Lecture 5: Matcl

Shuai Li

John Hopcroft Center, Shanghai Jiao Tor

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3330/in

Motivating example

Definitions

- A matching is a set of independent edges, in which no pair of edges shares a vertex
- The vertices incident to the edges of a matching M are M-saturated (饱和的); the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is $n!$
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n - 1)(2n - 3) \cdots 1 = (2n - 1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

• Every maximum matching is maximal, but not every maximal matching is a maximum matching

Symmetric difference of matchings

- The symmetric difference of M, M' is $M\Delta M' = (M M') \cup (M' M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Maximum matching and augmenting path

- Given a matching M , an M -alternating path is a path that alternates between edges in M and edges not in \boldsymbol{M}
- An M-alternating path whose endpoints are M unsaturated is an M -augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Hall's theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y .

G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular $(k > 0)$ bipartite graph has a perfect matching

General regular graph

- Corollary (2.1.5, D) Every regular graph of positive even degree has a 2-factor
	- A k -regular spanning subgraph is called a k -factor
	- A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular ($k > 0$) bipartite graph has a perfect matching

Application to SDR

• Given some family of sets X , a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

$$
S_1 = \{2, 8\},
$$

\n
$$
S_2 = \{8\},
$$

\n
$$
S_3 = \{5, 7\},
$$

\n
$$
S_4 = \{2, 4, 8\},
$$

\n
$$
S_5 = \{2, 4\}.
$$

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

• Theorem(1.52, H) Let $S_1, S_2, ..., S_k$ be a collection of finite, nonempty sets. This collection has SDR \Leftrightarrow for every $t \in [k]$, the union of any t of these sets contains at least t elements

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y . G contains a matching of $X \Leftrightarrow |N(S)| \geq |S|$ for all $S \subseteq X$

König Theorem Augmenting Path Algorithm

Vertex cover

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
	- Art museum is a graph with hallways are edges and corners are nodes
	- A security camera at the corner will guard the paintings on the hallways
	- The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

Augmenting path algorithm (3.2.1, W)

- **Input**: G is Bipartite with X , Y , a matching M in G $U = \{M$ -unsaturated vertices in X } Y
- \bullet **Idea**: Explore M-alternating paths from U letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- **Initialization**: $S = U, T = \emptyset$ and all vertices in S are unmarked
- **Iteration**:
	- If S has no unmarked vertex, stop and report $T \cup (X S)$ as a minimum cover and M as a maximum matching

 \boldsymbol{X}

- Otherwise, select an unmarked $x \in S$ to explore
	- Consider each $y \in N(x)$ such that $xy \notin M$
		- If y is unsaturated, terminate and report an M -augmenting path from U to y
		- Otherwise, $yw \in M$ for some w
			- include y in T (reached from x) and include w in S (reached from y)
	- After exploring all such edges incident to x , mark x and iterate.

Theoretical guarantee for Augmenting path algorithm

• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Weighted Bipartite Matching Hungarian Algorithm

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight $w(M)$
- Bipartite graph
	- W.l.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \geq 0$ for all $i, j \in [n]$
	- Optimization:

max
$$
w(M_a) = \sum_{i,j} a_{i,j} w_{i,j}
$$

s.t. $a_{i,1} + \cdots + a_{i,n} = 1$ for any i
 $a_{1,j} + \cdots + a_{n,j} = 1$ for any j
 $a_{i,j} \in \{0,1\}$

- Integer programming
- General IP problems are NP-Complete

(Weighted) cover

- A (weighted) cover is a choice of labels $u_1, ..., u_n$ and $v_1, ..., v_n$ such that $u_i + v_j \geq w_{i,j}$ for all i, j
	- The cost $c(u, v)$ of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
	- The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

min
$$
c(u, v) = \sum_{i} u_i + \sum_{j} v_j
$$

s.t. $u_i + v_j \ge w_{i,j}$ for any *i*, *j*

Duality

- Weak duality theorem
	- For each feasible solution a and (u, v)

$$
\sum_{i,j} a_{i,j} w_{i,j} \le \sum_i u_i + \sum_j v_j
$$

thus $\max \sum_{i,j} a_{i,j} w_{i,j} \le \min \sum_i u_i + \sum_j v_j$

Duality (cont.)

- Strong duality theorem
	- If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$
\max \sum_{i,j} a_{i,j} w_{i,j} = \min \sum_i u_i + \sum_j v_j
$$

• Lemma (3.2.7, W) For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \geq w(M)$. $c(u, v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u, v) are optimal.

Equality subgraph

- The equality subgraph $G_{u,v}$ for a cover (u, v) is the spanning subgraph of $K_{n,n}$ having the edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$
	- So if $c(u, v) = w(M)$ for some perfect matching M, then M is composed of edges in $G_{11,12}$
	- And if $G_{u,v}$ contains a perfect matching M, then (u, v) and M (whose weights are $u_i + v_j$) are both optimal

Hungarian algorithm

- **Input**: Weighted $K_{n,n} = B(X, Y)$
- **Idea**: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching

Music

 122

175

 150

250

Clean

• Initialization: Let (u, v) be a cover, such as $u_i = \max_i$ \dot{J} $w_{i,j}$, $v_j = 0$

Hungarian algorithm (cont.)

- **Iteration**: Find a maximum matching M in $G_{u,v}$
	- If M is a perfect matching, stop and report M as a maximum weight matching
	- Otherwise, let Q be a vertex cover of size $|M|$ in $G_{u,v}$

• Let
$$
R = X \cap Q
$$
, $T = Y \cap Q$

$$
\epsilon = \min\{u_i + v_j - w_{i,j}: x_i \in X - R, y_j\}
$$

• Decrease u_i by ϵ for $x_i \in X - R$ and increase v_j by ϵ for $y_j \in T$

• Form the new equality subgraph and repeat

 $\in Y - T$

Example

Example 2: Excess matrix

 $\mathbf{2}$

3

 τ

 $\pmb{\tau}$

 $\pmb{\mathcal{T}}$

 $\overline{7}$

Optimal value is the same But the solution is not unique

 $\overline{0}$

Theoretical guarantee for Hungarian algorithm

• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Stable Matchings

Stable matching

- A family $(\leq_v)_{v\in V}$ of linear orderings \leq_v on $E(v)$ is a set of preferences for G
- A matching M in G is stable if for any edge $e \in E \setminus M$, there exists an edge $f \in M$ such that e and f have a common vertex v with $e \leq v$ f
	- Unstable: There exists $xy \in E \setminus M$ but $xy', x'y \in M$ with $xy' _x xy$ $x'y < y xy$

3.2.16. Example. Given men x, y, z, w, women a, b, c, d , and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

> Men $\{x, y, z, w\}$ Women $\{a, b, c, d\}$ $x : a > b > c > d$ $a : z > x > y > w$ $y: a > c > b > d$ $b: y > w > x > z$ $z: c > d > a > b$ $c: w > x > y > z$ $w:c > b > a > d$ $d: x > v > z > w$

Gale-Shapley Proposal Algorithm

- **Input**: Preference rankings by each of n men and n women
- **Idea**: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- **Iteration**: Each man proposes to the highest woman on his preference list who has not previously rejected him
	- If each woman receives exactly one proposal, stop and use the resulting matching
	- Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
	- Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example

Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- Exercise Among all stable matchings, every man is happiest in the one produced by the male-proposal algorithm and every woman is happiest under the female-proposal algorithm

3.2.16. Example. Given men x, y, z, w, women a, b, c, d , and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

> Men $\{x, y, z, w\}$ Women $\{a, b, c, d\}$ $x: a > b > c > d$ $a: z > x > y > w$ $y: a > c > b > d$ $b: y > w > x > z$ $z:c>d>a>b$ $c:w>x>y>z$ $w:c > b > a > d$ $d: x > y > z > w$

Matchings in General Graphs

Perfect matchings

- K_{2n} , C_{2n} , P_{2n} have perfect matchings
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular ($k > 0$) bipartite graph has a perfect matching
- Theorem(1.58, H) If G is a graph of order 2n such that $\delta(G) \geq n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let $q(G)$ be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \geq 2$. G has a perfect matching $\Leftrightarrow q(G (S) \leq |S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte's condition $q(G-S) \leq |S|$ for $q=3$, and the contracted graph G_S from Theorem 2.2.3.

Petersen's Theorem

• Theorem (1.60, H; 2.2.2, D;3.3.8, W) Every bridgeless, 3-regular graph contains a perfect matching

> Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \geq 2$. G has a perfect matching $\Leftrightarrow q(G S$) \leq $|S|$ for all $S \subseteq V$

Find augmenting paths in general graphs

- Different from bipartite graphs, a vertex can belong to both S and T
- Example: How to explore from M -unsaturated point u

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

• Flower/stem/blossom

Lifting

Edmonds' blossom algorithm (3.3.17, W)

- **Input**: A graph G , a matching M in G , an M-unsaturated vertex u
- \cdot **Idea**: Explore M-alternating paths from u , recording for each vertex the vertex from which it was reached, and contracting blossoms when found
	- Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
	- Reaching an unsaturated vertex yields an augmentation.
- **Initialization**: $S = \{u\}$ and $T = \emptyset$
- **Iteration**: If S has no unmarked vertex, stop; there is no M-augmenting path from u
	- Otherwise, select an unmarked $v \in S$. To explore from v , successively consider each $y \in N(v)$ s.t. $y \notin T$
		- If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, v -path
		- If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
		- Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
	- After exploring all such neighbors of v , mark v and iterate

Illustration

Example

Example 2

Example 2 (cont.)

Summary

- Matching in bipartite graphs
	- Hall's Theorem (TONCAS)
	- König Theorem: For bipartite graph, the maximum size minimum size of a vertex cover of its edges
	- Augmenting Path Algorithm
- Matchings in weighted bipartite graphs
	- Weighted cover, Hungarian algorithm, equality subgraph,
- Stable matching in bipartite graphs with full prefe
	- Gale-Shapley Proposal Algorithm
- Matchings in general graphs
	- M-alternating path, M-augmenting path
	- Berge Theorem: A matching M in a graph G is a maxim \Leftrightarrow G has no M-augmenting path
	- Tutte's Theorem (TONCAS), Petersen's Theorem, Edmo