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Trees

• A tree is a connected graph ! with no cycles
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Properties

• Recall that 
• ⇒(Ex 3, S1.3.1, H) A tree of order # ≥ 2 is a bipartite graph

• Recall that 
• ⇒ Every edge in a tree is a bridge
• ! is a tree ⟺! is minimally connected, i.e. ! is connected but ! − (

is disconnected for every edge ( ∈ !
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Equivalent definitions (Theorem 1.5.1, D)

• ! is a tree of order #
⇔ Any two vertices of ! are linked by a unique path in !
⇔ ! is minimally connected
• i.e. ! is connected but ! − # is disconnected for every edge # ∈ !
⇔! is maximally acyclic
• i.e. ! contains no cycle but ! + &' does for any non-adjacent vertices &, ' ∈
!

⇔ (Theorem 1.10, 1.12, H) ! is connected with # − 1 edges
⇔ (Theorem 1.13, H) ! is acyclic with # − 1 edges
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Leaves of tree

• A vertex of degree 1 in a tree is called a leaf
• Theorem (1.14, H; Ex9, S1.3.2, H) Let ! be a tree of order # ≥ 2. Then 
! has at least two leaves
• (Ex3, S1.3.2, H) Let ! be a tree with max degree ∆. Then ! has at least 
∆ leaves
• (Ex10, S1.3.2, H) Let ! be a tree of order # ≥ 2. Then the number of 

leaves is
2 + .

!:#(!)&'
/ 0 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
• Every leaf node is not a cut vertex
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The center of a tree is a vertex or ‘an edge’

• Theorem (1.15, H) In any tree, the center is either a single vertex or a 
pair of adjacent vertices
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Any tree can be embedded in a ‘dense’ graph

• Theorem (1.16, H) Let ! be a tree of order 1 + 1 with 1 edges. Let 2
be a graph with 3(2) ≥ 1. Then 2 contains ! as a subgraph
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Spanning tree

• Given a graph 2 and a subgraph !, ! is a spanning tree of 2 if ! is a 
tree that contains every vertex of 2
• Example: A telecommunications company tries to lay cable in a new 

neighbourhood
• Proposition (2.1.5c, W) Every connected graph contains a spanning 

tree
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Minimal spanning tree - Kruskal’s Algorithm 

• Given: A connected, weighted graph 2
1. Find an edge of minimum weight and mark it. 
2. Among all of the unmarked edges that do not form a cycle with any 

of the marked edges, choose an edge of minimum weight and mark 
it

3. If the set of marked edges forms a spanning tree of 2, then stop. If 
not, repeat step 2 
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Example
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Theoretical guarantee of Kruskal’s algorithm 

• Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of 
minimum total weight

11

G is connected ⇒ the output is spanning tree . e , ,
- . .

, en- ,

☒II :L . T is not minimal .

Among all minimal spanning trees , T
' is the one having the largest prefix edges
e , ,

- - .

. en GI

T
'

+ ep+ ,
contains a cycle C

7- e
'

C- C- T ⇒ T
'

+ ek+ ,
- e' = : T

"

spanning tree

wle
'

) ≥ Wiesel) ⇒ WIT
"

) ≤ WIT
'

)

T
"

is minimal spanning tree
but w/ more prefix Contradiction !

et
,

- -
-

, lk , lkt ,
'



Prim’s Algorithm 

• Given: A connected, weighted graph 2. 
1. Choose a vertex 0, and mark it. 
2. From among all edges that have one marked end vertex and one 

unmarked end vertex, choose an edge ( of minimum weight. Mark 
the edge (, and also mark its unmarked end vertex. 

3. If every vertex of 2 is marked, then the set of marked edges forms a 
minimum weight spanning tree. If not, repeat step 2

• Exercise (Ex2.3.10, W) Prim’s algorithm produces a minimum-weight 
spanning tree of 2
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Cayley’s tree formula

• Theorem (1.18, H; 2.2.3, W). There 
are #()* distinct labeled trees of 
order #
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Example
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# of trees with fixed degree sequence

• Corollary (2.2.4, W) Given positive integers /+, … , /( summing to 
2# − 2, there are exactly ()* !

∏ #!)+ ! trees with vertex set # such that 
vertex 8 has degree /. for each 8

• Example (2.2.5, W) Consider trees with vertices 7 that have degrees 
3,1,2,1,3,1,1
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Matrix tree theorem - cofactor

• For an #×# matrix <, the 8, = cofactor of 
< is defined to be

−1 ./0 det A.0
where A.0 represents the # − 1 ×(
)

# −
1 matrix formed by deleting row 8 and 
column = from <
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Matrix tree theorem

• Theorem (1.19, H; 2.2.12, W; Kirchhoff) If 2 is a connected labeled 
graph with adjacency matrix < and degree matrix B, then the number 
of unique spanning trees of 2 is equal to the value of any cofactor of 
the matrix B − <
• If the row sums and column sums of a matrix are all 0, then the 

cofactors all have the same value
• Exercise Read the proof
• Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove 

Cayley’s theorem
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Example

• Exercise (Ex6, S1.3.4, H) Let ( be an edge of D(. Use Cayley’s Theorem 
to prove that D( − ( has (# − 2)#()' spanning trees
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Wiener index

• In a communication network, large diameter may be acceptable if 
most pairs can communicate via short paths. This leads us to study 
the average distance instead of the maximum
• Wiener index B 2 = ∑1,!∈4(5)/5(G, 0)

• Theorem (2.1.14, W) Among trees with # vertices, the Wiener index 
B(!) is minimized by stars and maximized by paths, both uniquely
• Over all connected #-vertex graphs, B 2 is minimized by D( and 

maximized (2.1.16, W) by paths 
• (Lemma 2.1.15, W) If ) is a subgraph of *, then +!(-, .) ≤ +"(-, .)
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• Stars Every tree has in -11 edges .

Dlki
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Prefix coding

• A binary tree is a rooted plane tree where each vertex has at most 
two children
• Given large computer files and limited storage, we want to encode 

characters as binary lists to minimize (expected) total length
• Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011
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Huffman’s Algorithm (2.3.13, W)

• Input: Weights (frequencies or probabilities) H+, … , H(
• Output: Prefix-free code (equivalently, a binary tree)
• Idea: Infrequent items should have longer codes; put infrequent items 

deeper by combining them into parent nodes.
• Recursion: replace the two least likely items with probabilities H, H′

with a single item of weight H + H′
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Example (2.3.14, W)
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a 5
b 1
c 1
d 7
e 8
f 2
g 3
h 6

a 5 100
b 1 00000
c 1 00001
d 7 01
e 8 11
f 2 0001
g 3 001
h 6 101

The average length is !×#$!$!$%×&$⋯## = #(
)) < 3
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Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution H. on # items, 
Huffman’s Algorithm produces the prefix-free code with minimum 
expected length
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Huffman coding and entropy

• The entropy of a discrete probability distribution H. is that

J H = −.
.
H. log* H.

• Exercise (Ex2.3.31, W) J(H) ≤ average length of Huffman coding ≤
J(H) + 1
• Exercise (Ex2.3.30, W) When each H. is a power of ½, average length 

of Huffman coding is J(H)
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Summary
• Trees

• Is bipartite, edges are bridge; Equivalent definitions
• Leaves, # of leaves, cut vertex; Center is a vertex or `an edge’
• Any tree can be embedded in a ‘dense’ graph

• Spanning Tree
• Every connected graph has a spanning tree
• Minimal spanning tree, Kruskal’s Algorithm (with guarantee), Prim’s algorithm
• Cayley’s tree formula, Prüfer code, # of trees with fixed degree sequence
• Matrix tree theorem

• Wiener index
• Among trees, minimized by starts, maximized by paths
• Among connected graphs, minimized by complete graphs, maximized by paths

• Hoffman coding
• Algorithm, optimality, entropy
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