
Lecture 3: Trees
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3330/index.html

1

Trees

• A tree is a connected graph ! with no cycles

2

Properties

• Recall that
• ⇒(Ex 3, S1.3.1, H) A tree of order # ≥ 2 is a bipartite graph

• Recall that
• ⇒ Every edge in a tree is a bridge
• ! is a tree ⟺! is minimally connected, i.e. ! is connected but ! − (

is disconnected for every edge (∈ !

3

Equivalent definitions (Theorem 1.5.1, D)

• ! is a tree of order #
⇔ Any two vertices of ! are linked by a unique path in !
⇔ ! is minimally connected
• i.e. ! is connected but ! − # is disconnected for every edge # ∈ !
⇔! is maximally acyclic
• i.e. ! contains no cycle but ! + &' does for any non-adjacent vertices &, ' ∈
!

⇔ (Theorem 1.10, 1.12, H) ! is connected with # − 1 edges
⇔ (Theorem 1.13, H) ! is acyclic with # − 1 edges

4

trees

{ %::
n- ledges

connected'ⁿ9ᵈʰ Fted

* 'TY

Leaves of tree

• A vertex of degree 1 in a tree is called a leaf
• Theorem (1.14, H; Ex9, S1.3.2, H) Let ! be a tree of order # ≥ 2. Then
! has at least two leaves
• (Ex3, S1.3.2, H) Let ! be a tree with max degree ∆. Then ! has at least
∆ leaves
• (Ex10, S1.3.2, H) Let ! be a tree of order # ≥ 2. Then the number of

leaves is
2 + .

!:#(!)&'
/ 0 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
• Every leaf node is not a cut vertex

5

Take the longest path

FIu0ndNoi-dNk-iJ.zfg@connected.mcycle

[
u
dat = 211-1=2 Cn - 1)
I
n

, -124h + I dnt = 2 (n '#+Éd
,
!,≥ ,
-1)

v.div) ≥ 3

"

¥7m
≥ .

The center of a tree is a vertex or ‘an edge’

• Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices

6

Center (Ti) = center titi)
To :=T DT

,
n≥3

, leaf u & Center (T)# T ,
: = To - leaves of To

unique neighbor W .

Tz : = Ti - leaves of T ,

;
every path to u must go through w

dlx
, w) < dix . v3 t # tuTr = K

, or Ks (TAKE -3%34
② fue non - leaf (T) argmaxdy iv. x) ≤ Lewes (T)Center (T) = Center (Tr) =k , or kz ×

Max dti (Ku) = Max dTi+
,
Kit + IKETI

IETit ,

center(F) = argmin Max oh
,

- Wix) = Center (Ti+ ,)
VᵗI;÷¥ETi+i

Any tree can be embedded in a ‘dense’ graph

• Theorem (1.16, H) Let ! be a tree of order 1 + 1 with 1 edges. Let 2
be a graph with 3(2) ≥ 1. Then 2 contains ! as a subgraph

7

By induction .

k=o
, bit ✓

K-1 (k≥2) T is a tree w/ at least 2 leaves . Take u as a leaf w/ vw EE

F- u) is atra w/ K vertices
, A- 1) edges

f. T- n G

G

w→ few]

dqtw) 3k

7- ✗ C- Nqcfcw')\f(T- V) , fcv) = : w

Spanning tree

• Given a graph 2 and a subgraph !, ! is a spanning tree of 2 if ! is a
tree that contains every vertex of 2
• Example: A telecommunications company tries to lay cable in a new

neighbourhood
• Proposition (2.1.5c, W) Every connected graph contains a spanning

tree

8

?⃝

Minimal spanning tree - Kruskal’s Algorithm

• Given: A connected, weighted graph 2
1. Find an edge of minimum weight and mark it.
2. Among all of the unmarked edges that do not form a cycle with any

of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of 2, then stop. If
not, repeat step 2

9

Example

10

Theoretical guarantee of Kruskal’s algorithm

• Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight

11

G is connected ⇒ the output is spanning tree . e , ,
- . .

, en- ,

☒II :L . T is not minimal .

Among all minimal spanning trees , T
' is the one having the largest prefix edges
e , ,

- - .

. en GI

T
'

+ ep+ ,
contains a cycle C

7- e
'

C- C- T ⇒ T
'

+ ek+ ,
- e' = : T

"

spanning tree

wle
'

) ≥ Wiesel) ⇒ WIT
"

) ≤ WIT
'

)

T
"

is minimal spanning tree
but w/ more prefix Contradiction !

et
,

- -
-

, lk , lkt ,
'

Prim’s Algorithm

• Given: A connected, weighted graph 2.
1. Choose a vertex 0, and mark it.
2. From among all edges that have one marked end vertex and one

unmarked end vertex, choose an edge (of minimum weight. Mark
the edge (, and also mark its unmarked end vertex.

3. If every vertex of 2 is marked, then the set of marked edges forms a
minimum weight spanning tree. If not, repeat step 2

• Exercise (Ex2.3.10, W) Prim’s algorithm produces a minimum-weight
spanning tree of 2

12

E-,

Cayley’s tree formula

• Theorem (1.18, H; 2.2.3, W). There
are #()* distinct labeled trees of
order #

13

It

Label Kn w/ [n] : = { 1,2 , _ .

>
n} .

How many spanning trees ?

P : { labeled tree of order n } → [n]
" -2

T ↳ PCT) Phifer code
Given a spanning tree T

TET XieTi is the leaf w/ minimal index , Ki Yi EE
Tin __Ti - ki" , 76 In-2 In -1

Y , Y ,
"

'

Yn-z Ynˢ=n
D. Ym=n

② Tree Ti : vertices 7424 Kitt
- .

. In -2 In-1
I 1 '

yin ,edges Y , Yi yin - - -9ns

you ~ appears exactly once in Xi
,
- .

-

, kn-z.am
, Ymdir) times in Xi

,
-

-
-

> kn-
2. In-1

, Y ,
,

- .
.

. Yn- ,i. v appears dlv) -1 times in

Yn→= :p (T)
X

,
: = min (En) - { Yi , - - -

, Yaz }) Xi↓ Ya -
- ' Yn - z Yn-in

76 : = min (En) - { 241 - { Ya , -

→ Yn-il)
:

24. : = min (Tn) - { Hi , - ' ' ski- i } - { Yi
,

-
-

i. Yin-z })

Example

14

Eis;

245634

of trees with fixed degree sequence

• Corollary (2.2.4, W) Given positive integers /+, … , /(summing to
2# − 2, there are exactly ()* !

∏ #!)+ ! trees with vertex set # such that
vertex 8 has degree /. for each 8

• Example (2.2.5, W) Consider trees with vertices 7 that have degrees
3,1,2,1,3,1,1

15

Er

*

µ, , µ ,,

,,,,

Matrix tree theorem - cofactor

• For an #×# matrix <, the 8, = cofactor of
< is defined to be

−1 ./0 det A.0
where A.0 represents the # − 1 ×(
)

−
1 matrix formed by deleting row 8 and
column = from <

16

Matrix tree theorem

• Theorem (1.19, H; 2.2.12, W; Kirchhoff) If 2 is a connected labeled
graph with adjacency matrix < and degree matrix B, then the number
of unique spanning trees of 2 is equal to the value of any cofactor of
the matrix B − <
• If the row sums and column sums of a matrix are all 0, then the

cofactors all have the same value
• Exercise Read the proof
• Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove

Cayley’s theorem

17

☐=\
" "
"

-

'

A;f ,

ije E- (G)

Laplacian matrix

Example

• Exercise (Ex6, S1.3.4, H) Let (be an edge of D(. Use Cayley’s Theorem
to prove that D(− (has (# − 2)#()' spanning trees

18

Wiener index

• In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum
• Wiener index B 2 = ∑1,!∈4(5)/5(G, 0)

• Theorem (2.1.14, W) Among trees with # vertices, the Wiener index
B(!) is minimized by stars and maximized by paths, both uniquely
• Over all connected #-vertex graphs, B 2 is minimized by D(and

maximized (2.1.16, W) by paths
• (Lemma 2.1.15, W) If) is a subgraph of *, then +!(-, .) ≤ +"(-, .)

19

¥

• Stars Every tree has in -11 edges .

Dlki
, m) = In - 1) -12 ✗ (%) ≤ DCT)

To show uniqueness ,
consider a leaf ✗ C-T w/ neighbor ~

all other vertices must have distance 2 from x (by minimality)

i. all other vertices must be neighbors of ~ :< T is a star

- Path D(Pm)

A- 1 Po • DCP.) = o

n--2 P ,
M D (A) = I = I })

n=3 Pz th D (Pz) = 1+2+1--4=143)
D (Pn) = 1+2-1 - - - + n + D(Pn -1)

= (F) + (4-1)+2s) =/%)
By induction has 2,3 ✓

n-1 In ≥4) Let u be a leaf
DCT) =DL + I

dlu.ir)

≤ D(Pne)
F-
For any shortest parth from u to a farthest vertex
(length K) ,

there is a hit of sequences to u

(1,2 ,
- - -

, b)
.

Any repetition would make I - Smaller

Uniqueness : If T is not a path >
7- repetition

Prefix coding

• A binary tree is a rooted plane tree where each vertex has at most
two children
• Given large computer files and limited storage, we want to encode

characters as binary lists to minimize (expected) total length
• Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011

20

TITI

Huffman’s Algorithm (2.3.13, W)

• Input: Weights (frequencies or probabilities) H+, … , H(
• Output: Prefix-free code (equivalently, a binary tree)
• Idea: Infrequent items should have longer codes; put infrequent items

deeper by combining them into parent nodes.
• Recursion: replace the two least likely items with probabilities H, H′

with a single item of weight H + H′

21

Example (2.3.14, W)

22

a 5
b 1
c 1
d 7
e 8
f 2
g 3
h 6

a 5 100
b 1 00000
c 1 00001
d 7 01
e 8 11
f 2 0001
g 3 001
h 6 101

The average length is !×#$!$!$%×&$⋯## = #(
)) < 3

IE
:*

Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution H. on # items,
Huffman’s Algorithm produces the prefix-free code with minimum
expected length

23

- T T
'

✗By induction .

n --2 0 , I 1=1
depth Ki
£

h-1 In≥3) ✓ Pin ,
= Pm + Pn

Each prefix- free code is represented by / depth k An - i Pna binary tree

support is an optimal tree for 71373 ≥ - -
-≥pn LIT

'

) =L (T) - k - 1pm , + pn) t Ck
- 1)
'Pni

◦ WLOG . pm,
and pn are siblings at greatest depth = LIT) - 1pm -17in)

- ↓ o/\o
i. T

'

is optimal . By induction hypothesis , LIT
'

) =L (Hcn_ ,)7m 7h

Also since the first step of HC is to merge Pm and pn to pni ,◦ T
'

= -1 - leaves of Pmi , Pn
LIT) = LIT

'

) - . - = LCH Cn)

Huffman coding and entropy

• The entropy of a discrete probability distribution H. is that

J H = −.
.
H. log* H.

• Exercise (Ex2.3.31, W) J(H) ≤ average length of Huffman coding ≤
J(H) + 1
• Exercise (Ex2.3.30, W) When each H. is a power of ½, average length

of Huffman coding is J(H)

24

"

Fb

Summary
• Trees

• Is bipartite, edges are bridge; Equivalent definitions
• Leaves, # of leaves, cut vertex; Center is a vertex or `an edge’
• Any tree can be embedded in a ‘dense’ graph

• Spanning Tree
• Every connected graph has a spanning tree
• Minimal spanning tree, Kruskal’s Algorithm (with guarantee), Prim’s algorithm
• Cayley’s tree formula, Prüfer code, # of trees with fixed degree sequence
• Matrix tree theorem

• Wiener index
• Among trees, minimized by starts, maximized by paths
• Among connected graphs, minimized by complete graphs, maximized by paths

• Hoffman coding
• Algorithm, optimality, entropy

25

Questions?

https://shuaili8.github.io
Shuai Li

