Lecture 3: Informed Search

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

Part of slide credits: CMU Al & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Informed Search

* Uninformed Search * Informed Search
* DFS * Heuristics
* BFS * Greedy Search
 UCS A* Search

* Graph Search

e

shdtterstock
@ o

Search Heuristics

—)

Heuristi - Tron

* A heuristic is:
* A function that estimates how close a state is to a goal
* Designed for a particular search problem
e Pathing?
* Examples: Manhattan distance, Euclidean distance for pathing

—

NoPE. GoaL'\
<

_1
—— =< |

Heuristi - Tron _\

Example: Heuristic Function (Euclidean
distance to Bucharest)

ﬁ'tmight—line distance \

to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
[Vaslui Hirsova 151
lasi 226
Timisoara Lugoj 244
142 Mehadia 241
Pitesti Neamt 234
Oradea 380
98 . Pitesti 98

] Hirsova . . e
™ Mehadia Urziceni Rimnicu Vilcea 193
75 Sibiu 253
Timisoara 329
Dobreta [Urziceni 80
=l Craiova Eforie Vaslui 199
L] Giurgiu Zerind 374

h(state) = value

Effect of heuristics

* Guide search towards the goal instead of all over the place

Sta rGOa| Sta@ Goal

Informed Uninformed

Example: Heuristic Function 2

. ictic?
Heuristic: 3

e E.g. theindexofthe , —
largest pancake that is I I

still out of place

Greedy Search

Greedy Search

Sibiu g9 Fagaras

* Expand the node that seems closest to the goal

[} Mehadia

75
~ Arad

Dobreta [J

Sy

329

366 380 193
253 0

* |s it optimal?
* No. Resulting path to Bucharest is not the shortest!
* Why?
* Heuristics might be wrong 8

Greedy Search 2

 Strategy: expand a node that you think
is closest to a goal state

* Heuristic: estimate of distance to nearest goal
for each state

* A common case:
» Best-first takes you straight to the (wrong) goal

(It chooses a node even if it’s at the end of a very
long and winding road)

* Worst-case: like a badly-guided DFS

* (It takes h literally even if it’'s completely wrong)
[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Greedy Search 3

* Each time it visits or expands the point
with least h(n) value

e h(n) is the distance from point n to end T 181 U

point.

* |t works fine when there is no

obstacles

* The cost doubles when there is

obstacles

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman
Small Maze)

A* Search

A* Search

Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost g(n)
« Greedy orders by goal proximity, or forward cost h(n)

« A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg éSrenager

When should A* terminate?

e Should we stop when V\Ze enqueue a goal?
=2

2 2

@th h=0 @
2 e 3

h=1
* No: only stop when we dequeue a goal

gh+

-S- 0

~J

&

S->A

() S
() S

4

=>->B 213

S->B->G505

S->A->G404

16

A* Search

A-STAR-SEARCH(problem) a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier with f(n)=g(n)+h(n)

(a) The initial state P And >

366=0+366

(b) After expanding Arad
P Sibiu Cimisoard Cerind D
3931404253 44721184329 449=75+374

(¢) After expanding Sibiu

(] Vaslui

H9=T75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea
] Hirsova

86

[] Mehadia Urziceni

Timisoard

44T=118+329 449=75+374 75

Dobreta []

. Eforie
[] Giurgiu
526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras
Arad 366 Mehadia 241
Bucharest 0 Neamt 234

e Craiova 160 Oradea 380
646280+ Drobeta 242 Pitesti 100

449=75+374

; Eforie 161 Rimnicu Vilcea 193

591=338+253 450=450+0 526=366+160 417=317+100 553=3(0)+253 Fagaras 1 76 Sibiu 253

(f) After expanding Pitesti Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

449=75+374

18

418=418+0 615=455+160 607=414+193

s A* Optimal?

h=6

gh+

C

o W B |
o) V77

S->A 167

S->G 505

* What went wrong?
* Actual bad goal cost < estimated good goal cost
 We need estimates to be less than actual costs!

19

The Price is Wrong...

* Closest bid without going over...

https://www.youtube.com/watch?v=9B0ZKRurC5Y

20

Admissible Heuristics: Ideas

Heuristi - Tron @

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by trapping slow down bad plans but
good plans on the fringe never outweigh true costs

21

Admissible Heuristics

* A heuristic h is admissible (optimistic) if
0 < h(n) <h*(n)
where h™(n) is the true cost to a nearest goal

- - 0.0

* Coming up with admissible heuristics is most of what’s involved in
using A* in practice

* Examples:

Optimality of A* Tree Search

* Assume:
* Ais an optimal goal node
* Bis a suboptimal goal node
* his admissible

* Claim:
* A will exit the fringe before B

Optimality of A* Tree Search: Blocking

* Proof:
* Imagine B is on the fringe

* Some ancestor n of A is on the fringe,
too (maybe Al)

e Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

f(n) =g(n)+ h(n) Definition of f-cost
f(n) <g(A) Admissibility of h
g(A) = f(A) h =0 at a goal

Optimality of A* Tree Search: Blocking 2

* Proof:
* Imagine B is on the fringe

* Some ancestor n of A is on the fringe,
too (maybe Al)
e Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal

Optimality of A* Tree Search: Blocking 3

* Proof:
* Imagine B is on the fringe
* Some ancestor n of A is on the fringe,
too (maybe Al)

e Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)
3. nexpands before B

* All ancestors of A expand before B
* A expands before B f(n) < f(A) < f(B)

* A* search is optimal

26

UCS vs A*

* Uniform-cost expands equally in all

“directions” |
Sta Goal

* A* expands mainly toward the goal,
but does hedge its bets to ensure

optimality \
Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze)
_A*

Comparison

=

SCORE: 0

SCORE: (SCORE: 0

Greedy Uniform Cost A*

32

A* Applications

&

Wor ker‘Loith»AndHar'

e

%

WV | 7 IR -
3 AU S S e
A ! I -

’l,l
QI TERSANDS

Y e DNCHANAR

|

U

\

ARV

MENU

33

A* Applications 2

* Video games

* Pathing / routing problems
e Resource planning problems
* Robot motion planning

* Language analysis

* Machine translation

* Speech recognition

Image: maps.google.com

..........

Fifth ~

e Murray Hill Avenue 2
th Ave Historic District G
)
5 3
5 — SQUIRREL hooo
C;feé%kl S QHILL NORTH g ®
thedra & - 5
/ Kotk 5N = g
WorkO 4 VAY, ¥ I Wilkins A\
S = \
& 11 min s 2 z g \ \
every 10 min | ¥ 3 3 g Sowayst \
| 3 :
Ma 1 ° ‘
" \
2] > \ \
< 1) \
§ g Ferree St % |
3 bl
Schefl/@} . P aylesboro Ave ||
(o) ! ||
ry 23 ; | |
L s 3 @ 7 min g
N
O [
Bob O'Connor Golf ‘
p\\)(\ | ;
o R Course at Schenley Park EvervdayNoodies Y
g A

[Demo: UCS / A* pacman tiny maze (L3D6,LE§?7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS /

* = Pydev - Echpse
File Edit Navigate Search Project Run Window |Help

3= B ~Q- - - - v - v H [‘p.“""; b B Team
@ 1search demno emply
@ e 2 search -« cortaurs greedy vs ucs (greedy d
i p- 3 search -- contours greedy vs ucs (ucs) et
@ 4 search -- contours greedy vs ucs (astar)
@ Sseacch - plan tiny astar
& 6search - plrgc tiny ucs
& 7 search - grdkdy bad
e' 8 search -~ greedy good
& 9 search demo maze
@ search demp costs

Run As »
Run Canfigurations

Organize Favorites

[J) Console % B "‘ll o v - @
<terminated> empty.be
unigue nodes expandea: 113 -
S
expanded: 41
nodes expanded: 41

a8/30/2012

Video of Demo Empty Water Shallow/Deep
— Guess Algorithm

2 Pydev - [cipse T O
File Edit Nawvigste Search Project Run Window |Help
[Jiw -0 ~-Q - v % > v " v Ti |2 Pydev |- Team
()J 1 search -- plan Lny astar
o e 2 search -« plan tiny ucs]
J n =
- @ 3 search demo empty o
@ A search -~ contours greedy vs ucs (greedy
eA S search -« cantours greedy vs ucs (ucs
& 6 search -- contours greedy vs ucs (astar)
@ [search -« greedy bod
e' 8 search < greedy good
& 9search demo maze
" search e costs
- 4y
Run As ’
Run Carfigqurations
Organize Favorites
[J] Console ® el 5 £AlE .I:I; o v v =0
<terminated> 1 5
Tozal cost: 27 ’
of nodea expanded: 182
of unigue nodes expanded: 182
1 emerges victor sSees S>3
1a' [0], 'resulrta': ['Win'), "numMovesn‘': [2T7], ‘'scorea': [S573

Creating Heuristics

YOu GOT

HEURISTILC
UPGRADE!

* Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

e Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* I[nadmissible heuristics are often useful too

37

Example: 8 Puzzle

1 2 |4 3|7
5 6 TN 2

83 1 Sl ®

Start State

* What are the states? <=

* How many states?

* What are the actions?

* How many successors from the start state?
* What should the costs be?

L

4

3
5

2
>
-

7

Goal State

Admissible
heuristics?

38

Example: 8 Puzzle - 2

e Heuristic: Number of tiles misplaced
* Why is it admissible?

* h(start) = &

* This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

39
Statistics from Andrew Moore

Example: 8 Puzzle - 3

 What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

Start State Goal State

 Total Manhattan distance

Average nodes expanded
when the optimal path has...

* Why is it admissible? .4 steps | ...8 steps |...12 steps

TILES 13 39 227

e h(start)=3+1+2+..=18 MANHATTAN 12 25 /3

“4U

Example: 8 Puzzle - 4

* How about using the actual cost as a heuristic?
* Would it be admissible?

* Would we save on nodes expanded? g; tl
() NOPE. GoAL!

* What’s wrong with it?

e With A*: a trade-off between quality of estimate and work per node

* As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Combining Heuristics, Dominance

* Dominance: h, > h, if
vn : hqg(n) > he(n)
* Roughly speaking, larger is better as long as
both are admissible

e Heuristics form a semi-lattice:
e Max of admissible heuristics is admissible

h(n) = max(ha(n), hy(n))

* Trivial heuristics

 Bottom of lattice is the zero heuristic
(what does this give us?)

* Top of lattice is the exact heuristic, but
usually too expensive

exact
|

mazx(ha, hy)

42

Graph Search

Tree Search: Extra Work!

* Failure to detect repeated states can cause exponentially more work

/ State Graph \

A ,,f""'__’_" ™
Y \
B \f —— g
Y
N

-~

~

Search Tree

A @

-
P
-~
~
-~
’ B
S\
I \

J '-|"

\

44

Graph Search

* In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

S

Graph Search 2

* |dea: never expand a state twice

* How to implement:
* Tree search + set of expanded states (“closed set”, “explored set”)
* Expand the search tree node-by-node, but...

* Before expanding a node, check to make sure its state has never been
expanded before

* If not new, skip it, if new add to closed/explored set
* Important: store the closed/explored set as a set, not a list
* Can graph search wreck completeness? Why/why not?
* How about optimality?

46

GRAPH_SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier

Graph Search 3

* This graph search algorithm overlays a tree on a graph
* The frontier states separate the explored states from never seen

Y -

) O

Images: AIMA, Figure 3.8, 3.9 O

Quiz

* What is the relationship between these sets of states after each loop
iteration in GRAPH SEARCH?

* (Loop invariants!!!)

A

Explored

Frontier

Never Seen

B

Explored

Frontier

Never Seen

C

Explored

Frontier

Never Seen

49

UNIFORM-COST-GRAPH-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost =0

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher path_cost
replace that frontier node with child

A-STAR-GRAPH-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
add initial state of problem to frontier with priority f(S) = 0 + h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher f(n)
replace that frontier node with child

A* Tree Search

State space graph Search tree

h=4 S (0+2)

h:1 /\
A(1+4) C(3+1)
!
h=2 3 C(2+1) G (6+0)
> |

@ G (5+0)

h=0

Quiz: A* Graph Search

* What paths does A* graph search consider during its search?

h=4 A) 8,S<A, S-C, S-C-G

h=1 B) .8, S-A, S-C, S-A-C, S-C-G
C) S;S-A, S-A<C, S-A-C-G

3 D) .S, S-A,S-C, S-A-C, S-A-C-G

h

0

A)
Quiz: A* Graph Search 2 @K®

 What does the resulting graph tree look like?

h=4 Q

O

Qo

=

(¢,

>
@—) @——~

54

A* Graph Search Gone Wrong?

State space graph Search tree

5(0+2)

—

A4 B(+D

! }

-C2+1) -C(G3+1)

! !

P j G (5+0) G (6+0)

-Simple check against explored set blocks C
_Fancy check allows new C if cheaper than old =7 Explored Set:S B C A
but requires recalculating C’s descendants

Consistency of Heuristics

* Main idea: estimated heuristic costs < actual
costs
* Admissibility: heuristic cost < actual cost to goal
* h(A) < actual cost from A to G

* Consistency: heuristic “arc” cost < actual cost for
each arc
* h(A) —h(C) £ cost(A to C)
* triangle inequality: h(A) £ ¢(A-C) + h(C)

* Consequences of consistency:

* The f value along a path never decreases
* h(A) < cost(A to C) + h(C)
* A* graph search is optimal

Optimality of A* Graph Search

e Sketch: consider what A* does with a
consistent heuristic:

e Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

* Fact 2: For every state s, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

e Result: A* graph search is optimal

Optimality of A* Graph Search: Proof

 Foranyn on pathto G7, let n’ be a worse
node for the same state

* Let p be the ancestor of n that was on the
gueue when n’ was added in the queue

* Claim: p will be expanded before n’
* f(p) < f(n) because of consistency
* f(n) < f(n') because n’ is suboptimal
* p would have been expanded before n’

* Thus n will be expanded before n’
e All ancestors of G* are not blocked

Optimality of A* Search

* Tree search:
* A* is optimal if heuristic is admissible
e UCS is a special case (h =0)

* Graph search:
* A* optimal if heuristic is consistent
e UCS optimal (h = 0 is consistent)

e Consistency implies admissibility

* |In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems

59

Summary of A*

* A* uses both backward costs and (estimates of) forward costs
* A* is optimal with admissible / consistent heuristics
* Heuristic design is key: often use relaxed problems

60

Shuai Li

SU mma ry https://shuaili8.github.io
* Informed Search Methods .
* Heuristics QUESthnS?
e Greedy Search
 A* Search

e Graph Search

https://shuaili8.github.io/

