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Motivating example
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Definitions

• A matching is a set of independent edges, in which no pair of edges 
shares a vertex
• The vertices incident to the edges of a matching ! are !-saturated 

(饱和的); the others are !-unsaturated
• A perfect matching in a graph is a matching that saturates every 

vertex
• Example (3.1.2, W) The number of perfect matchings in "!,! is #!
• Example (3.1.3, W) The number of perfect matchings in "#! is 

%! = 2# − 1 2# − 3 ⋯1 = 2# − 1 ‼
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Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged 
by adding an edge
• A maximum matching is a matching of maximum size among all 

matchings in the graph
• Example: -$, -%

• Every maximum matching is maximal, but not every maximal 
matching is a maximum matching
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Symmetric difference of matchings

• The symmetric difference of !,!′ is !∆!& = (! −!′) ∪ (!& −!)
• Lemma (3.1.9, W) Every component of the symmetric difference of 

two matchings is a path or an even cycle
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or cycle
b-v DMW) ≤ 1 Every path✗ alternates edges in M and M

'

F- MOM ' dfw ) ≤ 2 ⇒ ☐ (F) ≤ z ⇒ Every cycle must have even length
i. Every component

-

in F must be a path or a cycle



Maximum matching and augmenting path

• Given a matching !, an !-alternating path is a path 
that alternates between edges in ! and edges not in 
!

• An !-alternating path whose endpoints are !-
unsaturated is an !-augmenting path
• Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching 
! in a graph 4 is a maximum matching in 4 ⇔ 4 has 
no !-augmenting path
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Hall’s theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let 4 be a bipartite 
graph with partition 6, 7.
4 contains a matching of 6⇔ 9(:) ≥ : for all : ⊆ 6

• Exercise. Read the other two proofs in Diestel.
• Corollary (3.1.13, W; 2.1.3, D) Every =-regular (= > 0) bipartite graph 

has a perfect matching
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M is maximum but not matching of ✗ × y
Let UEX be an M - unsaturated vertex .

:¥A = { VEG : u can be reached by
M- alternating paths from u }

S : = An X

T : = Any
◦ S - { uh
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◦ S- {u) and T are 1- 1 correspondence by edges in µ
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General regular graph

• Corollary (2.1.5, D) Every regular graph of positive even degree has a 
2-factor
• A !-regular spanning subgraph is called a !-factor
• A perfect matching is a 1-factor
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• Given some family of sets 6, a system of 
distinct representatives for the sets in 6
is a ‘representative’ collection of distinct 
elements from the sets of 6

• Theorem(1.52, H) Let :', :#, … , :( be a collection of finite, nonempty 
sets. This collection has SDR ⇔ for every A ∈ [=], the union of any A of 
these sets contains at least A elements

Application to SDR
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König Theorem
Augmenting Path Algorithm
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Vertex cover

• A set E ⊆ F is a (vertex) cover of G if every edge in 4 is incident with 
a vertex in E
• Example: 
• Art museum is a graph with hallways are edges and corners are nodes
• A security camera at the corner will guard the paintings on the hallways
• The minimum set to place the cameras?
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König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
Let 4 be a bipartite graph. The maximum size of a matching in 4 is 
equal to the minimum size of a vertex cover of its edges
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G = B( ✗ if) let M be a maximum matching
W : = 14 - unsaturated points in ✗

A : = { vertices in G that can be reached via M- alternating
paths from W )

× Y S : = An X

T : = Any
0 S - W and T are 1-1 correspondence via matchings in M

1st - 1W / = IT / ✗ Y

S T1W / = 1×1 - 1Mt
✗-SIX-T◦ NIS) = T

T ≤ NCS) .

Y YE NIS )
-T ,

7- VES
, vy c-E

VEIN

VEIN -07g M - alternating path
◦ C- ( X - S) UT is vertex cover
⇔ No edges between S and X- T

14=1×1 - 1st -111-1=1×1 - IWI = 1Mt



Augmenting path algorithm (3.2.1, W)

• Input: ! is Bipartite with ", $, a matching % in !
& = %−unsaturated ver6ces in "

• Idea: Explore %-alternating paths from &
letting ( ⊆ " and * ⊆ $ be the sets of vertices reached
• Initialization: ( = &, * = ∅ and all vertices in ( are unmarked
• Iteration: 

• If S has no unmarked vertex, stop and report ! ∪ ($ − &) as a minimum cover and (
as a maximum matching

• Otherwise, select an unmarked ) ∈ & to explore 
• Consider each ! ∈ #(%) such that %! ∉ (

• If ! is unsaturated, terminate and report an "-augmenting path from # to !
• Otherwise, !$ ∈ " for some $

• include ! in & (reached from ') and include $ in ( (reached from !)
• After exploring all such edges incident to %, mark % and iterate.
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Example
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Theoretical guarantee for Augmenting path 

algorithm 

• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path 
Algorithm to a bipartite graph produces a matching and a vertex 
cover of equal size

15



Weighted Bipartite Matching
Hungarian Algorithm
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Weighted bipartite matching

• The maximum weighted matching problem is to seek a perfect matching %
to maximize the total weight ,(%)
• Bipartite graph

• W.l.o.g. Assume the graph is +!,! with ,#,$ ≥ 0 for all /, 1 ∈ 2
• Optimization:

max ,((%)=7
#,$
8#,$,#,$

9. ;. 8#,&+⋯+ 8#,! = 1 for any /
8&,$ +⋯+ 8!,$ = 1 for any 1
8#,$ ∈ 0,1

• Integer programming
• General IP problems are NP-Complete
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(Weighted) cover

• A (weighted) cover is a choice of labels H', … , H! and I', … , I! such 
that H) + I* ≥ K),* for all L, M
• The cost #(%, ') of a cover (%, ') is ∑! %! + ∑" '"
• The minimum weighted cover problem is that of finding a cover of minimum 

cost
• Optimization problem

min Q H, I =R
)
H) +R

*
I*

S. A. H) + I* ≥ K),* for any L, M
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Duality

• Weak duality theorem
• For each feasible solution + and %, '

,
!,"
+!,"-!," ≤,

!
%! +,

"
'"

thus max∑!," +!,"-!," ≤ min∑! %! + ∑" '"
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(IP)

max '
!,#
(!,#)!,#

*. ,. (!,$ +⋯+ (!,% = 1 for any 6
($,# +⋯+ (%,# = 1 for any 7
(!,# ∈ 0,1

(Linear programming)

max '
!,#
(!,#)!,#

*. ,. (!,$ +⋯+ (!,% = 1 for any 6
($,# +⋯+ (%,# = 1 for any 7
(!,# ≥ 0

(Dual)

min '
!
<! +'

#
=#

*. ,. <! + =# ≥ )!,# for any 6, 7



Duality (cont.)

• Strong duality theorem
• If one of the two problems has an optimal solution, so does the other one and 

that the bounds given by the weak duality theorem are tight
max,

!,"
+!,"-!," = min,

!
%! +,

"
'"

• Lemma (3.2.7, W) For a perfect matching ! and cover (H, I) in a 
weighted bipartite graph 4, Q H, I ≥ K ! .
Q(H, I) = K(!)⇔ ! consists of edges Y)Z* such that H) + I* = K),*
In this case, ! and (H, I) are optimal.
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Equality subgraph

• The equality subgraph 4+,, for a cover (H, I) is the spanning subgraph 
of "!,! having the edges Y)Z* such that H) + I* = K),*
• So if #(%, ') = -(5) for some perfect matching 5, then 5 is composed of 

edges in 6>,?
• And if 6>,? contains a perfect matching 5, then (%, ') and 5 (whose weights 

are %! + '") are both optimal 
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Hungarian algorithm

• Input: Weighted "!,! = [(6, 7)

• Idea: Iteratively adjusting the cover (H, I) until the equality subgraph 
4+,, has a perfect matching
• Initialization: Let (H, I) be a cover, such as H) = max

*
K),*, I* = 0
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(Dual)

min '
!
<! +'

#
=#

*. ,. <! + =# ≥ )!,# for any 6, 7



Hungarian algorithm (cont.)

• Iteration: Find a maximum matching ! in 4+,,
• If 5 is a perfect matching, stop and report 5 as a maximum weight matching
• Otherwise, let 7 be a vertex cover of size 5 in 6>,?

• Let - = / ∩ 1, 2 = 3 ∩ 1
4 = min 8! + :" − <!,": >! ∈ / − -, @" ∈ 3 − 2

• Decrease 8! by 4 for >! ∈ / − - and increase :" by 4 for @" ∈ 2
• Form the new equality subgraph and repeat
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Example
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Example 2: Excess matrix
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Optimal value is the same
But the solution is not unique



Theoretical guarantee for Hungarian 

algorithm

• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum 
weight matching and a minimum cost cover
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Example 3
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Back to (unweighted) bipartite graph

• The weights are binary 0,1
• Hungarian algorithm always maintain integer labels in the weighted 

cover, thus the solution will always be 0,1
• The vertices receiving label 1 must cover the weight on the edges, 

thus cover all edges
• So the solution is a minimum vertex cover
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Summary

• Matching in bipartite graphs
• Hall’s Theorem (TONCAS)
• König Theorem: For bipartite graph, the maximum size of a matching is equal 

to the minimum size of a vertex cover of its edges
• Augmenting Path Algorithm

• Matchings in weighted bipartite graphs
• Weighted cover, Hungarian algorithm, equality subgraph, excess matrix 
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Questions?
https://shuaili8.github.io
Shuai Li


