Lecture 5: Matchings

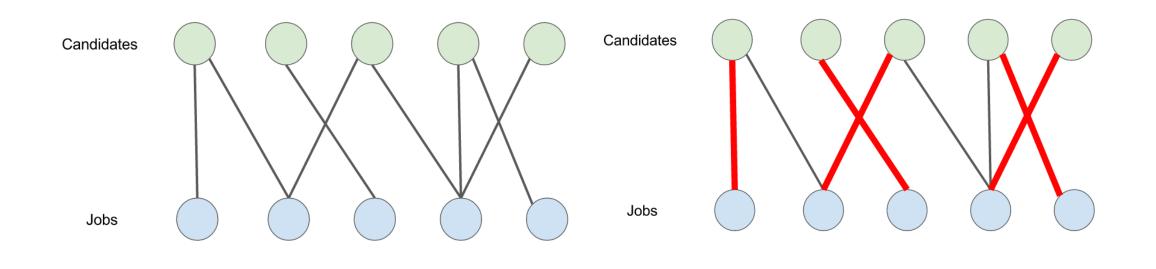
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3330/index.html

Motivating example

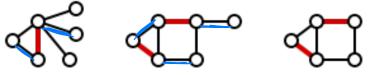


Definitions

- A matching is a set of independent edges, in which no pair of edges shares a vertex
- The vertices incident to the edges of a matching M are M-saturated (饱和的); the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n-1)(2n-3) \cdots 1 = (2n-1)!!$

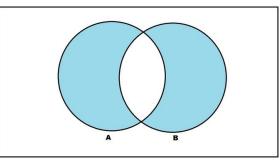
Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

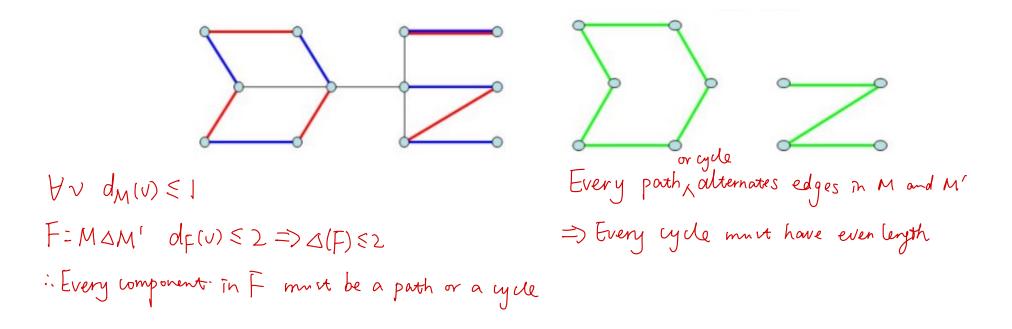


• Every maximum matching is maximal, but not every maximal matching is a maximum matching

Symmetric difference of matchings



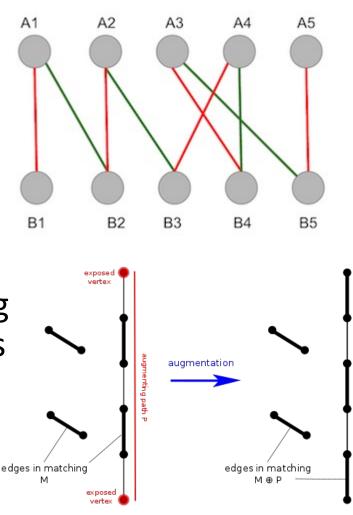
- The symmetric difference of M, M' is $M\Delta M' = (M M') \cup (M' M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle



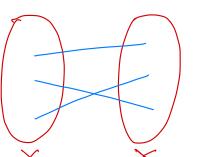
Maximum matching and augmenting path

- Given a matching *M*, an *M*-alternating path is a path that alternates between edges in *M* and edges not in *M*
- An *M*-alternating path whose endpoints are *M*-unsaturated is an *M*-augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in G ⇔ G has no M-augmenting path

Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle



Hall's theorem (TONCAS)



• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y.

G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching $k|x|=k|Y|\Rightarrow |x|=|Y|$

 $\forall S \leq X, k | S | \leq k | N(S) \implies | S | \leq | N(S) |$

General regular graph

• Corollary (2.1.5, D) Every regular graph $G = G_{+} v_{1}^{\dagger}v_{1}^{\dagger}v_{2}^{\dagger}v_{2}^{\dagger}v_{3}^{\dagger}v_{4}^{\dagger}v_{5}^{\dagger}v_$ 2-factor

G is 2k - regular. G is connected (w.l.o.g) \Rightarrow G is Eulerian \Rightarrow $v_1 e_1 v_2 e_2 \cdots v_n e_n v_{n+1} = v_1$ G- G+ $v_1^{\dagger} v_1^{\dagger} v_2^{\dagger} v_5$.

 $G_{H} = \mathcal{V}_1^{\dagger} \mathcal{V}_1^{-} = \mathcal{V}_2^{\dagger} \mathcal{V}_2^{-}$

- A k-regular spanning subgraph is called a k-factor
- A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching

Application to SDR

 Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

Theorem(1.52, H) Let S₁, S₂, ..., S_k be a collection of finite, nonempty sets. This collection has SDR ⇔ for every t ∈ [k], the union of any t of these sets contains at least t elements

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y. G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$ König Theorem Augmenting Path Algorithm

Vertex cover

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
 - Art museum is a graph with hallways are edges and corners are nodes
 - A security camera at the corner will guard the paintings on the hallways
 - The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
 Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

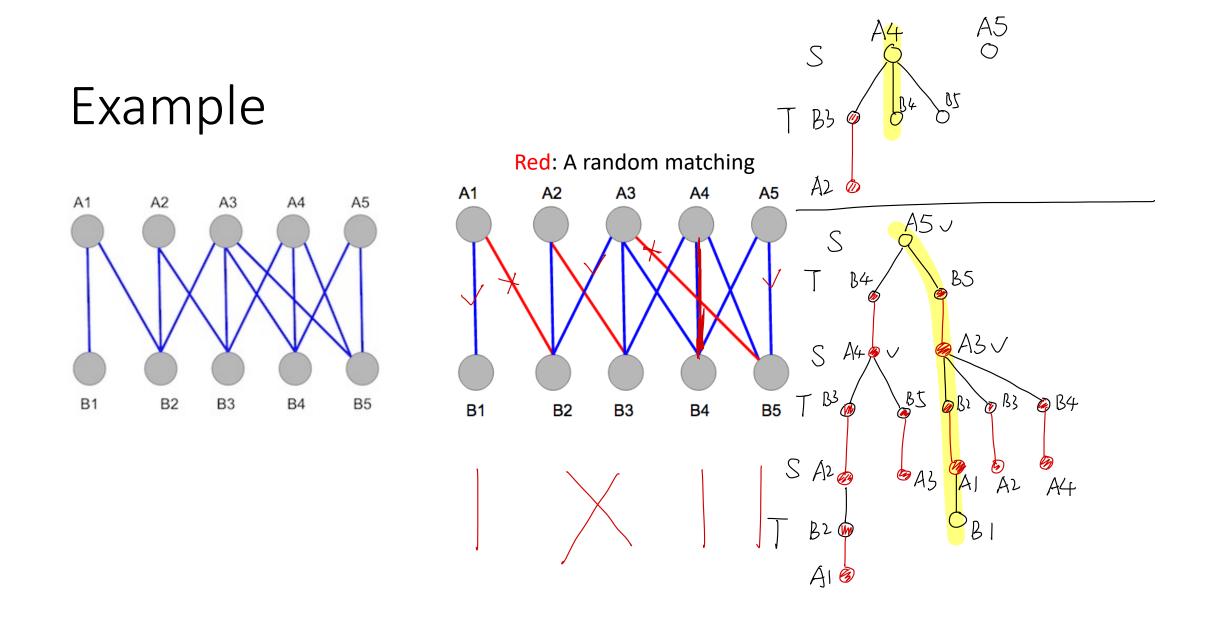
$$G = B(X,T) \quad \text{Let } M \text{ be a maximum motify} \\ W := M - unsaturated points in X \\ A := § vertices in G that can be reached via M-alternating paths from w?
X Y S := ANX
T := ANY
O S-W and T are 1-1 correspondence via matchings in M
$$|S| - |w| = |T| \qquad \qquad X Y
|w| = |X| - |M| \qquad \qquad X Y
T \subseteq N(S) . & Y \in N(S) - T, \exists V \in S, vy \in E
V \in W
V \notin W \qquad \qquad V Y
O C = (X-S) UT is vertex cover
 $\Rightarrow No edges between S and X-T
|C| = |X| - |S| + |T| = |X| - |W| = |M|$$$$$

Augmenting path algorithm (3.2.1, W)

- Input: G is Bipartite with X, Y, a matching M in G $U = \{M$ -unsaturated vertices in X $\}$
- Idea: Explore *M*-alternating paths from *U* letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- Initialization: $S = U, T = \emptyset$ and all vertices in S are unmarked
- Iteration:
 - If S has no unmarked vertex, stop and report $T \cup (X S)$ as a minimum cover and M as a maximum matching

X

- Otherwise, select an unmarked $x \in S$ to explore
 - Consider each $y \in N(x)$ such that $xy \notin M$
 - If y is unsaturated, terminate and report an M-augmenting path from U to y
 - Otherwise, $yw \in M$ for some w
 - include *y* in *T* (reached from *x*) and include *w* in *S* (reached from *y*)
 - After exploring all such edges incident to x, mark x and iterate.



Theoretical guarantee for Augmenting path algorithm

 Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

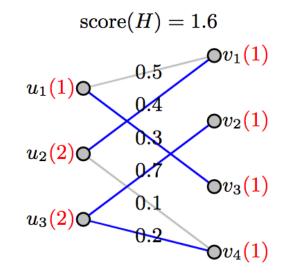
Weighted Bipartite Matching Hungarian Algorithm

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight w(M)
- Bipartite graph
 - W.I.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \ge 0$ for all $i, j \in [n]$
 - Optimization:

$$\max \quad w(M_{a}) = \sum_{i,j} a_{i,j} w_{i,j}$$

s.t. $a_{i,1} + \dots + a_{i,n} = 1$ for any i
 $a_{1,j} + \dots + a_{n,j} = 1$ for any
 $a_{i,j} \in \{0,1\}$



- Integer programming
- General IP problems are NP-Complete

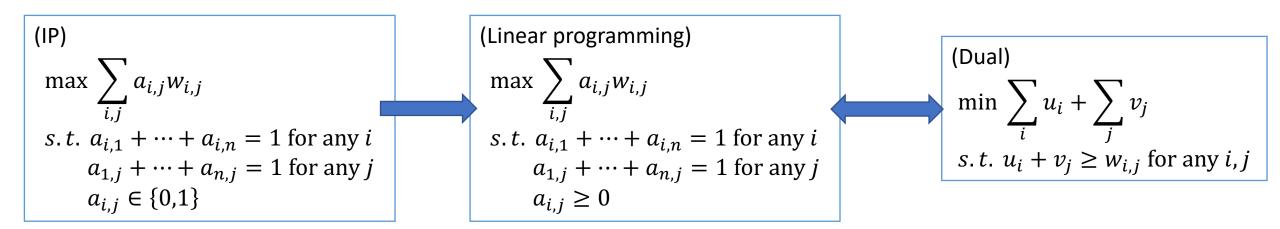
(Weighted) cover

- A (weighted) cover is a choice of labels $u_1, ..., u_n$ and $v_1, ..., v_n$ such that $u_i + v_j \ge w_{i,j}$ for all i, j
 - The cost c(u, v) of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
 - The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

min
$$c(u, v) = \sum_{i} u_i + \sum_{j} v_j$$

s.t. $u_i + v_j \ge w_{i,j}$ for any i, j

Duality



- Weak duality theorem
 - For each feasible solution *a* and (*u*, *v*)

$$\sum_{i,j} a_{i,j} w_{i,j} \leq \sum_{i} u_i + \sum_{j} v_j$$

thus max $\sum_{i,j} a_{i,j} w_{i,j} \leq \min \sum_{i} u_i + \sum_{j} v_j$

Duality (cont.)

- Strong duality theorem
 - If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$\max \sum_{i,j} a_{i,j} w_{i,j} = \min \sum_i u_i + \sum_j v_j$$

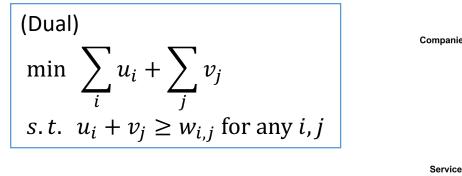
• Lemma (3.2.7, W) For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \ge w(M)$. $c(u, v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u, v) are optimal.

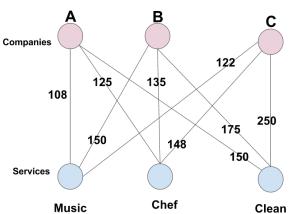
Equality subgraph

- The equality subgraph $G_{u,v}$ for a cover (u, v) is the spanning subgraph of $K_{n,n}$ having the edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$
 - So if c(u, v) = w(M) for some perfect matching M, then M is composed of edges in $G_{u,v}$
 - And if $G_{u,v}$ contains a perfect matching M, then (u, v) and M (whose weights are $u_i + v_j$) are both optimal

Hungarian algorithm

- Input: Weighted $K_{n,n} = B(X, Y)$
- Idea: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_i = \max_{i,j} w_{i,j}$, $v_j = 0$



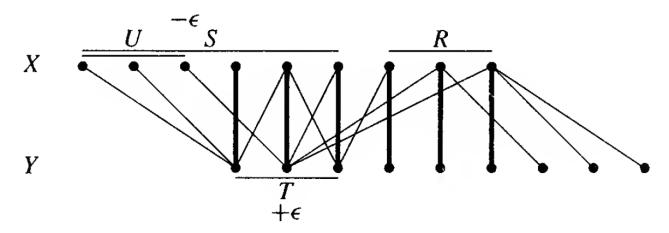


Hungarian algorithm (cont.)

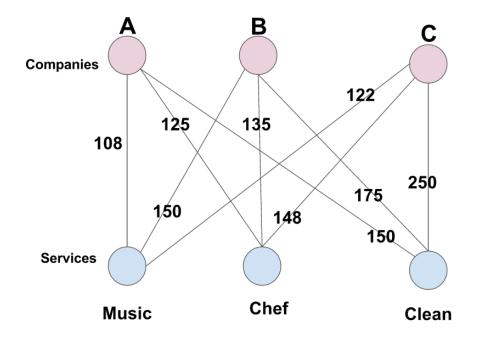
- **Iteration**: Find a maximum matching M in $G_{u,v}$
 - If *M* is a perfect matching, stop and report *M* as a maximum weight matching
 - Otherwise, let Q be a vertex cover of size |M| in $G_{u,v}$

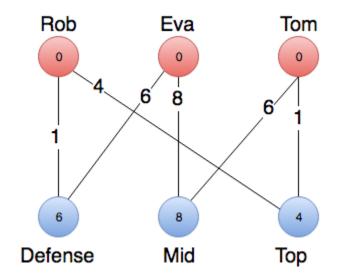
Let
$$R = X \cap Q$$
, $T = Y \cap Q$
 $\epsilon = \min\{u_i + v_j - w_{i,j} : x_i \in X - R, y_j \in Y - T\}$

- Decrease u_i by ϵ for $x_i \in X R$ and increase v_j by ϵ for $y_j \in T$
- Form the new equality subgraph and repeat



Example





Example 2: Excess matrix

5

3

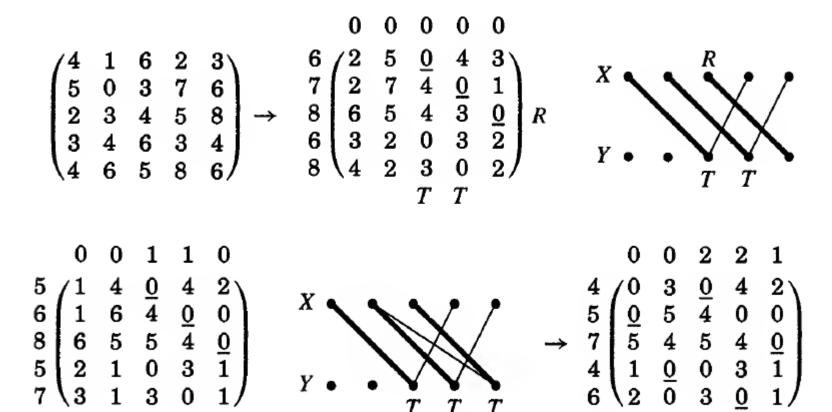
 τ

 τ

Т

6

 $\mathbf{2}$



 \rightarrow

0

Optimal value is the same But the solution is not unique

Theoretical guarantee for Hungarian algorithm

• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Summary

https://shuaili8.github.io

- Matching in bipartite graphs
 - Hall's Theorem (TONCAS)

Shuai Li

- König Theorem: For bipartite graph, the maximum size of a matching is equal to the minimum size of a vertex cover of its edges
- Augmenting Path Algorithm
- Matchings in weighted bipartite graphs
 - Weighted cover, Hungarian algorithm, equality subgraph, excess matrix