
Lecture 3: Informed Search
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html


Informed Search
• Uninformed Search
• DFS
• BFS
• UCS

2

• Informed Search
• Heuristics
• Greedy Search
• A* Search
• Graph Search



Search Heuristics

• A heuristic is:
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• Pathing? 
• Examples: Manhattan distance, Euclidean distance for pathing

3

10

5
11.2



Example: Heuristic Function (Euclidean 
distance to Bucharest)

4
h(state) à value



Effect of heuristics

• Guide search towards the goal instead of all over the place

5

Start GoalStart Goal

UninformedInformed



Example: Heuristic Function 2

• Heuristic? 
• E.g. the index of the 

largest pancake that is 
still out of place

6

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)



Greedy Search

7



Greedy Search

• Expand the node that seems closest to the goal

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!
• Why?
• Heuristics might be wrong 8



Greedy Search 2
• Strategy: expand a node that you think 

is closest to a goal state
• Heuristic: estimate of distance to nearest goal 

for each state

• A common case:
• Best-first takes you straight to the (wrong) goal
• (It chooses a node even if it’s at the end of a very 

long and winding road)

• Worst-case: like a badly-guided DFS
• (It takes ℎ literally even if it’s completely wrong)

9

…
b

…
b

[Demo: contours greedy empty (L3D1)] 
[Demo: contours greedy pacman small maze (L3D4)]



Greedy Search 3

• Each time it visits or expands the point 
with least ℎ(𝑛) value
• ℎ(𝑛) is the distance from point n to end 

point. 

• It works fine when there is no 
obstacles

• The cost doubles when there is 
obstacles

10



Video of Demo Contours Greedy (Empty)

11



Video of Demo Contours Greedy (Pacman 
Small Maze)

12



A* Search

13



A* Search

14

UCS Greedy

A*



Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost 𝑔(𝑛)
• Greedy orders by goal proximity, or forward cost ℎ(𝑛)

• A* Search orders by the sum: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

15

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0 
h=6

g = 1 
h=5

g = 2 
h=6

g = 3 
h=7

g = 4 
h=2

g = 6 
h=0

g = 9 
h=1

g = 10 
h=2

g = 12 
h=0



When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

16

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S       0 3 3

g h +

S->A    2 2 4

S->B    2 1 3

S->B->G 5 0 5

S->A->G 4 0 4



A* Search

17

function A-STAR-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with f(n)=g(n)+h(n) 



18



Is A* Optimal?

• What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than actual costs!

19

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S       0 7 7
S->A    1 6 7

S->G    5 0 5



The Price is Wrong…
• Closest bid without going over…

20https://www.youtube.com/watch?v=9B0ZKRurC5Y



Admissible Heuristics: Ideas

21

Inadmissible (pessimistic) heuristics
break optimality by trapping 

good plans on the fringe

Admissible (optimistic) heuristics 
slow down bad plans but
never outweigh true costs



Admissible Heuristics

• A heuristic ℎ is admissible (optimistic) if
0 ≤ ℎ 𝑛 ≤ ℎ∗ 𝑛

where ℎ∗(𝑛) is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s involved in 
using A* in practice

22

15 11.5
0.0



Optimality of A* Tree Search

• Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

• Claim:
• A will exit the fringe before B

23

…



Optimality of A* Tree Search: Blocking

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

24

Definition of f-cost
Admissibility of h

…

h = 0 at a goal



Optimality of A* Tree Search: Blocking 2

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

25

B is suboptimal
h = 0 at a goal

…



Optimality of A* Tree Search: Blocking 3

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe, 

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B
• A expands before B
• A* search is optimal

26

…



UCS vs A*

• Uniform-cost expands equally in all 
“directions”

• A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

27

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

…
b

…
b



Video of Demo Contours (Empty) -- UCS

28



Video of Demo Contours (Empty) -- Greedy

29



Video of Demo Contours (Empty) – A*

30



Video of Demo Contours (Pacman Small Maze) 
– A*

31



Comparison

32

Greedy Uniform Cost A*



A* Applications

33



A* Applications 2

• Video games
• Pathing / routing problems
• Resource planning problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition
• …

34
[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Image: maps.google.com



Video of Demo Pacman (Tiny Maze) – UCS / 
A*

35



Video of Demo Empty Water Shallow/Deep
– Guess Algorithm

36



Creating Heuristics

• Most of the work in solving hard search problems 
optimally is in coming up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available

• Inadmissible heuristics are often useful too
37

15
366



Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• How many successors from the start state?
• What should the costs be? 38

Start State Goal State
Actions

Admissible
heuristics?



Example: 8 Puzzle - 2

• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) =
• This is a relaxed-problem heuristic

39

8

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



Example: 8 Puzzle - 3

• What if we had an easier 8-puzzle 
where any tile could slide any 
direction at any time, ignoring 
other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) =
40

3 + 1 + 2 + … = 18

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



Example: 8 Puzzle - 4

• How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but 

usually do more work per node to compute the heuristic itself

41



Combining Heuristics, Dominance

• Dominance: ℎ" ≥ ℎ# if

• Roughly speaking, larger is better as long as 
both are admissible

• Heuristics form a semi-lattice:
• Max of admissible heuristics is admissible

• Trivial heuristics
• Bottom of lattice is the zero heuristic 

(what does this give us?)
• Top of lattice is the exact heuristic, but 

usually too expensive
42



Graph Search

43



Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work

44

State Graph Search Tree



Graph Search

• In BFS, for example, we shouldn’t bother expanding the circled nodes 
(why?)

45

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a



Graph Search 2

• Idea: never expand a state twice
• How to implement: 
• Tree search + set of expanded states (“closed set”, “explored set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been 

expanded before
• If not new, skip it, if new add to closed/explored set

• Important: store the closed/explored set as a set, not a list
• Can graph search wreck completeness?  Why/why not?
• How about optimality?

46



function GRAPH_SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier



Graph Search 3

• This graph search algorithm overlays a tree on a graph
• The frontier states separate the explored states from never seen 

states

Images: AIMA, Figure 3.8, 3.9



Quiz

• What is the relationship between these sets of states after each loop 
iteration in GRAPH_SEARCH?
• (Loop invariants!!!)

49

A
Explored Never Seen

Frontier

B
Explored Never Seen

Frontier

C
Explored Never Seen

Frontier



function UNIFORM-COST-GRAPH-SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost = 0
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

else if the child is already in the frontier with higher path_cost then
replace that frontier node with child



function A-STAR-GRAPH-SEARCH(problem) returns a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
add initial state of problem to frontier with priority f(S) = 0 + h(S)
loop do 

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
add the node state to the explored set
for each resulting child from node

if the child state is not already in the frontier or explored set then
add child to the frontier

else if the child is already in the frontier with higher f(n) then
replace that frontier node with child



A* Tree Search

52

S

A

C

G

1

3

1

3
h=2

h=4

h=1

h=0

S (0+2)

A (1+4)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree



Quiz: A* Graph Search

• What paths does A* graph search consider during its search?

53

S

A

C

G

1

3

1

3
h=2

h=4

h=1

h=0

A)    S, S-A, S-C, S-C-G

C)    S, S-A, S-A-C, S-A-C-G

D)    S, S-A, S-C, S-A-C, S-A-C-G

B)    S, S-A, S-C, S-A-C, S-C-G



Quiz: A* Graph Search 2

• What does the resulting graph tree look like?

54

S
A

C

G

S
A

C

G

A)

B)

C & D)

S
A

C

G

S

A

C

G

1

3

1

3
h=2

h=4

h=1

h=0



A* Graph Search Gone Wrong?

55

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Explored Set: S B C A
-Simple check against explored set blocks C
-Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants



Consistency of Heuristics

• Main idea: estimated heuristic costs ≤ actual 
costs
• Admissibility: heuristic cost ≤ actual cost to goal

• h(A) ≤ actual cost from A to G
• Consistency: heuristic “arc” cost ≤ actual cost for 

each arc
• h(A) – h(C) ≤ cost(A to C)
• triangle inequality: h(A) ≤ c(A-C) + h(C)

• Consequences of consistency:
• The f value along a path never decreases

• h(A) ≤ cost(A to C) + h(C)
• A* graph search is optimal

56

3

A

C

G

h=4 h=1
1

h=2



Optimality of A* Graph Search

• Sketch: consider what A* does with a 
consistent heuristic:
• Fact 1: In tree search, A* expands nodes in 

increasing total f value (f-contours)

• Fact 2: For every state s, nodes that reach s 
optimally are expanded before nodes that 
reach s suboptimally

• Result: A* graph search is optimal

57

…

f £ 3

f £ 2

f £ 1



Optimality of A* Graph Search: Proof

• For any 𝑛 on path to 𝐺∗, let 𝑛’ be a worse 
node for the same state
• Let 𝑝 be the ancestor of 𝑛 that was on the 

queue when 𝑛’ was added in the queue
• Claim: 𝑝 will be expanded before 𝑛’
• 𝑓(𝑝) ≤ 𝑓(𝑛) because of consistency
• 𝑓(𝑛) < 𝑓(𝑛’) because 𝑛’ is suboptimal
• 𝑝 would have been expanded before 𝑛’

• Thus 𝑛 will be expanded before 𝑛’
• All ancestors of 𝐺∗ are not blocked

58



Optimality of A* Search

• Tree search:
• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

• Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h = 0 is consistent)

• Consistency implies admissibility

• In general, most natural admissible heuristics 
tend to be consistent, especially if from relaxed 
problems

59



Summary of A*

• A* uses both backward costs and (estimates of) forward costs
• A* is optimal with admissible / consistent heuristics
• Heuristic design is key: often use relaxed problems

60



Summary

• Informed Search Methods
• Heuristics
• Greedy Search
• A* Search
• Graph Search

Questions?

https://shuaili8.github.io
Shuai Li

61

https://shuaili8.github.io/

