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Motivation: Scheduling and coloring

* University examination timetabling
* Two courses linked by an edge if they have the
same students 1
* Meeting scheduling

* Two meetings are linked if they have same
member




Definitions

* Given a graph G and a positive integer k, a k-coloring is a function
K:V(G) — {1, ..., k} from the vertex set into the set of positive
integers less than or equal to k. If we think of the latter set as a set of
k “colors,” then K is an assignment of one color to each vertex.

 We say that K is a proper k-coloring of G if for every pair u, v of
adjacent vertices, K(u) # K(v) — that is, if adjacent vertices are
colored differently. If such a coloring exists for a graph G, we say that
( is k-colorable

* In a proper coloring, each color class is an independent set. Then
G is k-colorable & V(G) is the union of k independent sets




Chromatic number

* Given a graph G, the chromatic number of G, denoted by y(G), is the
smallest integer k such that G is k-colorable. G is said to be k-chromatic

* Examples

{ 2 ifniseven,

X(Cn) =1 3 ifnis odd,

2 ifn > 2,
X(Pn) {1 ifn=1,

(K7)
(En) =1, «Empty graph
X(Kmn) = 2.

e (Ex5, S1.6.1, H) A graph G of order at least two is bipartite & it is 2-
colorable

X =n,
X —

A graph is bipartite & it contains no odd cycle g




Bounds on Chromatic number

(1.41, H) For any graph G of ordern, y(G) <n
* It is tight since y(K,,) = n
e y(G) =ne G =K,



Greedy algorithm

* First label the vertices in some order—call them vy, v,, ..., v,

* Next, order the available colors (1,2, ..., 1) in some way
* Start coloring by assigning color 1 to vertex v,
* If v; and v, are adjacent, assign color 2 to vertex v,; otherwise, use color 1

* To color vertex v;, use the first available color that has not been used for any
of v;’s previously colored neighbors



Examples: Different orders result in different
number of colors




Bound using the greedy algorithm

(1.42, H) For any graph G, y(G) < A(G) + 1
The equality is obtained for complete graphs and odd cycles



Brooks’s theorem

(1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941)
If G is a connected graph that is neither an odd cycle or a complete
graph, then y(G) < A(G)

a1 Vg

Vp =X

* >The Petersen graph is 3-colorable



Chromatic number and cligue number

* The clique number w(G) of a graph is defined as the order of the
largest complete graph that is a subgraph of G

* Example: w(G,) = 3, w(G,) = 4

AT

(1.44, H; 5.1.7, W) For any graph G, x(G) = w(G)
* Example (5.1.8, W) For G = C,,4+1 V K, x(G) > w(G)
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Chromatic number and independence
number

* Theorem (1.45, H; 5.1.7, W, Ex6, S1.6.2, H) For any graph G of order
n,

mSX(G)Sn+1—a(G)

The independence number of a graph G, denoted as
a (@), is the largest size of an independent set

In a proper coloring, each color class is an independent set. Then
G is k-colorable <= V(G) is the union of k independent sets
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Extremal properties for k-chromatic graphs

I (5.2.5, W) Every k-chromatic graph with n vertices has at least
(2) edges

* Equality holds for a complete graph plus isolated vertices.

In a proper coloring, each color class is an independent set. Then
G is k-colorable <= V(G) is the union of k independent sets

* The Turan graph T;, - is the complete r-partite graph with n vertices whose
partite sets differ by at most 1 vertex

* Every partite set has size [n/r] or [n/r]

(5.2.8, W) Among simple r-partite (that is, r-colorable) graphs with
n vertices, the Turan graph is the unique graph with the most edges

(5.2.9, W; Turan 1941) Among the n-vertex simple K, 1-
free graphs, T}, ;- has the maximum number of edges



Color-critical

* If y(H) < x(G) = k for every proper subgraph H, then G is color-
critical or k-critical

* K, is the only 2-critical graph
K, is the only 1-critical graph

e (5.2.12, W) A graph with no isolated vertices is color-critical &
x(G —e) < y(G) for every edge e € E(G)

(5.2.13, W) Let G be a k-critical graph
(a) For every v € V(G), there is a proper coloring such that v has a
unique color and other k — 1 colors all appear on N(v)
=>5(G)=>k—-1
(b) For every e € E(G), every proper (k — 1)-coloring of G — e gives
the same color to the two endpoints of e




Color-critical has edge-connectivity

(5.2.16, W; Dirac 1953) Every k-critical graph is (k — 1)-
edge-connected

(5.2.15, W; Kainen) Let G be a graph with y(G) > k and let
X,Y be a partition of V(G). If G[|X] and G|Y] are k-colorable, then
the edge cut [X, Y] has at least k edges A ,
G H

(3.1.16, W; 1.53, H; 2.1.1, D; Kbnig 1931; Egevary 1931)
Let G be a bipartite graph. The size of a matching in G is
equal to the size of a vertex cover of its edges

(4.1.8, W) Every minimal disconnecting set of edges is an
edge cut



Color-critical and vertex cut set

* Let S be a set of vertices in a graph G. An S-lobe of G is an induced
subgraph of ¢ whose vertex set consists of S and the vertices of a
componentin G — S Hs

Hy
h\ s

(5.2.18, W) If G is k-critical, then G has no clique cutset.
In particular, if ¢ has a cutset S = {x, y}, then x, y are non-adjacent
and G has an S-lobe H such that y(H + xy) = k




Chromatic number 4 has a K,-subdivision

* Theorem (5.2.20, W; Dirac 1952) Every graph with chromatic number
at least 4 contains a K,-subdivision

X
L
y
Proposition (5.2.18, W) If G is k-critical, then G has no clique cutset.

a subdivision of K4 In particular, if G has a cutset S = {x, y}, then x, y are non-adjacent
and G has an S-lobe H such that y(H + xy) = k

Lemma (4.2.3, W, Expansion Lemma) If G is a k-connected graph, and
G' is obtained from G by adding a new vertex y with at least k

neighbors in G, then G’ is k-connected
<=
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Hajos' conjecture

* Hajos' conjecture [1961]: Every k-chromatic graph contains a
subdivision of K,

e k = 2: Every 2-chromatic graph has a nontrivial path
e k = 3: Every 3-chromatic graph has a cycle

* Itis open for k = 5,6

* Exercise (Ex5.2.40, W) It is false for k = 7 or 8



Chromatic Polynomials



Definition and examples

* |tis brought up by George David Birkhoff in 1912 in an attempt to prove
the four color theorem

 Define y(G; k) to be the number of different colorings of a graph G using
at most k colors

* Examples:

* How many different colorings of K, using 4 colors?
e 4 Xx3X%x2x%1
o x(Ky4) =24

* How many different colorings of K, using 6 colors?
e 6 X5%Xx4x%3
« x(K4;6) =360

* How many different colorings of K, using 2 colors?
e 0
« x(K432) =0
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Examples

clfk=>n
X(Kp; k) = k(k—1) - (k—n+ 1)

e Ifk <n

X(Kn; k) =0
* Gisk-colorable = y(G) <k © y(G;k) >0
 ¥(G) = min{k = 1: y(G; k) > 0}



Chromatic recurrence G </

*G—eandG/e ’

FIGURE 1.98. Examples of the operations.

(1.48, H; 5.3.6, W) Let G be a graph and e be any edge of G.

x(G; k) =x(G—e; k) —x(G/e; k)

Then



Use chromatic recurrence to compute y(G; k)

 Example: Compute y(Ps; k) = k* — 3k3 + 3k? — k
* Check: y(P5;1) =0, y(P3;2) = 2

red blue red blue blue red blue red
@ - = 0] [ = = 2

FIGURE 1.102. Two 2-colorings of P;

e Example: What is y(K,, — e; k)?



More examples

* Path P,,_; hasn — 1 edges (n vertices)
(P k) = k(k— 1)1

* Any tree T on n vertices
x(T; k) = k(k—1)"*
* Cycle C,,
X(Cps k) = (k= D"+ (-D"(k — 1)
* Whennisodd, y(C,;2) =0, x(C,;3) >0
 When nis even, y(C,;;2) >0



Properties of chromatic polynomials

(1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n
* v(G; k) is a polynomial in k of degree n
* The leading coefficient of y(G; k) is 1

* The constant term of y(G; k) is O

e If G has i components, then the coefficients of k°, ..., k! 1 are 0
* ( is connected < the coefficient of k is nonzero

* The coefficients of y(G; k) alternate in sign

* The coefficient of the k™~ term is —|E (G)|
« AgraphGisatree © y(G;k) = k(k — 1)1

=1 1.10, 1.12, H) T is connected with n — 1 edges

« Agraph G is complete © y(G;k) =k(k—1)---(k—n+1)



Simplicial elimination ordering

* Roots for the chromatic polynomials?
Fundamental theorem of algebra

* A vertex of ¢ is simplicial if its neighborhood in G induces a clique

* A simplicial elimination ordering is an ordering v,,, ..., 7 for deletion of
vertices s.t. each vertex v; is a simplicial vertex of the graph reduced by

{vy, .., vi}

* Chromatic polynomials
If we have colored vy, ..., V;_1, then there are k — d (i) ways to color v;
where d(i) = [N(v;) N {v4, ..., v;_1}|. Thus

G =[] t-aw

Nice factorization property! l

25



Examples

* |In a tree, a simplicial elimination ordering is a successive deletion of leaves
e Another proof for y(T; k) = k(k — 1)1

* Example (5.3.13, W) v, ..., V1 is a simplicial elimination ordering.
The values d (i) are 0,1,1,2,3,2. Thus the chromatic Ve vg Ve

polynomialis k(k — 1)(k — 1)(k — 2)(k — 3)(k — 2) E 1 vl

V1 U2 U3

* Exercise (Ex 5.3.19, W) There exists some graph without simplicial
elimination ordering but has a nice factorization form for chromatic
polynomial

* The existence of simplicial elimination ordering is a condition for the
chromatic polynomial having all real roots, but



)

Chordal graphs

* A chord of a cycle C is an edge not in C whose endpoints liein C
* A chordless cycle in G is a cycle of length at least 4 that has no chord

(5.3.17, W, Dirac 1961) A simple graph has a
simplicial elimination ordering < it is a chordal graph (a
simple graph without chordless cycle)

/A
- TONCAS! ) s
e Further X(Cpi k) = (k—1D)"+(-1)"(k — 1)

does not have a degree-1 decomposition

(5.3.16, W) For every vertex x in a chordal graph, there is a
simplicial vertex of G among the vertices farthest from x

|




Proot Using Coloring



Example -- Instant Insanity
(1.2, L)

* Problem make a stack of these cubes so
that all four colors appear on each of the
four sides of the stack

* An edge indicates that the two adjacent
colors occur on opposite faces of the cube

* Problem necessary to find two subgraphs
S.t.

 are regular of degree 2
* four edges, one from each cube

* no edge in common for the two subgraphs

JL

=
o




Example -- Instant Insanity VU & 7 % 0] &
(1.2, L)

* Problem necessary to find two subgraphs
s.t.
e are regular of degree 2
e four edges from each cube
* no edge in common

g

FRONT -> BACK LEFT -> RIGHT

8LEs
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An example about sets (1E, L)

* Let A4, ..., A, be n distinct subsets of the n-set N: = {1, ..., n}. Show
that there is an element x € N such thatthe sets 4; \ {x},1 <i < n,

are all distinct

* Proof Consider a graph with vertices 44, ..., A,,.
* An edge of “color’ x between A; and 4; iff A;AA; = {x}
* Then the problem is equivalent to find y s.t. no color y

* Notice that a cycle in this graph must have even length and each color
appears even times

 Then we can remove an edge if there is an edge with same color
* Thus the number of colors remain the same and no cycle exists
* By tree property, the number of edges is at most n — 1
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Shuai Li

Summary https://shuaili8.github.io

* Coloring, proper coloring, chromatic #

* Brooks’s theorem .
* Chromatic # vs. clique/independence # QUEStlonS?
e Turan graph

* Color-critical, w/ vertex/edge-connectivity
* Chromatic number 4 has a K,-subdivision

* Chromatic polynomials, chromatic recurrence, path/trees/cycles,
properties

e Simplicial elimination ordering, chordal graph, TONCAS
* Examples of proof with coloring


https://shuaili8.github.io/
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