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Definitions

A matching is a set of independent edges, in which no pair of edges
shares a vertex

* The vertices incident to the edges of a matching M are M-saturated
(T AT H]); the others are M-unsaturated

* A perfect matching in a graph is a matching that saturates every
vertex

(3.1.2, W) The number of perfect matchings in K,, ,, is n!

(3.1.3, W) The number of perfect matchings in K., is



Maximal/maximum matchings # K/ 8¢ K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P;, Ps P NN N
G 40 <3

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching



Symmetric difference of matchings @

* The symmetric difference of M,M"is MAM' = (M — M") U (M’ — M)

(3.1.9, W) Every component of the symmetric difference of
two matchings is a path or an even cycle
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Maximum matching and augmenting path

A2 A3 A4 A5
* Given a matching M, an M-alternating path is a path N
that alternates between edges in M and edges not in \\X
M IR RVAAN
* An M-alternating path whose endpoints are M- - s B B G
unsaturated is an M-augmenting path B
(3.1.10, W; 1.50, H; Berge 1957) A matching |
M in a graph G is a maximum matchingin G © G has N ||, °N
no M-augmenting path P
Lemma (3.1.9, W) Every component of the symmetric difference of | \ /. 3 x
two matchings is a path or an even cycle | dges m-ﬁ;tchmg/ ? cdgesin ;;f;tchmg
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Hall’'s theorem (TONCAS)

X
(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) LetTG be a bipartite
graph with partition X, Y.
G contains a matching of X © |[N(S)| = [S| forall S € X

'heorem (3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G © G has
no M-augmenting path

* Exercise. Read the other two proofs in Diestel.
(3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph

has a perfect matching % RIX\=k|TI D X=IT
VSSX, MS\ S RI|MSI) =8| g ll\/(&)\

XY
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G s vk regulor. G i omited (oLiog )
= (5 s bulerion = V)2 V€y - VnnVne =V,

General regular graph & & wr v N
G- %IFWU(6~> GH~> ﬂ<
/XS le«vejuia/r
* Corollary (2.1.5, D) Every regular graph of positive even’degree has a
2-factor

* A k-regular spanning subgraph is called a k-factor
* A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching
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Application to SDR DR 0 oty 4 Y o]
~ T Si=1{2.8)
* Given some family of sets X, a system of S, = {8},
distinct representatives for the sets in X Ss = {57},
is a ‘representative’ collection of distinct 1= {Zj“}
S5 = {2,4}.

elements from the sets of X

The family X7 = {57,52,53,54} does have an SDR. namely {2,8,7,4}. The
family Xo = {57.52,.54, 55} does not have an SDR.

(1.52, H) Let 54, S5, ..., Si, be a collection of finite, nonempty
sets. This collection has SDR < for every t € |k], the union of any t of
these sets contains at least t elements
Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite

graph with partition X, Y.
G contains a matching of X © [N(S)| = |S| forallS € X




KOnig Theorem
Augmenting Path Algorithm



Vertex cover

* Aset U € V is a (vertex) cover of E if every edge in G is incident with
a vertexin U

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
e A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?



Konig-Egevary Theorem (Min-max theorem)

(3.1.16, W; 1.53, H; 2.1.1, D; Konig 1931, Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges
Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching

M in a graph G is a maximum matching in G & G has
no M-augmenting path
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Augmenting path algorithm (3.2&1, SW)

X
* Input: G is Bipartite with X,Y, a matching M in G
U = {M-unsaturated vertices in X } y

* Idea: Explore M-alternating paths from U
letting S € X and T € Y be the sets of vertices reached

e Initialization: S = U, T = @ and all vertices in S are unmarked

* Iteration:

* If S has no unmarked vertex, stop and report T U (X — S) as a minimum cover and M
as a maximum matching
* Otherwise, select an unmarked x € S to explore
* Consider eachy € N(x) such that xy ¢ M
* If yis unsaturated, terminate and report an M-augmenting path from U to y
* Otherwise, yw € M for some w
* include y in T (reached from x) and include w in S (reached from y)

» After exploring all such edges incident to x, mark x and iterate.



Example
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Q)

Theoretical guarantee for Augmenting path

gorithm

(3.2.2, W) Repeatedly applying the Augmenting Path
Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size



Weighted Bipartite Matching
Hungarian Algorithm



Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

 Bipartite graph
* W.l.o.g. Assume the graph is K, ,, withw; ; = 0 forall i,j € [n]
* Optimization:

score(H) = 1.6

01(1)

max w(M,)= z a; jwi

s.t. a;j;+- +a]ln— 1 forany i
ay; + - +a,]—1forany]
a; ; €{0,1}

* Integer programming
* General IP problems are NP-Complete
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(Weighted) cover

* A (weighted) cover is a choice of labels u4, ..., u,, and vy, ..., v,, such
thatu; + v; = w; ; forall i,
* The cost c¢(u, v) of a cover (u, v) is X u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

* Optimization problem

min c(u,v) = Zui + Z v;
l J

s.t. u; +v; =w;;foranyli,j



Duality

(IP)

max Zai,jwi,j
Lj
s.t.a;; +-++a;, =1foranyi
a;; + -+ ay; =1foranyj

ai,j € {0,1}

>

(Linear programming)

max zai,jwi’j
Lj
s.t.a;q +-+a;, =1foranyi
a;;+ -+ a,;=1foranyj

ai,]- >0

(Dual)

4mmm—) ™MD Zui+2vj
j

i
s.t. u; + v; =2 w;; forany i, j

* Weak duality theorem
* For each feasible solution a and (u, v)

l,J

J

i

thus max }}; ; a; jw; j < min ), u; + ;v
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Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

max ) a; iw;j =min ) u; + V;
g =min Y Y
(3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M).
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.



Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph
of K, , having the edges x;y; such thatu; + v; = w; ;
* Soif c(u,v) = w(M) for some perfect matching M, then M is composed of
edges in Gy, ,,

* And if Gy, ;, contains a perfect matching M, then (u, v) and M (whose weights
are u; + vj) are both optimal



Hungarian algorithm

* Input: Weighted K,, , = B(X,Y)

* Idea: Iteratively adjusting the cover (u, v) until the equality subgraph
G, , has a perfect matching

* Initialization: Let (u, v) be a cover, such as u; = maxw; ;, v; =0
J

(Dual)

min :E:ui4—zgzui
J

i
s.t. u; +v; =w;;foranyi,j




Hungarian algorithm (cont.)

* Iteration: Find a maximum matching M in G, ,,
* If M is a perfect matching, stop and report M as a maximum weight matching

* Otherwise, let Q be a vertex cover of size |[M| in Gy,

c LetR=XNQ,T=YNQ
€ = min{ui +Uj — W; X EX—R,yj € Y—T}

* Decrease u; by € for x; € X — R and increase vj by e fory; € T
* Form the new equality subgraph and repeat

U S R

X
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Example 2: Excess matrix
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Optimal value is the same
But the solution is not unique
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Q)

Theoretical guarantee for Hungarian

gorithm

(3.2.11, W) The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover



Example 3
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Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

* So the solution is a minimum vertex cover



Shuai Li
SU mma ry https://shuaili8.github.io

* Matching in bipartite graphs Questions?

e Hall’s Theorem (TONCAS)

* Kdnig Theorem: For bipartite graph, the maximum size of a matching is equal
to the minimum size of a vertex cover of its edges

* Augmenting Path Algorithm

* Matchings in weighted bipartite graphs
* Weighted cover, Hungarian algorithm, equality subgraph, excess matrix



