
Lecture 5: Search with Other
Agents

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Warm Up

• How is Tic Tac Toe different from maze search?

2

Warm Up 2

• How is Tic Tac Toe different from maze search?

3

Multi-Agent, Adversarial, Zero Sum

Single Agent

Game Type

4

Behavior from Computation

5
[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

6

Agents Getting Along with Other Agents

7

Agents Getting Along with Humans

8

Types of Games

• Many different kinds of games!

• Axes:
• Deterministic or stochastic?

• One, two, or more players?

• Zero sum?

• Perfect information (can you see the state)?

• Want algorithms for calculating a
contingent plan (a.k.a. strategy or policy)
which recommends a move for every
possible eventuality 9

History of Game AI

1956 checkers

1992 backgammon

1994 checkers

1997 chess

2016 Go

2017 Texas hold’em

2019 Majiang

10

Types of Games 2

11

• Zero-Sum Games
• Agents have opposite utilities (values on

outcomes)
• Lets us think of a single value that one

maximizes and the other minimizes
• Adversarial, pure competition

• General Games
• Agents have independent utilities (values on

outcomes)

• Cooperation, indifference, competition, shifting
alliances, and more are all possible

• We don’t make AI to act in isolation, it should
a) work around people and b) help people

• That means that every AI agent needs to solve a game

Multi-Agent Applications

12

Collaborative Maze Solving
Team: Collaborative
Competition: Adversarial

Adversarial

(Football)

Types of Games 3

13

• Common payoff games
• Discussion: Use a technique you’ve learned so far

to solve one!

• Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

• Go: 2016: Alpha GO defeats human champion.
Uses Monte Carlo Tree Search, learned evaluation
function.

Zero-Sum Games

14

• Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

• Go :2016: Alpha GO defeats human champion.
Uses Monte Carlo Tree Search, learned evaluation
function.

• Pacman

Zero-Sum Games 2

15

Game playing – state of the art

16

“Standard” Games

• Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

• Game formulation:
• States: S (start at s0)

• Players: P={1...N} (usually take turns)

• Actions: A (may depend on player / state)

• Transition Function: SxA→ S

• Terminal Test: S → {t,f}

• Terminal Utilities: SxP→ R

• Solution for a player is a policy: S → A
17

Adversarial Search
Cost -> Utility!

18

Single-Agent Trees

19

8

2 0 2 6 4 6… …

Single-Agent Trees: Value of a State

20

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

How could we model multi-agent
collaborative problems?

21

How could we model multi-agent
collaborative problems? 2
• Simplest idea: each agent plans their own actions separately from

others

22

Many Single-Agent Trees

23

8

2 0 2 6 4 6… …

Non-Terminal States:
V(s) = max V(s’)

s’ successors(s)

Choose the best
action for each
agent independently

Idea 2: Joint State/Action Spaces

• Combine the states and actions of the N agents

24

𝑆0 = (𝑆0
𝐴, 𝑆0

𝐵)

Idea 2: Joint State/Action Spaces 2

25

𝑆𝐾 = (𝑆𝐾
𝐴, 𝑆𝐾

𝐵)

Idea 2: Joint State/Action Spaces 3

• Search looks through all combinations of all agents’ states and actions

• Think of one brain controlling many agents

26

𝑆𝐾 = (𝑆𝐾
𝐴, 𝑆𝐾

𝐵)

Idea 2: Joint State/Action Spaces 4

• Search looks through all combinations of all agents’ states and actions

• Think of one brain controlling many agents

• What is the size of the
state space?

• What is the size of the
action space?

• What is the size of
the search tree?

27

Idea 3: Centralized Decision Making

• Each agent proposes their actions and computer confirms the joint
plan

• Example: Autonomous driving through intersections

28

Idea 4: Alternate Searching One Agent at a
Time
• Search one agent’s actions from a state, search the next agent’s

actions from those resulting states , etc…

29

Agent 1

Agent 2

Agent 1

Non-Terminal States:
V(s) = max V(s’)

s’ successors(s)

Choose the best
cascading combination
of actions

Idea 4: Alternate Searching One Agent at a
Time
• Search one agent’s actions from a state, search the next agent’s

actions from those resulting states , etc…

• What is the size of the state space?

• What is the size of
the action space?

• What is the size of
the search tree?

30

Adversarial Game Trees

31

-20 -8 -18 -5 -10 +4… … -20 +8

Adversarial Game Trees: Minimax Values

32

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Example: Tic-Tac-Toe Game Tree

33

• States

• Actions

• Values

Instead of taking the
max utility at every
level, alternate max
and min

Minimax Search

• Deterministic, zero-sum games:
• Tic-tac-toe, chess, checkers

• One player maximizes result

• The other minimizes result

• Minimax search:
• A state-space search tree

• Players alternate turns

• Compute each node’s minimax value: the best
achievable utility against a rational (optimal)
adversary

34

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation

35

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

36

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Example

• Actions?

37

12 8 5 23 2 144 6

3 2 2

3

Pseudocode for Single Agent

38

Pseudocode for Minimax Search

39

𝑉 𝑠 = max
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Pseudocode for Generic Game Tree

function minimax_decision(state)

return argmax a in state.actions value(state.result(a))

function value(state)
if state.is_leaf

return state.value

if state.player is MAX
return max a in state.actions value(state.result(a))

if state.player is MIN
return min a in state.actions value(state.result(a)) 40

Quiz

• Minimax search belongs to which class?

A) BFS
B) DFS
C) UCS
D) A*

41

Minimax Efficiency

• How efficient is minimax?
• Just like (exhaustive) DFS

• Time: O(bm)

• Space: O(bm)

• Example: For chess, b 35, m 100
• Exact solution is completely infeasible

• But, do we need to explore the whole tree?

• Humans can’t do this either, so how do we play chess?

• Bounded rationality – Herbert Simon

42

Resource Limits

43

Resource Limits: Game Tree Pruning

44

12 8 5 23 2 14

3 <=2 2

3

The order of generation matters: more pruning
is possible if good moves come first

Game Tree Pruning: Alpha-Beta Pruning

• General configuration (MIN version)

• We’re computing the MIN-VALUE at some node n

• We’re looping over n’s children

• n’s estimate of the childrens’ min is dropping

• Who cares about n’s value? MAX

• Let a be the best value that MAX can get at any choice

point along the current path from the root

• If n becomes worse than a, MAX will avoid it, so we can

stop considering n’s other children (it’s already bad

enough that it won’t be played)

• MAX version is symmetric
45

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

46

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

Quiz

47

Which branches are pruned?
(Left to right traversal)
(Select all that apply)

Quiz 2

48

Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n

Quiz 2 - 2

49

10 v=100

β = 10

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Quiz 2 - 3

50

10

10 100 2

v = 2

α = 10
def min-value(state , α, β):

initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Quiz 2 - 4

51

1

?

10

?

?

10

10 100

?

?

2

2

?

β =

α =

α= α= α=

β =

Quiz 2 - 5

52

10

10

>=100 2

<=2

Alpha-Beta Pruning Properties

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• Chess: 1M nodes/move => depth=8, respectable
• Full search of complicated games, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute) 53

10 10 0

max

min

Alpha-Beta Pruning: Action Selection Failure

54

10

10

10

>=100 2

<=2

10

≤ 10

6

Resource Limits II
Bounded lookahead

55

Depth-limited search

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function for non-

terminal positions

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• For chess, 𝑏 ≈ 35 so reaches about depth 4 – not so good
• - reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime algorithm
56

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

• Evaluation functions are always
imperfect

• The deeper in the tree the evaluation
function is buried, the less the
quality of the evaluation function
matters

• An important example of the tradeoff
between complexity of features and
complexity of computation

57
[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

58

Video of Demo Limited Depth (10)

59

Evaluation Functions

• Evaluation functions score non-terminals in depth-limited search

• Ideal function: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
• e.g. w1 = 9, f1(s) = (num white queens – num black queens), etc.

60

Evaluation for Pacman

61
[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Thrashing (d=2)

62

Why Pacman Starves

• A danger of replanning agents!
• He knows his score will go up by eating the dot now (west, east)

• He knows his score will go up just as much by eating the dot later (east, west)

• There are no point-scoring opportunities after eating the dot (within the horizon,
two here)

• Therefore, waiting seems just as good as eating: he may go east, then back west in
the next round of replanning!

63

Video of Demo Thrashing -- Fixed (d=2)

64

Video of Demo Smart Ghosts (Coordination)

65

Video of Demo Smart Ghosts (Coordination) –
Zoomed In

66

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS
gives up on any path of length 2)

2. If “1” failed, do a DFS which only searches paths of length 2 or
less.

3. If “2” failed, do a DFS which only searches paths of length 3 or
less.

….and so on.

Why do we want to do this for multiplayer games?

Note: wrongness of eval functions matters less and less the deeper
the search goes!

67

…
b

Generalized minimax

68

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own component
• Can give rise to cooperation and

competition dynamically…

69

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6

Modeling Assumptions

70

What if your opponent isn’t playing optimally?

71

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

72

Video of Demo Min vs. Exp (Exp)

73

Worst-Case vs. Average Case

74

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

Why not minimax?

• Worst case reasoning is too conservative

• Need average case reasoning

75

Expectimax Search

• Why wouldn’t we know what the result of an action will be?
• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Unpredictable humans: humans are not perfect
• Actions can fail: when moving a robot, wheels might slip

• Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax)
outcomes

• Expectimax search: compute the average score under optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

• Later, we’ll learn how to formalize the underlying uncertain-result problems as Markov
Decision Processes

76
[Demo: min vs exp (L7D1,2)]

10 4 5 7

max

chance

10 10 9 100

Video of Demo Minimax vs Expectimax (Min)

77

Video of Demo Minimax vs Expectimax (Exp)

78

Expectimax Pseudocode

79

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode 2

80

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Pseudocode 3

• function value(state)
• if state.is_leaf
• return state.value

• if state.player is MAX
• return max a in state.actions value(state.result(a))

• if state.player is MIN
• return min a in state.actions value(state.result(a))

• if state.player is CHANCE
• return sum s in state.next_states P(s) * value(s)

81

Example

82

12 9 6 03 2 154 6

Quiz

83

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

Quiz 2

84

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right

Expectimax Pruning?

85

12 93 2

No! Why?

Expectimax: Depth-Limited

86

…

…

492 362 …

400 300

Estimate of true
expectimax value

(which would
require a lot of

work to compute)

We know how to compute with probabilities.
But where do probabilities arise?
• In expectimax search, we have a probabilistic model of how

the opponent (or environment) will behave in any state
• Model could be a simple uniform distribution (roll a die)
• Model could be sophisticated and require a great deal of

computation
• We have a chance node for any outcome out of our control:

opponent or environment
• The model might say that adversarial actions are likely!

• For now, assume each chance node magically comes along
with probabilities that specify the distribution over its
outcomes

87

Having a probabilistic belief about
another agent’s action does not mean

that the agent is flipping any coins!

Quiz: Informed Probabilities

88

• Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

• Question: What tree search should you use?

0.1 0.9

• Answer: Expectimax!
• To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent

• This kind of thing gets very slow very quickly

• Even worse if you have to simulate your
opponent simulating you…

• … except for minimax and maximax, which
have the nice property that it all collapses into
one game tree

This is basically how you would model a human, except for their utility: their utility might be the
same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a
slightly different utility (like another person navigating in the office)

Dangerous Pessimism/Optimism

89

Assuming chance when the world is adversarialAssuming the worst case when it’s not likely

Assumptions vs. Reality

90

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

91

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions
Random Ghost – Expectimax Pacman

92

Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman

93

Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman

94

Video of Demo World Assumptions
Random Ghost – Minimax Pacman

95

Mixed Layer Types

• E.g. Backgammon

• Expectiminimax
• Environment is an extra

“random agent” player
that moves after each
min/max agent

• Each node computes
the appropriate
combination of its
children

96

Example: Backgammon

• Dice rolls increase b: 21 possible rolls with 2 dice
• Backgammon 20 legal moves
• Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

• As depth increases, probability of reaching a given search node
shrinks
• So usefulness of search is diminished
• So limiting depth is less damaging
• But pruning is trickier…

• Historic AI: TDGammon uses depth-2 search + very good
evaluation function + reinforcement learning:
world-champion level play

• 1st AI world champion in any game!

97

Utilities
We know how to compute with utilities given.

But how to model utilities in real applications?

And what properties of utilities are required?

98

Utilities

• Utilities are functions from outcomes (states of
the world) to real numbers that describe an
agent’s preferences

• Where do utilities come from?
• In a game, may be simple (+1/-1)
• Utilities summarize the agent’s goals
• Theorem: any “rational” preferences can be

summarized as a utility function

• We hard-wire utilities and let behaviors emerge
• Why don’t we let agents pick utilities?
• Why don’t we prescribe behaviors? 99

Utilities with Uncertain Outcomes

100

Getting ice cream

Get Single Get Double

Oops Whew!

Maximum Expected Utility

• Why should we average utilities? Why not minimax?

• Principle of maximum expected utility:
• A rational agent should chose the action that maximizes its

expected utility, given its knowledge

• Questions:
• Where do utilities come from?

• How do we know such utilities even exist?

• How do we know that averaging even makes sense?

• What if our behavior (preferences) can’t be described by
utilities?

101

What Utilities to Use?

• For worst-case minimax reasoning, terminal function scale doesn’t matter

• We just want better states to have higher evaluations (get the ordering right)

• We call this insensitivity to monotonic transformations

• For average-case expectimax reasoning, we need magnitudes to be meaningful

102

0 40 20 30 x2 0 1600 400 900

Preferences

• An agent must have preferences among:

• Prizes: A, B, etc.

• Lotteries: situations with uncertain prizes

• Notation:
• Preference:

• Indifference:

103

A B

p 1-p

A LotteryA Prize

A

Rational Preferences

• We want some constraints on preferences before we call them rational, such as:

• For example: an agent with intransitive preferences can
be induced to give away all of its money
• If B > C, then an agent with C would pay (say) 1 cent to get B

• If A > B, then an agent with B would pay (say) 1 cent to get A

• If C > A, then an agent with A would pay (say) 1 cent to get C

104

)()()(CACBBA Axiom of Transitivity:

Rational Preferences 2

• The Axioms of Rationality

• Theorem: Rational preferences imply behavior describable as maximization
of expected utility

105

MEU Principle

• Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
• Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

• i.e. values assigned by U preserve preferences of both prizes and lotteries!

• Maximum expected utility (MEU) principle:
• Choose the action that maximizes expected utility
• Note: an agent can be entirely rational (consistent with MEU) without ever representing or

manipulating utilities and probabilities
• E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

106

Human Utility Scales

• Normalized utilities: u+ = 1.0, u- = 0.0

• Micromorts: one-millionth chance of death, useful for
paying to reduce product risks, etc.

• QALYs: quality-adjusted life years, useful for medical
decisions involving substantial risk

• Note: behavior is invariant under positive linear
transformation

• With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on
prizes

107

Human Utilities

• Once we have total order on utilities, how to map utilities to numbers?

• Standard approach to assessment (elicitation) of human utilities:
• Compare a prize A to a standard lottery Lp between

• “best possible prize” u+ with probability p

• “worst possible catastrophe” u- with probability 1-p

• Adjust lottery probability p until indifference: A ~ Lp

• Resulting p is a utility in [0,1]

108

0.999999 0.000001

No change

Pay $30

Instant death

Human Utilities: Money

• Money does not behave as a utility function, but
we can talk about the utility of having money (or
being in debt)

• Given a lottery L = [p, $X; (1-p), $Y]

• The expected monetary value
EMV(L) is p*X + (1-p)*Y

• U(L) = p*U($X) + (1-p)*U($Y)

• Typically, U(L) < U(EMV(L))

• In this sense, people are risk-averse

• When deep in debt, people are risk-prone
• When 𝑋, 𝑌 < 0, U(L) > U(EMV(L))

109

Example: Insurance

• Consider the lottery [0.5, $1000; 0.5, $0]
• What is its expected monetary value? ($500)

• What is its certainty equivalent?
• Monetary value acceptable in lieu of lottery

• $400 for most people

• Difference of $100 is the insurance premium
• There’s an insurance industry because people will pay to reduce their risk

• If everyone were risk-neutral, no insurance needed!

• It’s win-win: you’d rather have the $400 and the insurance company
would rather have the lottery (their utility curve is flat and they have
many lotteries)

110

Example: Human Rationality?

• Famous example of Allais (1953)

• A: [0.8, $4k; 0.2, $0]
• B: [1.0, $3k; 0.0, $0]

• C: [0.2, $4k; 0.8, $0]
• D: [0.25, $3k; 0.75, $0]

• Most people prefer B > A, C > D

• But if U($0) = 0, then
• B > A U($3k) > 0.8 U($4k)
• C > D 0.8 U($4k) > U($3k)

111

Summary

• Types of games

• Adversarial Game Trees: Minimax search

• Resource Limits I: Alpha-Beta Pruning

• Resource Limits II: Depth-limited search
• Evaluation functions
• Iterative deepening

• Expectimax Search
• Pruning /Depth-limited
• Adversarial/Random environments vs. Minimax/Expectimax agents
• Probabilities/Simulations

• Utilities
• Rational preferences/MEU principle/Human utilities/Money

Questions?

https://shuaili8.github.io

Shuai Li

112

https://shuaili8.github.io/

