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Recent Progress by Deep 
Reinforcement Learning
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Deep Reinforcement Learning
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2013 Atari (DQN) 
[Deepmind]

Pong Enduro Beamrider Q*bert



Deep Reinforcement Learning 2
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2013 Atari (DQN) 
[Deepmind]

2015 Human-level control
[Deepmind]

Trained separate DQN agents for 50 
different Atari games, without any 
prior knowledge of the game rules

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level 
control through deep reinforcement learning. Nature, 518(7540), 529.



Deep Reinforcement Learning 3
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2013 Atari (DQN) 
[Deepmind]

2015 Human-level control
[Deepmind]

AlphaGo 
[Deepmind]

AlphaGo Silver et al, Nature 2015
AlphaGoZero Silver et al, Nature 2017

AlphaZero Silver et al, 2017
Tian et al, 2016; Maddison et al, 2014; Clark et al, 2015



Deep Reinforcement Learning 4
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2013 Atari (DQN) 
[Deepmind]

2015 Human-level control
[Deepmind]

AlphaGo 
[Deepmind]

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

2016 3D locomotion (TRPO+GAE) 
[Berkeley]



Deep Reinforcement Learning 5

7

2013 Atari (DQN) 
[Deepmind]

2015 Human-level control
[Deepmind]

AlphaGo 
[Deepmind]

2016 3D locomotion (TRPO+GAE) 
[Berkeley]

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

Real Robot Manipulation (GPS) 
[Berkeley]



Deep Reinforcement Learning 6
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2013 Atari (DQN) 
[Deepmind]

2015 Human-level control
[Deepmind]

AlphaGo 
[Deepmind]

2016 3D locomotion (TRPO+GAE) 
[Berkeley]

Real Robot Manipulation (GPS) 
[Berkeley]

2019 Rubik’s Cube (PPO+DR) 
[OpenAI] OpenAI



Non-Deterministic Search
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Example: Grid World

• A maze-like problem
• The agent lives in a grid

• Walls block the agent’s path

• Noisy movement: actions do not always 
go as planned
• 80% of the time, the action North takes the agent North (if there is no wall there)

• 10% of the time, North takes the agent West; 10% East

• If there is a wall in the direction the agent would have been taken, the agent stays put

• The agent receives rewards
• Small “living” reward each step (can be negative)

• Big rewards come at the end (good or bad)

• Goal: maximize sum of rewards
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Grid World Actions
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Deterministic Grid World Stochastic Grid World



Markov Decision Processes

• An MDP is defined by:
• A set of states s  S
• A set of actions a  A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’) 
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• MDPs are non-deterministic search problems
• One way to solve them is with expectimax search
• We’ll have a new tool soon
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[Demo – gridworld manual intro (L8D1)]



Video of Demo Gridworld Manual Intro
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What is Markov about MDPs?

• “Markov” generally means that given the present state, the 
future and the past are independent

• For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

• This is just like search, where the successor function could only 
depend on the current state (not the history)
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Andrey Markov 
(1856-1922)



Policies

• In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

• For MDPs, we want an optimal 

policy *: S → A
• A policy  gives an action for each state

• An optimal policy is one that maximizes        
expected utility if followed

• An explicit policy defines a reflex agent

15

Optimal policy when R(s, a, s’) = -0.03 for 
all non-terminals s



Optimal Policies
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R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing
• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast

• Going faster gets double reward
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-10



Example: Racing - Search Tree
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MDP Search Trees

• Each MDP state projects an expectimax-like search tree
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a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state



Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

20

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Utilities of Sequences: Discounting

• It’s reasonable to maximize the sum of rewards

• It’s also reasonable to prefer rewards now to rewards later

• One solution: values of rewards decay exponentially

21

Worth Now Worth Next Step Worth In Two Steps



Utilities of Sequences: Discounting 2

• How to discount?
• Each time we descend a level, we multiply in the 

discount once

• Why discount?
• Reward now is better than later

• Can also think of it as a 1-gamma chance of ending 
the process at every step

• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

• U([1,2,3]) < U([3,2,1])
22



Utilities of Sequences: Stationary Preferences

• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:
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Failure of Stationary Preferences

• Can 𝑈𝛾 + 𝑈𝛾′ define a stationary preference?

• No!

• Example: 

• 𝑈0.9 + 𝑈0.5
3

4
, 0,0, … > 𝑈0.9 + 𝑈0.5 0,1,0,…

• 𝑈0.9 + 𝑈0.5 𝑟,
3

4
, 0, … < 𝑈0.9 + 𝑈0.5 𝑟, 0,1,0,0,…
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Proof Sketch

• Theorem (F. Riesz) For any inner product space 𝐻, let 𝑓 be a 
continuous linear functional, that is 𝑓:𝐻 → ℝ is continuous and 
satisfies 𝑓 𝛼𝑥 + 𝛽𝑦 = 𝛼𝑓 𝑥 + 𝛽𝑓(𝑦). Then 𝑓 can be written as

𝑓 𝑥 =< 𝑧, 𝑥 >
for some 𝑧 ∈ 𝐻

• Then by 𝑎0 + 𝛾1𝑎1 > 𝑏0 + 𝛾1𝑏1 ⇔ 𝛾1𝑎0 + 𝛾2𝑎1 > 𝛾1𝑏0 + 𝛾2𝑏1
which says 𝑎0 − 𝑏0 + 𝛾1 𝑎1 − 𝑏1 > 0 ⇔ 𝛾1 𝑎0 − 𝑏0 + 𝛾2(

)
𝑎1

− 𝑏1 > 0
Then there must have 𝛾2 = 𝛾1

2

• Similarly for the rest
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Quiz: Discounting

• Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

• Quiz 1: For  = 1, what is the optimal policy?

• Quiz 2: For  = 0.1, what is the optimal policy?

• Quiz 3: For which  are West and East equally good when in state d?

26

<- <- <-

<- <- ->

1=10 3



Infinite Utilities?!

• Problem: What if the game lasts forever?  Do we get infinite rewards?

• Solutions:
• Finite horizon: (similar to depth-limited search)

• Terminate episodes after a fixed T steps (e.g. life)
• Gives nonstationary policies ( depends on time left)

• Discounting: use 0 <  < 1

• Smaller  means smaller “horizon” – shorter term focus

• Absorbing state: guarantee that for every policy, a terminal state will eventually be 
reached (like “overheated” for racing)
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Recap: Defining MDPs

• Markov decision processes:
• Set of states S
• Start state s0

• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount )

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

28

a

s

s, a

s,a,s’

s’



Solving MDPs
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Recall: Racing MDP
• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast

• Going faster gets double reward
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Racing Search Tree
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Racing Search Tree 2
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Racing Search Tree 3

• We’re doing way too much work 
with expectimax!

• Problem: States are repeated 
• Idea: Only compute needed quantities 

once

• Problem: Tree goes on forever
• Idea: Do a depth-limited computation, 

but with increasing depths until 
change is small

• Note: deep parts of the tree eventually 
don’t matter if γ < 1

33



Optimal Quantities

• The value (utility) of a state s:
• V*(s) = expected utility starting in s and 

acting optimally

• The value (utility) of a q-state (s,a):
• Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

• The optimal policy:
• *(s) = optimal action from state s

34

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Gridworld V* Values
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld Q* Values
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Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States

• Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action

• Average sum of (discounted) rewards

• This is just what expectimax computed!

• Recursive definition of value:
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a

s

s, a

s,a,s’

s’



Time-Limited Values

• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in k more time 
steps
• Equivalently, it’s what a depth-k expectimax would give from s

38
[Demo – time-limited values (L8D4)]



Gridworld: k=0
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=1
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=2
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=3
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=4
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=5
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=6
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=7
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=8
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=9
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=10
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=11
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=12
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=100
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Noise = 0.2
Discount = 0.9
Living reward = 0



Time-Limited Values: Computing
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Value Iteration
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Value Iteration

• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence, which yields V*

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do
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a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example
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0             0             0

S: 1

Assume no discount!

F: .5*2+.5*2=2



Example 2
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0             0             0

2

Assume no discount!

S: .5*1+.5*1=1

F: -10



Example 3
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0             0             0

2

Assume no discount!

1 0



Example 4
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0             0             0

2

Assume no discount!

1 0

S: 1+2=3

F: .5*(2+2)+.5*(2+1)=3.5



Example 5
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0             0             0

2

Assume no discount!

1 0

3.5 2.5 0



Convergence

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

• Case 2: If the discount is less than 1

• Proof Sketch: 
• For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge 61



Convergence 2

• 𝑉𝑘+1 𝑠 = max
𝑎

σ𝑠′𝑇(𝑠, 𝑎, 𝑠′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘(𝑠′)

𝑉𝑘+1
′ 𝑠 = max

𝑎
σ𝑠′𝑇(𝑠, 𝑎, 𝑠′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘

′ (𝑠′)

• If 𝑉𝑘 𝑠 − 𝑉𝑘
′ (𝑠) ≤ 𝜖, then

𝑉𝑘+1 𝑠 − 𝑉𝑘+1
′ (𝑠) ≤ 𝛾𝜖

• Then treat 𝑉𝑘+1 𝑠 =: 𝑉𝑘
′ 𝑠

• Note 𝑉1 𝑠 = max
𝑎

σ𝑠′𝑇(𝑠, 𝑎, 𝑠′)𝑅 𝑠, 𝑎, 𝑠′ ≤ 𝑅max

that is 𝑉1 𝑠 − 𝑉0 𝑠 ≤ 𝑅max, then 𝑉2 𝑠 − 𝑉1 𝑠 ≤ 𝛾𝑅max and

𝑉𝑘+1 𝑠 − 𝑉𝑘 𝑠 ≤ 𝛾𝑘𝑅max 62



Value Iteration (Revisited)

• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the 𝑉𝑘 vectors are also interpretable as 

time-limited values

63

a

V(s)

s, a

s,a,s’

V(s’)



Value Iteration - Implementation

• Init:
• ∀𝑠: 𝑉 𝑠 = 0

• Iterate:

• ∀𝑠: 𝑉𝑛𝑒𝑤 𝑠 = max
𝑎

σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ]

• 𝑉 = 𝑉𝑛𝑒𝑤

64

a

s

s, a

s,a,s’

s’

Note: can even directly assign to V(s), which will not compute the sequence of Vk but will still 
converge to V*



The Bellman Equations
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How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



Policy Extraction: Computing
Actions from Values
• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the 
values

66



Policy Extraction: Computing
Actions from Q-Values
• Let’s imagine we have the optimal

q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than 
values!
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Policy Methods
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Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

69
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Gridworld: k=12
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Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld: k=100
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Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration

• Alternative approach for optimal values:
• Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence

• Step 2: Policy Improvement: update policy using one-step look-ahead with 
resulting converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

• This is Policy Iteration
• It’s still optimal!

• Can converge (much) faster under some conditions
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Policy Evaluation: Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fix some policy (s), then the tree would be simpler – only one action per 
state
• … though the tree’s value would depend on which policy we fixed 73

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’
s’

Do the optimal action Do what  says to do



Policy Evaluation: Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a 
fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

• Recursive relation (one-step look-ahead / Bellman equation):
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(s)

s

s, (s)

s, (s),s’
s’



Policy Evaluation: Implementation

• How do we calculate the V’s for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates

(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with MATLAB (or your favorite linear system solver)
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(s)

s

s, (s)

s, (s),s’
s’



Example: Policy Evaluation
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Always Go Right Always Go Forward



Example: Policy Evaluation 2
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Always Go Right Always Go Forward



Policy Iteration

• Evaluation: For fixed current policy 𝜋, find values
with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better (why? exercise) policy 
using policy extraction
• One-step look-ahead:
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Summary of Two Methods for Solving MDPs

• Value iteration + policy extraction
• Step 1: Value iteration: calculate values for all states by running one ply of the 

Bellman equations using values from previous iteration until convergence

• Step 2: Policy extraction: compute policy by running one ply of the Bellman 
equations using values from value iteration

• Policy iteration
• Step 1: Policy evaluation: calculate values for some fixed policy (not optimal 

values!) until convergence

• Step 2: Policy improvement: update policy by running one ply of the Bellman 
equations using values from policy evaluation

• Repeat steps until policy converges
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Value Iteration vs. Policy Iteration

• Both value iteration and policy iteration compute the same thing (all optimal 
values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because 

we consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done) 

• Both are dynamic programs for solving MDPs
80



Summary

• Markov Decision Processes
• Probabilistic transition, Markov, policies

• Utilities of sequences

• Optimal quantities, value of states, Bellman equations

• Value iteration
• Time-limited values, convergence

• Policy extraction

• Policy iteration
• Policy evaluation

• Policy improvement

Questions?

https://shuaili8.github.io

Shuai Li
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https://shuaili8.github.io/

