 5.3.6, W) Let 𝐺 be a graph and 𝑒 be any edge of 𝐺. 
Then

𝜒 𝐺; 𝑘 = 𝜒 𝐺 − 𝑒; 𝑘 − 𝜒 𝐺/𝑒; 𝑘
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Use chromatic recurrence to compute 𝜒 𝐺; 𝑘

• Example: Compute 𝜒 𝑃3; 𝑘 = 𝑘4 − 3𝑘3 + 3𝑘2 − 𝑘

• Check: 𝜒 𝑃3; 1 = 0, 𝜒 𝑃3; 2 = 2

• Example: What is 𝜒 𝐾𝑛 − 𝑒; 𝑘 ?

22

𝑃3



More examples

• Path 𝑃𝑛−1 has 𝑛 − 1 edges (𝑛 vertices)
𝜒 𝑃𝑛−1; 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Any tree 𝑇 on 𝑛 vertices
𝜒 𝑇; 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Cycle 𝐶𝑛
𝜒 𝐶𝑛; 𝑘 = (𝑘 − 1)𝑛+ −1 𝑛(𝑘 − 1)

• When 𝑛 is odd, 𝜒 𝐶𝑛; 2 = 0, 𝜒 𝐶𝑛; 3 > 0

• When 𝑛 is even, 𝜒 𝐶𝑛; 2 > 0
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Properties of chromatic polynomials

• Theorem (1.49, H; Ex 3, S1.6.4, H) Let 𝐺 be a graph of order 𝑛
• 𝜒 𝐺; 𝑘  is a polynomial in 𝑘 of degree 𝑛

• The leading coefficient of 𝜒 𝐺; 𝑘  is 1

• The constant term of 𝜒 𝐺; 𝑘  is 0
• If 𝐺 has 𝑖 components, then the coefficients of 𝑘0, … , 𝑘𝑖−1 are 0

• 𝐺 is connected ⟺ the coefficient of 𝑘 is nonzero

• The coefficients of 𝜒 𝐺; 𝑘  alternate in sign

• The coefficient of the 𝑘𝑛−1 term is − 𝐸(𝐺)
• A graph 𝐺 is a tree ⟺ 𝜒 𝐺; 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• A graph 𝐺 is complete ⟺ 𝜒 𝐺; 𝑘 = 𝑘(𝑘 − 1) ⋯ (𝑘 − 𝑛 + 1)
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Simplicial elimination ordering

• Roots for the chromatic polynomials? 
Fundamental theorem of algebra

• A vertex of 𝐺 is simplicial if its neighborhood in 𝐺 induces a clique

• A simplicial elimination ordering is an ordering 𝑣𝑛, … , 𝑣1 for deletion of 
vertices s.t. each vertex 𝑣𝑖 is a simplicial vertex of the graph reduced by 
𝑣1, … , 𝑣𝑖

• Chromatic polynomials
If we have colored 𝑣1, … , 𝑣𝑖−1, then there are 𝑘 − 𝑑(𝑖) ways to color 𝑣𝑖 
where 𝑑 𝑖 = 𝑁(𝑣𝑖) ∩ 𝑣1, … , 𝑣𝑖−1 . Thus 

𝜒 𝐺; 𝑘 = ෑ
𝑖=1

𝑛

(𝑘 − 𝑑(𝑖))

Nice factorization property!
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Examples

• In a tree, a simplicial elimination ordering is a successive deletion of leaves
• Another proof for 𝜒 𝑇; 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Example (5.3.13, W) 𝑣6, … , 𝑣1 is a simplicial elimination ordering.
The values 𝑑(𝑖) are 0,1,1,2,3,2. Thus the chromatic 
polynomial is 𝑘(𝑘 − 1)(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)(𝑘 − 2)

• Exercise (Ex 5.3.19, W) There exists some graph without simplicial 
elimination ordering but has a nice factorization form for chromatic 
polynomial
• The existence of simplicial elimination ordering  is a sufficient condition for the 

chromatic polynomial having all real roots, but not necessary 26



Chordal graphs

• A chord of a cycle 𝐶 is an edge not in 𝐶 whose endpoints lie in 𝐶

• A chordless cycle in 𝐺 is a cycle of length at least 4 that has no chord

• Theorem (5.3.17, W; Dirac 1961) A simple graph has a 
simplicial elimination ordering ⇔ it is a chordal graph (a 
simple graph without chordless cycle)

• TONCAS!

• Further 
does not have a degree-1 decomposition

• Lemma (5.3.16, W) For every vertex 𝑥 in a chordal graph, there is a 
simplicial vertex of 𝐺 among the vertices farthest from 𝑥
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Proof Using Coloring
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Example -- Instant Insanity 四色方柱问题
(1.2, L)

• Problem make a stack of these cubes so 
that all four colors appear on each of the 
four sides of the stack

• An edge indicates that the two adjacent 
colors occur on opposite faces of the cube

• Problem necessary to find two subgraphs 
s.t.
• are regular of degree 2

• four edges, one from each cube

• no edge in common for the two subgraphs
29



Example -- Instant Insanity 四色方柱问题
(1.2, L)

• Problem necessary to find two subgraphs 
s.t.
• are regular of degree 2

• four edges from each cube

• no edge in common
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An example about sets (1E, L)

• Let 𝐴1, … , 𝐴𝑛 be 𝑛 distinct subsets of the 𝑛-set 𝑁: = {1, … , 𝑛}. Show 
that there is an element 𝑥 ∈ 𝑁 such that the sets 𝐴𝑖 ∖ {𝑥}, 1 ≤ 𝑖 ≤ 𝑛, 
are all distinct

• Proof  Consider a graph with vertices 𝐴1, … , 𝐴𝑛.
• An edge of `color’ 𝑥 between 𝐴𝑖  and 𝐴𝑗  iff 𝐴𝑖∆𝐴𝑗 = 𝑥

• Then the problem is equivalent to find 𝑦 s.t. no color 𝑦

• Notice that a cycle in this graph must have even length and each color 
appears even times

• Then we can remove an edge if there is an edge with same color

• Thus the number of colors remain the same and no cycle exists

• By tree property, the number of edges is at most 𝑛 − 1
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Summary
• Coloring, proper coloring, chromatic #

• Brooks’s theorem

• Chromatic # vs. clique/independence #

• Turán graph

• Color-critical, w/ vertex/edge-connectivity

• Chromatic number 4 has a 𝐾4-subdivision

• Chromatic polynomials, chromatic recurrence, path/trees/cycles, 
properties

• Simplicial elimination ordering, chordal graph, TONCAS

• Examples of proof with coloring
32
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