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Trees

* A treeis a connected graph T with no cycles
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Properties

* =>(Ex 3, S1.3.1, H) A'tree of order n = 2 is a bipartite graph

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
° Reca ” that * Or equivalently, an edge e is not a bridge <& e lies on a cycle of G

* = Every edge in a tree is a bridge

* Tisatree & T is minimally connected, i.e. T is connected butT — e
is disconnected for everyedgee € T



Equivalent definitions (Theorem 1.5.1, D)
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< Any two vertices of T are linked by a unique pathin T
< T is minimally connected

e i.e. T is connected but T — e is disconnected for every edgee € T

< T is maximally acyclic
* i.e. T contains no cycle but T + xy does for any non-adjacent vertices x,y €

] A

& (Theorem 1.10, 1.12, H) T is connected with n — 1 edges
& (Theorem 1.13, H) T is acyclic with n — 1 edges



Leaves of tree

* A vertex of degree 1 in a tree is called a leaf

(1.14, H; Ex9, S1.3.2, H) Let T be a tree of ordern = 2. Then
T has at least two leaves [oka +he lowjers poth G- 9 o) =d i) -

’]/o'\)\ e~ . K

* (Ex3, S1.3.2,H) be a tree with max degree A. Then T has at least
A leaves (omedied, vy 4o

 (Ex10, 51.3.27, H) Let T be a tree of order n = 2. Then the number of
leaves is >, dw = 21E| =2 ¢n-1)
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* (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
* Every leaf node is not a cut vertex Q@}
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The center of a tree is a vertex or ‘an edge’

* Theorem (1.15, H) In any tree, the center is either a single vertex or a

pair of adjacent vertices (amter (Ti) = wnter (Tiy )
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Any tree can be embedded in a ‘dense’ graph

(1.16, H) Let T be a tree of order k + 1 with k edges. Let G
be a graph with 6(G) = k. Then G contains T as a subgraph
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Spanning tree

e Given a graph G and a subgraph T, T is a spanning tree of G if T is a
tree that contains every vertex of ¢

* Example: A telecommunications company tries to lay cable in a new
neighbourhood

(2.1.5¢, W) Every connected graph contains a spanning

tree @



Minimal spanning tree - Kruskal’s Algorithm

* Given: A connected, weighted graph G
1. Find an edge of minimum weight and mark it.

2. Among all of the unmarked edges that do not form a cycle with any
of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of G, then stop. If
not, repeat step 2



Example

FIGURE 1.43. The stages of Kruskal’s algorithm.
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Theoretical guarantee of Kruskal’s algorithm

* Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight
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Prim’s Algorithm
* Given: A connected, weighted graph G. é/ﬁ
1. Choose a vertex v, and mark it.

2. From among all edges that have one marked end vertex and one
unmarked end vertex, choose an edge e of minimum weight. Mark
the edge e, and also mark its unmarked end vertex.

3. If every vertex of G is marked, then the set of marked edges forms a
minimum weight spanning tree. If not, repeat step 2

* Exercise (Ex2.3.10, W) Prim’s algorithm produces a minimum-weight
spanning tree of G
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Cayley’s tree formula /~ —\ /\

* Theorem (1.18, H; 2.2.3, W). There
are n™2 distinct labeled trees of

order n H|/\3AAW
£d €3 €3

&

63 €3 €3 €3
£d €3 €3 3
Ao A Ao oA

FIGURE 1.46. Labeled trees on four vertices
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Example

2 5
T=T, 4 3 1
6 7
5 Evolving Sequence

4
4 5
S |

SNV

3 1
I_\ 4,3, 1
6 7
3 1
O—\ 4,3,1,3
7
1 245651
4,3,1,3,1 7

FIGURE 1.47. Creating a Priifer sequence.

L ]
6=0,=4,3,1,3,1 vie V2
S=Su={l,2,3s4,5,6,7} "6. .“_3
o
Vg vy
Vi
13
6,=3,1,3,1 vie V2
§:={1,3,4,5,6,7} Vv, ® Vs
L
Vs Vi
vy
o, =1,3,1 Vi@ Vs
§,={1,3,5,6,7} Ve ® V3
Vg vy
c,=3,1

§;=1{1,3,6,7}

o,=1
§,={1,3,7}
Vl
. vy V2
G5 1s empty
S:={1,7} Ve Vi
Vs Va

FIGURE 1.48. Building a labeled tree.

14



of trees with fixed degree sequence

(e —

(2.2.4, W) Given positive integers d4, ...;d,, summing to
(n-2)!
_ [1(d;-1)!
vertex i has degree d; for each i

2n — 2, there are exactly trees with vertex set [n] such that

* Example (2.2.5, W) Consider trees with vertices [7] that have degrees
(3,1,2,1,3,1,1) +—+—

T 111 “TT1

(% + By o+ (B2 = 7




Matrix tree theorem - cofactor

* For an nXn matrix 4, the i, j cofactor of
A is defined to be

(—1)i+j det(MU)
where M;; represents the (n — 1)xX(n —
1) matrix formed by deleting row i and
column j from A

3 x 3 generic matrix |edit]

Consider a 3x3 matrix

ayy QG12  G13
A= a1 G Q23 |-
azy Q32 33

Its cofactor matrix is

( 4|02 as| _len
agy a3l a3y
aijp a3 a1

C — — Al,
azy 33 a3y
a2 a3 a1l

\ g
@y a3 oy

Q323
ass

ays
@33

ais
as3

a
a3l

ay
31

|61

Q3

a2
asz

aiz
a3z

a2
a2
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* Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled
graph with adjacency matrix A and degree matrix D, then the number
of unique spanning trees of G is equal to the value of any cofactor of
the matrix D — A laftwom o

* |f the row sums and column sums of a matrix are all 0, then the
cofactors all have the same value

* Exercise Read the proof

* Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove
Cayley’s theorem



The degree matrix D and adjacency matrix A are

Example " E 2 0 0 0 "0 0

0 2 0 0 . 100
D= 00 3 0| A= 1 1
Vs vy i 0 0 0 ‘3_ _1 1

ind so ) )

‘ 5 0 -1 -1

| | Eg o2 -1
M N D-A=1 1 1 3 _4

1 -1 -1 3

- -

The (1,1) cofactorof D — A 1s

2 -1 -1
det | —1 3 —1 | =8.
-1 -1 3

FIGURE 1.49. A labeled graph and its spanning trees. Score one for Kirchhoff!

* Exercise (Ex6, $1.3.4, H) Let e be an edge of K,,. Use Cayley’s Theorem
to prove that K,, — e has (n — 2)n™"3 spanning trees
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Wiener index %

* In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum

* Wiener index D(G) = Xy, pev () A6 (W, V)

(2.1.14, W) Among trees with n vertices, the Wiener index
D (T) is minimized by stars and maximized by paths, both uniquely

* Over all connected n-vertex graphs, D(G) is minimized by K,, and
maximized (2.1.16, W) by paths
* (Lemma 2.1.15, W) If H is a subgraph of G, then d;(u, v) < dy(u, v)



.SWS E\/?ij fveQ L\ag (=) eo%ps |
D(Kium) = (o0 251 < Do)

To S how W?MNSS, Consiodler o (uvf :(e']' w/ ./uu‘jMw L
W (J{J/\W v s muvt howe ivtone 2 f)«zw\ X (193 WMM&]/;’L:IJ.)
DlM o‘t}w/ Vs LS st be t«u‘j%ws CH] AL T N o viow

i PWH’\ D(PV\—(>
) Po - DY =0
e P o= DY =1 =(3)

n=y Py o= D(P) —-l+2+|—_4.:(4§>
D(Pm = |+2+---+th+ D(Ph_o

- [Nt -0t2 Nt
507 ( s )7 )
Btj Momction Nl 2,1
1 (N24) Let u be o oot
~ S_ Op(u,u)
DIT) ~M+

ve’]’
SD( P
(P For owy shavtost ponth from u to a forthut vestex

(Umﬁtk L), thme & o Lt o ures oo
(1,2, - k)

A""ﬂ rep etition wode woke S - Smallu
Mmzmmss U T s st oo path, R vepotivion




Prefix coding

* A binary tree is a rooted plane tree where each vertex has at most
two children

* Given large computer files and limited storage, we want to encode
characters as binary lists to minimize (expected) total length

* Prefix-free coding: no code word is an initial portion of another

character encoding

* Example: 11001111011

—_—— -——

oo b C

20



Huffman’s Algorithm (2.3.13, W)

* Input: Weights (frequencies or probabilities) p4, ..., p,,
e Output: Prefix-free code (equivalently, a binary tree)

* |dea: Infrequent items should have longer codes; put infrequent items
deeper by combining them into parent nodes.

* Recursion: replace the two least likely items with probabilities p, p’
with a single item of weight p + p’



Example (2.3.14, W)

S5—— 100

b 1 00000
lec 00001
- 7 01

e 3 11
1f 2 0001

g 3 001
h— 6 101

25

The average length is

5X3+5+5+7X2+:--

33

30
=—<3
11
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Huffman coding is optimal

* Theorem (2.3.15, W) Given a probability distribution {p;} on n items,
Huffman’s Algorithm produces the prefix-free code with minimum

expected length T T
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Huffman coding and entropy * —

O b
* The entropy of a discrete probability distribution {p;} is that

H(p) = — z p; log, p;
[

* Exercise (Ex2.3.31, W) H(p) < average length of Huffman coding <
H(p) +1

* Exercise (Ex2.3.30, W) When each p; is a power of 12, average length
of Huffman coding is H(p)

Codewords (1 a! ! At
S1 5 0 0 average length = (1) <E> +(2) (1> + (3) <8> +(3) (8)
% 1.0 = 1.75 bits/symbol

S 25 0 10 1 1 1 1

2 ) | ,

5 1 H = 5 log, 2 + 1 log, 4 + 3 log, 8 + 3 log, 8

S 1

’ 1

o

[

125 0 110 1 3 3
> 25 5T gty
s, 125 -1 111 1.75 24

[SY
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* Trees
* |s bipartite, edges are bridge; Equivalent definitions

* Leaves, # of leaves, cut vertex; Center is a vertex or ‘an edge’ Q 1 ?

* Any tree can be embedded in a ‘dense’ graph UEStIonS °
* Spanning Tree

* Every connected graph has a spanning tree

* Minimal spanning tree, Kruskal’s Algorithm (with guarantee), Prim’s algorithm

» Cayley’s tree formula, Prifer code, # of trees with fixed degree sequence

* Matrix tree theorem

e Wiener index

* Among trees, minimized by starts, maximized by paths
* Among connected graphs, minimized by complete graphs, maximized by paths

 Hoffman coding
* Algorithm, optimality, entropy




