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Definitions

A matching is a set of independent edges, in which no pair of edges
shares a vertex

* The vertices incident to the edges of a matching M are M-saturated
(T AT H]); the others are M-unsaturated

* A perfect matching in a graph is a matching that saturates every
vertex

(3.1.2, W) The number of perfect matchings in K,, ,, is n!

(3.1.3, W) The number of perfect matchings in K., is



Maximal/maximum matchings # K/ 8¢ K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P3, P N N
G 37

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching



Symmetric difference of matchings

@

* The symmetric difference of M,M"is MAM' = (M — M") U (M’ — M)
(3.1.9, W) Every component of the symmetric difference of

two matchings is a path or an even cycle
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Maximum matching and augmenting path

A2 A3 A4 A5
* Given a matching M, an M-alternating path is a path N
that alternates between edges in M and edges not in
M 1 | \
* An M-alternating path whose endpoints are M- - s B B G

unsaturated is an M-augmenting path
(3.1.10, W; 1.50, H; Berge 1957) A matching

M in a graph G is a maximum matching in G © G has ™ | N
no M-augmenting path P
Lemma (3.1.9, W) Every component of the symmetric difference of \ p % x

two matchings is a path or an even cycle il 8




Hall’'s theorem (TONCAS)

(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X © |[N(S)| = [S| forall S € X

(3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is @ maximum matching in G & G has
no M-augmenting path

* Exercise. Read the other two proofs in Diestel.

(3.1.13, W, 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching



General regular graph

(2.1.5, D) Every regular graph of positive even degree has a
2-factor
* A k-regular spanning subgraph is called a k-factor
* A perfect matching is a 1-factor

[heorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching




Application to SDR

S; = {2,8)

* Given some family of sets X, a system of S, = {8},
distinct representatives for the sets in X S3 = {5,7},
is a ‘representative’ collection of distinct S1=12,4,8;

Sy = {2,4}.

elements from the sets of X
The family X; = {57, ‘S> S’g Sy4} does have an SDR. namely {2,8,7,4}. The
family Xo = {51.55. 54, S5} does not have an SDR.

(1.52, H) Let 54, S5, ..., S} be a coIIectlon of finite, nonempty
sets. This collection has SDR < for every t € |k], the union of any t of
these sets contains at least t elements

1 (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite

graph W|th partition X, Y.
G contains a matching of X © [N(S)| = |S| forallS € X




KOnig Theorem
Augmenting Path Algorithm



Vertex cover

* Aset U € V is a (vertex) cover of E if every edge in G is incident with
a vertexin U

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
e A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?



Konig-Egevary Theorem (Min-max theorem)

(3.1.16, W; 1.53, H; 2.1.1, D; Konig 1931, Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges
'heorem (3.1.10, W; 1.50, H; Berge 1957) A matching

M in a graph G is a maximum matching in G © G has
no M-augmenting path
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Augmenting path algorithm (3.2&1, SW)

X
* Input: G is Bipartite with X,Y, a matching M in G
U = {M-unsaturated vertices in X } y

* Idea: Explore M-alternating paths from U
letting S € X and T € Y be the sets of vertices reached

e Initialization: S = U, T = @ and all vertices in S are unmarked

* Iteration:

* If S has no unmarked vertex, stop and report T U (X — S) as a minimum cover and M
as a maximum matching
* Otherwise, select an unmarked x € S to explore
* Consider eachy € N(x) such that xy ¢ M
* |If y is unsaturated, terminate and report an M-augmenting path from U to y
* Otherwise, yw € M for some w
* include y in T (reached from x) and include w in S (reached from y)

» After exploring all such edges incident to x, mark x and iterate.



A1

B1

Red: A random matching
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Q)

Theoretical guarantee for Augmenting path

gorithm

(3.2.2, W) Repeatedly applying the Augmenting Path
Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size



Weighted Bipartite Matching
Hungarian Algorithm



Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

 Bipartite graph
* W.l.o.g. Assume the graph is K, ,, withw; ; = 0 forall i,j € [n]
* Optimization:

score(H) = 1.6

01(1)

max w(M,)= z a; jwi

s.t. a;j;+- +a]ln— 1 forany i
ay; + - +a,]—1forany]
a; ; €{0,1}

* Integer programming
* General IP problems are NP-Complete
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(Weighted) cover

* A (weighted) cover is a choice of labels u4, ..., u,, and vy, ..., v,, such
thatu; + v; = w; ; forall i,
* The cost c¢(u, v) of a cover (u, v) is X u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

* Optimization problem

min c(u,v) = Zui + Z v;
l J

s.t. u;+v; =w;;foranyli,j



Duality

(IP)

max Zai,jwi,j
Lj
s.t.a;; +-++a;, =1foranyi
a;; + -+ ay; =1foranyj

ai,j € {0,1}

>

(Linear programming)

max zai,jwi’j
Lj
s.t.a;q +-+a;, =1foranyi
a;;+ -+ a,;=1foranyj

ai,]- >0

(Dual)

4mmm—) ™MD Zui+2vj
j

i
s.t. u; + v; =2 w;; forany i, j

* Weak duality theorem
* For each feasible solution a and (u, v)

l,J

J

i

thus max }}; ;a; jw; j < min ), u; + ;v
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Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

max ) a; iw;j =min ) u; + V;
g =min Y Y
(3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M).
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.



Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph
of K, , having the edges x;y; such thatu; + v; = w; ;
* Soif c(u,v) = w(M) for some perfect matching M, then M is composed of
edges in Gy, ,,

* And if Gy, ;, contains a perfect matching M, then (u, v) and M (whose weights
are u; + vj) are both optimal



Hungarian algorithm

* Input: Weighted K,, , = B(X,Y)

* Idea: Iteratively adjusting the cover (u, v) until the equality subgraph
G, , has a perfect matching

* Initialization: Let (u, v) be a cover, such as u; = maxw; ;, v; =0
J

(Dual)

min :E:ui4—zgzui
J

i
s.t. u; +v; =w;;foranyi,j




Hungarian algorithm (cont.)

* Iteration: Find a maximum matching M in G, ,,
* If M is a perfect matching, stop and report M as a maximum weight matching

* Otherwise, let Q be a vertex cover of size |[M| in Gy,

c LetR=XNQ,T=YNQ
€ = min{ui +Uj — W; X EX—R,yj € Y—T}

* Decrease u; by € for x; € X — R and increase vj by e fory; € T
* Form the new equality subgraph and repeat

U S R

X
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Example 2: Excess matrix
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Q)

Theoretical guarantee for Hungarian

gorithm

(3.2.11, W) The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover



Example 3
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Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

* So the solution is a minimum vertex cover



Stable Matchings



Stable matching

A family (<,),ey of linear orderings <,, on E(v) is a set of
preferences for G

* A matching M in G is stable if for any edge e € E \ M, there exists an
edge f € M such that e and f have a common vertex v withe <, f
* Unstable: There exists xy € E \ M but xy', x'y € M with xy’ <, xy

x'y <, xy
3.2.16. Example. Given men x, y, z, w, women 4, b, ¢, d, and preferences lhisted
below, the matching {xa, yb, zd, wc} is a stable matching. E

Men {x, y,z, w} Women {a, b, c, d}
x:a>b>c>d a:z>x>y>w
yia>c>b>d b:y>w>x>z
z:c>d>a>b c:w>x>y>7z
w:c>b>a>d d:ix>y>z>w
30



Gale-Shapley Proposal Algorithm

* Input: Preference rankings by each of n men and n women

* Idea: Produce a stable matching using proposals by maintaining
information about who has proposed to whom and who has rejected
whom

* Iteration: Each man proposes to the highest woman on his preference
list who has not previously rejected him

* |f each woman receives exactly one proposal, stop and use the resulting
matching

* Otherwise, every woman receiving more than one proposal rejects all of them
except the one that is highest on her preference list

* Every woman receiving a proposal says “maybe” to the most attractive
proposal received



Example

Round: 1
Proposors Acceptors Proposal p00|
1 o 1
g OBl pltditdond
2 ©0JO.
® b
® . O,
Preferences
O0—-0O O—-0
Acceptor Table Proposor Table
1 3 2 4 O 1 3 4
3 4 1 2 ) 1 2 3
4 2 3 1 ©) 3 2 4
3 2 1 4 @ 3 1 4
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Example (gif)

0JO,

N N W

Round : 1
Proposors Acceptors Proposal pool
© L ®
@ [
©® [
O : O,
Preferences
O0—-0O O—-0O
Acceptor Table Proposor Table
1 3 2 4 ©) 1
3 4 1 2 @ 1
4 2 3 1 © 3
3 2 1 4 @ 3

* 1-4 propose, as none are
currently tentatively attached

R L A
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Theoretical guarantee for the Proposal

Algorithm

(3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm

produces a stable matching

* Who proposes matters (jobs/candidates)

* Exercise Among all stable matchings, every man is happiest in the one
produced by the male-proposal algorithm and every woman is

happiest under the female-proposal algorithm

3.2.16. Example. Given men x, y, z, w, women a, b, ¢, d, and preferences listed
below, the matching {xa, yb, zd, wc} is a stable matching.

Men {x, y,z,w} Women {a, b, c, d}

x:a>b>c>d a
y:a>c>b>d

w:c>b>a>d

I>X>Yy> W
b:y>w>x>2

Z:c>d>a>b c:
d:x>y>z72>w

wW>x>y>72




Matchings in General Graphs



Perfect matchings

* Ky, Con, Pyy, have perfect matchings

(3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching |

(1.58, H) If G is a graph of order 2n such that § (G) = n, then
(G has a perfect matching

corem (1.22, H, Dirac) Let G be a graph of ordern > 3. 1f 6(G) = n/2,
then G is Hamiltonian
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Tutte’s Theorem (TONCAS)

* Let q(G) be the number of connected components with odd order

(1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching & q(G —
S)<|S|forallS SV
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Fig. 2.2.1. Tutte’s condition ¢(G — S) < |S| for ¢ = 3, and the
contracted graph G5 from Theorem 2.2.3.
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Petersen’s Theorem

(1.60, H; 2.2.2, D;3.3.8, W)
Every bridgeless, 3-regular graph contains a perfect matching

(1.59, H; 2.2.1,D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching © q(G —
S)<|S|forallScV
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Find augmenting paths in general graphs

* Different from bipartite graphs, a vertex can belong to both Sand T
y x
* Example: How to explore from M-unsaturated point u .

| o

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching u v o
M in a graph G is a maximum matching in G & G has
no M-augmenting path

* Flower/stem/blossom

39




Lifting

augmenting path

._..--%—.--..—‘
ontractedv

C

blossom 8
?
3
«Q
blossom
ro
T Case 1.
blossom

> —-oeo--- o Case 2.

augmenting path

contracted G——) — .
blossom e

Vg
E
(=4
=]
Q
blossom
augmenting path
e Gem——————§
roo
Case 1.
v
blossom
ro

augmenting path

40



Edmonds’ blossom algorithm (3.3.17, W)

Input: A graph G, a matching M in (G, an M-unsaturated vertex u

Idea: Explore M-alternating paths from u, recording for each vertex the vertex from
which it was reached, and contracting blossoms when found

* Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u
and the vertices reached along saturated edges

* Reaching an unsaturated vertex yields an augmentation.
Initialization: S = {u}and T = @

Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u

. Otge;wise, select an unmarked v € S. To explore from v, successively consider each y € N(v) s.t.
y

e Ifyis unhsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting
u, )"pat

 Ify €85, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its
vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.

e Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
» After exploring all such neighbors of v, mark v and iterate



Illustration
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Example 2

.

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching
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Example 2 (cont.)

®

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching
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* Matching in bipartite graphs QUEStiOnS?

e Hall’'s Theorem (TONCAS)

* Konig Theorem: For bipartite graph, the maximum size of a matching is equal to the
minimum size of a vertex cover of its edges

* Augmenting Path Algorithm
* Matchings in weighted bipartite graphs
* Weighted cover, Hungarian algorithm, equality subgraph, excess matrix

» Stable matching in bipartite graphs with full preference lists
* Gale-Shapley Proposal Algorithm

* Matchings in general graphs
* M-alternating path, M-augmenting path

* Berge Theorem: A matching M in a graph G is a maximum
< (G has no M-augmenting path

e Tutte’s Theorem (TONCAS), Petersen’s Theorem, Edmonds’ blossom algorithm
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