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Today

• Agents that Plan Ahead

• Search Problems

• Uninformed Search Methods

• Depth-First Search

• Breadth-First Search

• Uniform-Cost Search
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Agents that Plan
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Rationality

• What is rational depends on:
• Performance measure

• Agent’s prior knowledge of environment

• Actions available to agent

• Percept/sensor sequence to date

• Being rational means maximizing your expected utility
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Rational Agents

• Are rational agents omniscient? 无所不知的
• No – they are limited by the available percepts

• Are rational agents clairvoyant? 透视的
• No – they may lack knowledge of the environment dynamics

• Do rational agents explore and learn?
• Yes – in unknown environments these are essential

• So rational agents are not necessarily successful, but they are 
autonomous (i.e., control their own behavior)
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Planning Agents

• Planning agents:
• Ask “what if”
• Decisions based on (hypothesized or predicted) 

consequences of actions
• Must have a transition model of how the world evolves 

in response to actions
• Must formulate a goal (test)
• Consider how the world WOULD BE

• Spectrum of deliberativeness:
• Generate complete, optimal plan offline, then execute
• Generate a simple, greedy plan, start executing, replan 

when something goes wrong

• Optimal vs. complete planning

• Planning vs. replanning
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[Demo: re-planning (L2D3)]

[Demo: mastermind (L2D4)]



Video of Demo Replanning
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Video of Demo Mastermind
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Search 
Problems
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Search Problems

• A search problem consists of:
• A state space

• For each state, a set 
Actions(s) of successors/actions

• A transition model T(s,a)

• A step cost(reward) function c(s,a,s’)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

{N, E}
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Search Problems Are Models
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Example: Traveling in Romania

• State space:
• Cities

• Successor function:
• Roads: Go to adjacent city with 

cost = distance

• Start state:
• Arad

• Goal test:
• Is state == Bucharest?

• Solution?

12



What’s in a State Space?

• Problem: Pathing
• States: (x,y) location

• Actions: NSEW

• Successor: update location 
only

• Goal test: is (x,y)=END

• Problem: Eat-All-Dots
• States: {(x,y), dot booleans}

• Actions: NSEW

• Successor: update location 
and possibly a dot boolean

• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
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State Space Sizes?
• World state:

• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?

120x(230)x(122)x4
• States for pathing?

120
• States for eat-all-dots?

120x(230)
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Safe Passage

• Problem: eat all dots while keeping the ghosts perma-scared

• What does the state space have to specify?
• (agent position, dot booleans, power pellet booleans, remaining scared time)
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State Space Graphs 
and Search Trees
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State Space Graphs

• State space graph: A mathematical 
representation of a search problem
• Nodes are (abstracted) world configurations

• Arcs represent successors (action results)

• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only 
once!

• We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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State Space Graphs

• State space graph: A mathematical 
representation of a search problem
• Nodes are (abstracted) world configurations

• Arcs represent successors (action results)

• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only 
once!

• We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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More Examples
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Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes

• The start state is the root node

• Children correspond to successors

• Nodes show states, but correspond to PLANS that achieve those states

• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures
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State Space Graphs vs. Search Trees
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State Space Graphs vs. Search Trees
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Tree Search
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Search Example: Romania
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Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)

• Maintain a fringe of partial plans under consideration

• Try to expand as few tree nodes as possible
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General Tree Search

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?
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General Tree Search 2
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function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do 

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier



Example: Tree Search
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Depth-First (Tree) Search
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Strategy: expand a 
deepest node first

Implementation: 
Fringe is a LIFO stack
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Breadth-First (Tree) Search
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Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?

• Optimal: Guaranteed to find the least cost path?

• Time complexity?

• Space complexity?

• Cartoon of search tree:
• b is the branching factor

• m is the maximum depth

• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + … + bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers
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Depth-First Search (DFS) Properties

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles 

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of 

depth or cost

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers
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Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
• Processes all nodes above shallowest solution

• Let depth of shallowest solution be s

• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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DFS vs BFS
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DFS vs BFS

• When will BFS outperform DFS?

• When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]
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Video of Demo Maze Water DFS/BFS (part 1)
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Video of Demo Maze Water DFS/BFS (part 2)
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Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages
• Run a DFS with depth limit 1.  If no solution…

• Run a DFS with depth limit 2.  If no solution…

• Run a DFS with depth limit 3.  …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level 

searched, so not so bad!

…
b
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A Note on Implementation

• Nodes have
• state, parent, action, path-cost

• A child of node by action a has
• state =   Transition(node.state, a)

• parent =   node

• action =   a

• path-cost =   node.path_cost +  step_cost(node.state, a, self.state)

• Extract solution by tracing back parent pointers, collecting actions
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Uniform Cost Search
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Finding a Least-Cost Path

• BFS finds the shortest path in terms of number of actions, but not the 
least-cost path

• A similar algorithm would find the least-cost path  
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Uniform Cost Search
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Uniform Cost Search 2
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function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

initialize the frontier as a priority queue using node’s path_cost as the priority

add initial state of problem to frontier with path_cost = 0

loop do 

if the frontier is empty then

return failure

choose a node (with minimal path_cost) and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier with path_cost = path_cost(node) + cost(node, child)
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Walk-through UCS
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Walk-through UCS
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…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least  , then the 

“effective depth” is roughly C*/

• Takes time O(bC*/) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

• Is it optimal?
• Yes!  (Proof next via A*)

b

C*/ “tiers”
c  3

c  2

c  1
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Uniform Cost Issues

• Remember: UCS explores increasing cost 
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

• We’ll fix that soon!
Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow 
water DFS/BFS/UCS (L2D7)]
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Video of Demo Empty UCS (same cost)
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DFS, BFS, or UCS? 
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Video of Demo Maze with Deep/Shallow 
Water (part 1)

51



Video of Demo Maze with Deep/Shallow 
Water (part 2)
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Video of Demo Maze with Deep/Shallow 
Water (part 3)
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The One Queue

• All these search algorithms are the 
same except for fringe strategies
• Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities)

• Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

• Can even code one implementation that 
takes a variable queuing object
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Search and Models

• Search operates over models 
of the world
• The agent doesn’t actually try 

all the plans out in the real 
world!

• Planning is all “in simulation”

• Your search is only as good as 
your models…
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Search Gone Wrong?
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Summary

• Rational agents

• Search problems

• Uninformed Search Methods

• Depth-First Search

• Breadth-First Search

• Uniform-Cost Search

Questions?

https://shuaili8.github.io

Shuai Li
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