# Lecture 7: Reinforcement Learning

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

Part of slide credits: CMU AI & http://ai.berkeley.edu

1

## Example: Double Bandits









#### 3

No discount

## Example: Double Bandits - Offline Planning



### Example: Double Bandits - Let's Play!





\$2 \$2 \$0 \$2 \$2\$2 \$2 \$0 \$0 \$0

#### Example: Double Bandits - Online Planning

• Rules changed! Red's win chance is different.



### Example: Double Bandits - Let's Play!





\$0 \$0 \$0 \$2 \$0 \$2 \$0 \$0 \$0 \$0

## What Just Happened?

- That wasn't planning, it was learning!
  - Specifically, reinforcement learning
  - There was an MDP, but you couldn't solve it with just computation
  - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
  - Exploration: you have to try unknown actions to get information
  - Exploitation: eventually, you have to use what you know
  - Regret: even if you learn intelligently, you make mistakes
  - Sampling: because of chance, you have to try things repeatedly
  - Difficulty: learning can be much harder than solving a known MDP



### **Reinforcement Learning**

• What if we didn't know P(s'|s, a) and R(s, a, s')?

 $V_{k+1}(s) = \max_{a} \sum P(s'|s, a) [R(s, a, s') + \gamma V_k(s')],$ Value iteration:  $\forall s$  $Q_{k+1}(s,a) = \sum_{i=1}^{n} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$ Q-iteration:  $\pi_V(s) = \operatorname{argmax}_a \sum P(s'|s, a) [R(s, a, s') + \gamma V(s')],$ Policy extraction:  $\forall s$  $V_{k+1}^{\pi}(s) = \sum P(s'|s, \pi(s)) [P(s, \pi(s), s') + \gamma V_k^{\pi}(s')],$ Policy evaluation:  $\forall s$  $\pi_{new}(s) = \operatorname{argmax}_{a} \sum P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')],$ **Policy improvement:**  $\forall s$ 



## Reinforcement Learning 3

- Still assume a Markov decision process (MDP):
  - A set of states  $s \in S$
  - A set of actions (per state) A
  - A model T(s,a,s')
  - A reward function R(s,a,s')
- Still looking for a policy  $\pi(s)$
- New twist: don't know T or R
  - I.e. we don't know which states are good or what the actions do
  - Must actually try actions and states out to learn



## Offline (MDPs) vs. Online (RL)





#### **Offline Solution**

#### **Online Learning**



Initial



#### A Learning Trial



After Learning [1K Trials]



Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK <sup>14</sup> – initial]





[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK <sup>15</sup> + training]





[Kohl and Stone, ICRA 2004]



## Example: The Crawler!



[Demo: Crawler Bot (L10D1)]

## Video of Demo Crawler Bot



## DeepMind Atari (©Two Minute Lectures)



## Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning



# Model-Based Learning

## Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning

## Model-Based Reinforcement Learning

- Model-Based Idea:
  - Learn an approximate model based on experiences
  - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
  - Count outcomes s' for each s, a
  - Normalize to give an estimate of  $\hat{T}(s, a, s')$
  - Discover each  $\widehat{R}(s, a, s')$  when we experience (s, a, s')
- Step 2: Solve the learned MDP
  - For example, use value iteration, as before





## Example: Model-Based RL



## Analogy: Expected Age

Goal: Compute expected age of students



Without P(A), instead collect samples  $[a_1, a_2, ..., a_N]$ 



# Model-Free Learning

1/

Ø

2

DOUGLE

OR NOTHING

## Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning

## Passive Model-Free Reinforcement Learning

- Simplified task: policy evaluation
  - Input: a fixed policy  $\pi(s)$
  - You don't know the transitions T(s,a,s')
  - You don't know the rewards R(s,a,s')
  - Goal: learn the state values
- In this case:
  - Learner is "along for the ride"
  - No choice about what actions to take
  - Just execute the policy and learn from experience
  - This is NOT offline planning! You actually take actions in the world



## **Direct Evaluation**

- Goal: Compute values for each state under  $\pi$
- Idea: Average together observed sample values
  - Act according to  $\boldsymbol{\pi}$
  - Every time you visit a state, write down what the sum of discounted rewards turned out to be
  - Average those samples
- This is called direct evaluation



## Example: Direct Evaluation



If B and E both go to C under this policy, how can their values be different?

## Problems with Direct Evaluation

- What's good about direct evaluation?
  - It's easy to understand
  - It doesn't require any knowledge of T, R
  - It eventually computes the correct average values, using just sample transitions
- What bad about it?
  - It wastes information about state connections
  - Each state must be learned separately
  - So, it takes a long time to learn

#### **Output Values**



If B and E both go to C under this policy, how can their values be different?

## Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & <u>TD Learning</u>
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning

## Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
  - Each round, replace V with a one-step-look-ahead layer over V

 $V_0^{\pi}(s) = 0$ 

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
  - In other words, how do we take a weighted average without knowing the weights?

**π(s)** 

s, π(s)

π(s),s'

## Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:  $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$
- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



Almost! But we can't rewind time to get sample after sample from state s

## Temporal Difference Value Learning

- Big idea: learn from every experience!
  - Update V(s) each time we experience a transition (s, a, s', r)
  - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
  - Policy still fixed, still doing evaluation!
  - Move values toward value of whatever successor occurs: running average

Sample of V(s): 
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s): 
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:  $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$ 



## Gradient Descent View

$$f(x) = \frac{1}{2}(y - x)^2$$

 $\frac{df}{dx} = -(y - x)$ 

- Goal: find x that minimizes f(x)
- 1. Start with initial guess,  $x_0$
- 2. Update x by taking a step in the direction that f(x) is changing fastest (in the negative direction) with respect to x:

 $x \leftarrow x - \alpha \nabla_x f$ , where  $\alpha$  is the step size or learning rate

- 3. Repeat until convergence
- TD goal: find value(s), V, that minimizes difference between sample(s) and V

$$V \leftarrow V - \alpha \nabla_V Error$$
  $Error(V) = \frac{1}{2} (sample - V)^2$
#### Gradient Descent View 2

- Big idea: learn from every experience!
  - Update V(s) each time we experience a transition (s, a, s', r)
  - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
  - Policy still fixed, still doing evaluation!
  - Move values toward value of whatever successor occurs: running average

Sample of V(s):sample =  $r + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha)$  sampleSame update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha$  [sample -  $V^{\pi}(s)$ ]Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$ Error =  $\frac{1}{2} (sample - V_{37}^{\pi}(s))^2$ 



#### Exponential Moving Average

- Exponential moving average
  - The running interpolation update:  $V_n = (1 \alpha)V_{n-1} + \alpha x_n$  with  $V_1 = x_1$
  - Makes recent samples more important  $V_n = \alpha x_n + \alpha (1 - \alpha) x_{n-1} + \dots + \alpha (1 - \alpha)^{n-2} x_2 + (1 - \alpha)^{n-1} x_1$
  - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

• Note 
$$V_n = \alpha_n x_n + (1 - \alpha_n) \alpha_{n-1} x_{n-1} + \cdots + (1 - \alpha_n)(1 - \alpha_{n-1}) \cdot \cdots \cdot (1 - \alpha_3) \alpha_2 x_2 + (1 - \alpha_n)(1 - \alpha_{n-1}) \cdot \cdots \cdot (1 - \alpha_3)(1 - \alpha_2) x_1$$

#### Example: Temporal Difference Value Learning

**Observed Transitions** States C, east, D, -2 B, east, C, -2 Α 0 0 0 0 0 8 -1 -1 3 8 D 0 8 Ε 0 0 0 Assume:  $\gamma = 1$ ,  $\alpha = 1/2$ 

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$ 

#### Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg\max_{a} Q(s, a)$ 

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!



### Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning

#### Q-Value Iteration

- Value iteration: find successive (depth-limited) values
  - Start with  $V_0(s) = 0$ , which we know is right
  - Given V<sub>k</sub>, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
  - Start with  $Q_0(s,a) = 0$ , which we know is right
  - Given Q<sub>k</sub>, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

#### Model-Free Learning

- Model-free (temporal difference) learning
  - Experience world through episodes

 $(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$ 

- Update estimates each transition  $\left(s,a,r,s'
  ight)$
- Over time, updates will mimic Bellman updates



#### Q-Learning

- Q-Learning: sample-based Q-value iteration  $Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$
- Learn Q(s,a) values as you go
  - Receive a sample (s,a,s',r)
  - Consider your old estimate: Q(s, a)
  - Consider your new sample estimate: no longer policy  $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$  evaluation!
  - Incorporate the new estimate into a running average:  $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$



[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

### **Q-Learning Properties**

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
  - You have to explore enough
  - You have to eventually make the learning rate small enough
  - ... but not decrease it too quickly
  - Basically, in the limit, it doesn't matter how you select actions (!)



#### Video of Demo Q-Learning -- Gridworld



#### Video of Demo Q-Learning -- Crawler



## Active Reinforcement Learning

### Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning

#### Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
  - You don't know the transitions T(s,a,s')
  - You don't know the rewards R(s,a,s')
  - You choose the actions now
  - Goal: learn the optimal policy / values
- In this case:
  - Learner makes choices!
  - Fundamental tradeoff: exploration vs. exploitation
  - This is NOT offline planning! You actually take actions in the world and find out what happens...



#### Exploration vs. Exploitation



#### Video of Demo Q-learning – Manual Exploration – Bridge Grid



#### How to Explore?

- Several schemes for forcing exploration
  - Simplest: random actions (ε-greedy)
    - Every time step, flip a coin
    - With (small) probability  $\varepsilon$ , act randomly
    - With (large) probability 1- $\varepsilon$ , act on current policy
  - Problems with random actions?
    - You do eventually explore the space, but keep thrashing around once learning is done
    - One solution: lower  $\epsilon$  over time
    - Another solution: exploration functions



[Demo: Q-learning – manual exploration – bridge grid (L10D5)] [Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]

#### Video of Demo Q-learning – Epsilon-Greedy – Crawler



#### **Exploration Functions**

- When to explore?
  - Random actions: explore a fixed amount
  - Better idea: explore areas whose badness is not • (yet) established, eventually stop exploring
- Exploration function
  - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

- Regular Q-Update:  $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$ Modified Q-Update:  $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$
- Action selection: Use  $a \leftarrow \operatorname{argmax}_a Q(s, a)$
- Note: this propagates the "bonus" back to states that lead to unknown states as well!

A commonly used 'exploration function' is  $f(u,n) = u + c\sqrt{\log(1/\delta)/n}$ , which is derived by Chernoff-Hoeffding inequality and  $\delta$  is confidence level



[Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

#### Video of Demo Q-learning – Exploration Function – Crawler



#### Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret



#### Regret 2

• Cumulative regret, i.e., for episodic MDP with fixed horizon  $R(T) = \sum_{t=1}^{T} (V^*(s_t) - V^{\pi_t}(s_t))$ where  $s_t$  is the starting state of the *t*-th interaction game

- The algorithm is learning if the average regret converges, i.e.  $\frac{R(T)}{T} \rightarrow 0$ , or equivalently R(T) = o(T)
- Smaller order of R(T) means faster learning speed
- Worst-case regret bound  $R(T) = \Omega(\sqrt{T})$ , which holds for a fixed game with arbitrary transitions and arbitrary (bounded) rewards

#### The Story So Far: MDPs and RL

#### Known MDP: Offline Solution

| Goal                          | Technique                |
|-------------------------------|--------------------------|
| Compute V*, Q*, π*            | Value / policy iteration |
| Evaluate a fixed policy $\pi$ | Policy evaluation        |

#### Unknown MDP: Model-Based

| Goal                          | Technique            |
|-------------------------------|----------------------|
| Compute V*, Q*, $\pi^*$       | VI/PI on approx. MDP |
| Evaluate a fixed policy $\pi$ | PE on approx. MDP    |

| Unknown MDP: Model-Free       |                |  |  |
|-------------------------------|----------------|--|--|
| Goal                          | Technique      |  |  |
| Compute V*, Q*, $\pi^*$       | Q-learning     |  |  |
| Evaluate a fixed policy $\pi$ | Value Learning |  |  |

## Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning
- Approximate Reinforcement Learning (= to handle large state spaces)
  - Approximate Q-Learning
  - Policy Search

### Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
  - Too many states to visit them all in training
  - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
  - Learn about some small number of training states from experience
  - Generalize that experience to new, similar situations
  - This is a fundamental idea in machine learning, and we'll see it over and over again



#### Example: Pacman

Let's say we discover through experience that this state is bad:



In naïve q-learning, we know nothing about this state:



Or even this one!



[Demo: Q-learning – pacman – tiny – watch all (L11D4)] [Demo: Q-learning – pacman – tiny – silent train (L11D6)] [Demo: Q-learning – pacman – tricky – watch all (L11D5)]

#### Video of Demo Q-Learning Pacman – Tiny – Watch All



#### Video of Demo Q-Learning Pacman – Tiny – Silent Train



#### Video of Demo Q-Learning Pacman – Tricky – Watch All



#### Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
  - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
  - Example features:
    - Distance to closest ghost
    - Distance to closest dot
    - Number of ghosts
    - 1 / (dist to dot)<sup>2</sup>
    - Is Pacman in a tunnel? (0/1)
    - ..... etc.
    - Is it the exact state on this slide?
  - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



#### Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

$$Error(w) = \frac{1}{2}(sample - Q(s, a))^{2}$$
Approximate Q-Learning 
$$\frac{dError}{dw_{i}} = -(sample - Q(s, a))f_{i}(s, a)$$

$$Q(s, a) = w_{1}f_{1}(s, a) + w_{2}f_{2}(s, a) + \ldots + w_{n}f_{n}(s, a)$$

Exact Q's

Approximate Q's

- Q-learning with linear Q-functions: transition = (s, a, r, s')difference =  $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$   $Q(s, a) \leftarrow Q(s, a) + \alpha$  [difference]  $w_i \leftarrow w_i + \alpha$  [difference]  $f_i(s, a)$
- Intuitive interpretation:
  - Adjust weights of active features
  - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



#### Example: Q-Pacman $Q(s,a) = 4.0f_{DOT}(s,a) - 1.0f_{GST}(s,a)$



Q(s, NORTH) = +1 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$  $Q(s', \cdot) = 0$ 

$$\begin{array}{c} \text{difference} = -501 \\ w_{GST} \leftarrow -1.0 + \alpha \left[ -501 \right] 0.5 \\ w_{GST} \leftarrow -1.0 + \alpha \left[ -501 \right] 1.0 \\ \end{array}$$

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$ 

[Demo: approximate Qlearning pacman (L11D8)]

#### Video of Demo Approximate Q-Learning --Pacman



# DeepMind Atari (©Two Minute Lectures) approximate Q-learning with neural nets



#### Q-Learning and Least Squares


## Linear Approximation: Regression





Prediction:  $\hat{y} = w_0 + w_1 f_1(x)$  Prediction:  $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$ 



## Minimizing Error

 Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left( y - \sum_{k} w_{k} f_{k}(x) \right)$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left( y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left( y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

• Approximate q update explained:



$$w_m \leftarrow w_m + \alpha \left[ r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
  
"target" "prediction"



## Recent Advancements: Deep Q-Networks

- Deep Mind, 2015
- Used a deep learning network to represent Q:
  - Input is last 4 images (84x84 pixel values) plus score
- 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro



## Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
    - Learn the MDP model from experiences, then solve the MDP
  - Model-free Passive RL
    - Forego learning the MDP model, directly learn V or Q:
      - Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
      - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Key challenges:
    - How to efficiently explore?
    - How to trade off exploration <> exploitation
  - Applies to both model-based and model-free. we'll cover only in context of Q-learning
- Approximate Reinforcement Learning (= to handle large state spaces)
  - Approximate Q-Learning
  - Policy Search

## Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
  - E.g. some value functions have probably horrible estimates of future rewards, but they still produced good decisions
  - Q-learning's priority: get Q-values close (modeling)
  - Action selection priority: get ordering of Q-values right (prediction)
  - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights



## Policy Search 2

- Simplest policy search:
  - Start with an initial linear value function or Q-function
  - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
  - How do we tell the policy got better?
  - Need to run many sample episodes!
  - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

## MDPs and RL

### Known MDP: Offline Solution

| Goal                          | Technique                |
|-------------------------------|--------------------------|
| Compute V*, Q*, $\pi^*$       | Value / policy iteration |
| Evaluate a fixed policy $\pi$ | Policy evaluation        |

#### Unknown MDP: Model-Based

| Goal                          | *use features<br>to generalize | Technique            |
|-------------------------------|--------------------------------|----------------------|
| Compute V*,                   | <b>Q</b> *, π*                 | VI/PI on approx. MDP |
| Evaluate a fixed policy $\pi$ |                                | PE on approx. MDP    |

#### Unknown MDP: Model-Free

| Goal                          | *use features<br>to generalize | Technique      |  |
|-------------------------------|--------------------------------|----------------|--|
| Compute V                     | /*, Q*, π*                     | Q-learning     |  |
| Evaluate a fixed policy $\pi$ |                                | Value Learning |  |

https://shuaili8.github.io

- Passive Reinforcement Learning (= how to learn from experiences)
  - Model-based Passive RL
  - Model-free Passive RL
    - Direct Evaluation & TD Learning
    - Q learning
- Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
  - Active Q-learning
  - Exploration vs Exploitation
- Approximate Reinforcement Learning (= to handle large state spaces)
  - Approximate Q-Learning
  - Policy Search

# **Questions?**



## Summary