
Lecture 2: Uninformed
Search

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Today

• Agents that Plan Ahead

• Search Problems

• Uninformed Search Methods

• Depth-First Search

• Breadth-First Search

• Uniform-Cost Search

2

Agents that Plan

3

Rationality

• What is rational depends on:
• Performance measure

• Agent’s prior knowledge of environment

• Actions available to agent

• Percept/sensor sequence to date

• Being rational means maximizing your expected utility

4

Rational Agents

• Are rational agents omniscient? 无所不知的
• No – they are limited by the available percepts

• Are rational agents clairvoyant? 透视的
• No – they may lack knowledge of the environment dynamics

• Do rational agents explore and learn?
• Yes – in unknown environments these are essential

• So rational agents are not necessarily successful, but they are
autonomous (i.e., control their own behavior)

5

Planning Agents

• Planning agents:
• Ask “what if”
• Decisions based on (hypothesized or predicted)

consequences of actions
• Must have a transition model of how the world evolves

in response to actions
• Must formulate a goal (test)
• Consider how the world WOULD BE

• Spectrum of deliberativeness:
• Generate complete, optimal plan offline, then execute
• Generate a simple, greedy plan, start executing, replan

when something goes wrong

• Optimal vs. complete planning

• Planning vs. replanning
6

[Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]

Video of Demo Replanning

7

Video of Demo Mastermind

8

Search
Problems

9

Search Problems

• A search problem consists of:
• A state space

• For each state, a set
Actions(s) of successors/actions

• A transition model T(s,a)

• A step cost(reward) function c(s,a,s’)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

{N, E}

10

Search Problems Are Models

11

Example: Traveling in Romania

• State space:
• Cities

• Successor function:
• Roads: Go to adjacent city with

cost = distance

• Start state:
• Arad

• Goal test:
• Is state == Bucharest?

• Solution?

12

What’s in a State Space?

• Problem: Pathing
• States: (x,y) location

• Actions: NSEW

• Successor: update location
only

• Goal test: is (x,y)=END

• Problem: Eat-All-Dots
• States: {(x,y), dot booleans}

• Actions: NSEW

• Successor: update location
and possibly a dot boolean

• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

13

State Space Sizes?
• World state:

• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?

120x(230)x(122)x4
• States for pathing?

120
• States for eat-all-dots?

120x(230)

14

Safe Passage

• Problem: eat all dots while keeping the ghosts perma-scared

• What does the state space have to specify?
• (agent position, dot booleans, power pellet booleans, remaining scared time)

15

State Space Graphs
and Search Trees

16

State Space Graphs

• State space graph: A mathematical
representation of a search problem
• Nodes are (abstracted) world configurations

• Arcs represent successors (action results)

• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

17

State Space Graphs

• State space graph: A mathematical
representation of a search problem
• Nodes are (abstracted) world configurations

• Arcs represent successors (action results)

• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

18

S

G

d

b

p
q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

More Examples

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

19

More Examples
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

20

Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes

• The start state is the root node

• Children correspond to successors

• Nodes show states, but correspond to PLANS that achieve those states

• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

21

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

22

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
S

a b

G G ab

G a Gb

23

Tree Search

24

Search Example: Romania

25

Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)

• Maintain a fringe of partial plans under consideration

• Try to expand as few tree nodes as possible

26

General Tree Search

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?
27

General Tree Search 2

28

function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s → d
s → e
s → p
s → d → b
s → d → c
s → d → e
s → d → e → h
s → d → e → r
s → d → e → r → f
s → d → e → r → f → c
s → d → e → r → f → G 29

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

30

Breadth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

31

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?

• Optimal: Guaranteed to find the least cost path?

• Time complexity?

• Space complexity?

• Cartoon of search tree:
• b is the branching factor

• m is the maximum depth

• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + … + bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

32

Depth-First Search (DFS) Properties

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of

depth or cost

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

33

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
• Processes all nodes above shallowest solution

• Let depth of shallowest solution be s

• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

34

DFS vs BFS

35

DFS vs BFS

• When will BFS outperform DFS?

• When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]
36

Video of Demo Maze Water DFS/BFS (part 1)

37

Video of Demo Maze Water DFS/BFS (part 2)

38

Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
• Run a DFS with depth limit 1. If no solution…

• Run a DFS with depth limit 2. If no solution…

• Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level

searched, so not so bad!

…
b

39

A Note on Implementation

• Nodes have
• state, parent, action, path-cost

• A child of node by action a has
• state = Transition(node.state, a)

• parent = node

• action = a

• path-cost = node.path_cost + step_cost(node.state, a, self.state)

• Extract solution by tracing back parent pointers, collecting actions

40

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Uniform Cost Search

41

Finding a Least-Cost Path

• BFS finds the shortest path in terms of number of actions, but not the
least-cost path

• A similar algorithm would find the least-cost path

42

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2 How?

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost
contours

2

43

Uniform Cost Search 2

44

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

initialize the frontier as a priority queue using node’s path_cost as the priority

add initial state of problem to frontier with path_cost = 0

loop do

if the frontier is empty then

return failure

choose a node (with minimal path_cost) and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier with path_cost = path_cost(node) + cost(node, child)

S

A

B

C

D

G

1

4

2

4

1

3

Walk-through UCS

S

A

B

C

D

G

1

4

2

4

1

3

45

Walk-through UCS

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

46

…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least  , then the

“effective depth” is roughly C*/

• Takes time O(bC*/) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

• Is it optimal?
• Yes! (Proof next via A*)

b

C*/ “tiers”
c  3

c  2

c  1

47

Uniform Cost Issues

• Remember: UCS explores increasing cost
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

• We’ll fix that soon!
Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

48

Video of Demo Empty UCS (same cost)

49

DFS, BFS, or UCS?

50

Video of Demo Maze with Deep/Shallow
Water (part 1)

51

Video of Demo Maze with Deep/Shallow
Water (part 2)

52

Video of Demo Maze with Deep/Shallow
Water (part 3)

53

The One Queue

• All these search algorithms are the
same except for fringe strategies
• Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

• Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

• Can even code one implementation that
takes a variable queuing object

54

Search and Models

• Search operates over models
of the world
• The agent doesn’t actually try

all the plans out in the real
world!

• Planning is all “in simulation”

• Your search is only as good as
your models…

55

Search Gone Wrong?

56

Summary

• Rational agents

• Search problems

• Uninformed Search Methods

• Depth-First Search

• Breadth-First Search

• Uniform-Cost Search

Questions?

https://shuaili8.github.io

Shuai Li

57

https://shuaili8.github.io/

