
Lecture 7: Reinforcement
Learning

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Example: Double Bandits

2

Example: Double Bandits - MDP

• Actions: Blue, Red

• States: Win, Lose

3

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount

100 time steps

Both states have
the same value

Example: Double Bandits - Offline Planning

• Solving MDPs is offline planning
• You determine all quantities through computation

• You need to know the details of the MDP

• You do not actually play the game!

4

Play Red

Play Blue

Value

No discount

100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Example: Double Bandits - Let’s Play!

5

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Example: Double Bandits - Online Planning

• Rules changed! Red’s win chance is different.

6

W L

$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Example: Double Bandits - Let’s Play!

7

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

What Just Happened?

• That wasn’t planning, it was learning!
• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP

8

Reinforcement Learning

• What if we didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

9

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Reinforcement Learning 2

• Basic idea:
• Receive feedback in the form of rewards

• Agent’s utility is defined by the reward function

• Must (learn to) act so as to maximize expected rewards

• All learning is based on observed samples of outcomes!
10

Environment

Agent

Actions: a
State: s

Reward: r

Reinforcement Learning 3

• Still assume a Markov decision process (MDP):
• A set of states s  S

• A set of actions (per state) A

• A model T(s,a,s’)

• A reward function R(s,a,s’)

• Still looking for a policy (s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do

• Must actually try actions and states out to learn

11

Offline (MDPs) vs. Online (RL)

12

Offline Solution Online Learning

Example: Learning to Walk

13

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk 2

14Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk 3

15Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk 4

16Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: The Crawler!

17[Demo: Crawler Bot (L10D1)]

Video of Demo Crawler Bot

18

DeepMind Atari (© Two Minute Lectures)

19

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

20

Model-Based Learning

21

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

22

Model-Based Reinforcement Learning

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

23(and repeat as needed)

Example: Model-Based RL

24

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Analogy: Expected Age

25

Goal: Compute expected age of students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Free Learning

26

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

27

Passive Model-Free Reinforcement Learning

• Simplified task: policy evaluation
• Input: a fixed policy (s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world

28

Direct Evaluation

• Goal: Compute values for each state under 

• Idea: Average together observed sample values
• Act according to 

• Every time you visit a state, write down what the sum of discounted rewards
turned out to be

• Average those samples

• This is called direct evaluation

29

Example: Direct Evaluation

30

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

• What’s good about direct evaluation?
• It’s easy to understand

• It doesn’t require any knowledge of T, R

• It eventually computes the correct average values,
using just sample transitions

• What bad about it?
• It wastes information about state connections

• Each state must be learned separately

• So, it takes a long time to learn

31

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

32

Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how do we take a weighted average without knowing the weights?

33

(s)

s

s, (s)

s, (s),s’

s’

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’
(by doing the action!) and average

Sample-Based Policy Evaluation?

34

(s)

s

s, (s)

s1's2' s3's'

s, (s),s’

Almost! But we can’t
rewind time to get sample
after sample from state s

Temporal Difference Value Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)

• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!

• Move values toward value of whatever successor occurs: running average

35

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Gradient Descent View

• Goal: find 𝑥 that minimizes 𝑓(𝑥)

1. Start with initial guess, 𝑥0
2. Update 𝑥 by taking a step in the direction that 𝑓(𝑥) is changing fastest

(in the negative direction) with respect to x:

𝑥 ← 𝑥 − 𝛼∇𝑥𝑓, where 𝛼 is the step size or learning rate

3. Repeat until convergence

• TD goal: find value(s), V, that minimizes difference between sample(s) and
V

𝑉 ← 𝑉 − 𝛼∇𝑉𝐸𝑟𝑟𝑜𝑟

36

𝑓 𝑥 =
1

2
𝑦 − 𝑥 2

𝑑𝑓

𝑑𝑥
= −(𝑦 − 𝑥)

𝐸𝑟𝑟𝑜𝑟(𝑉) =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉 2

Gradient Descent View 2

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)

• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!

• Move values toward value of whatever successor occurs: running average

37

𝑉𝜋 𝑠 ← 𝑉𝜋(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝜋 𝑠′

𝑉𝜋 𝑠 ← 1 − 𝛼 𝑉𝜋 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

2

Exponential Moving Average

• Exponential moving average
• The running interpolation update: 𝑉𝑛 = 1 − 𝛼 𝑉𝑛−1 + 𝛼𝑥𝑛 with 𝑉1 = 𝑥1

• Makes recent samples more important
𝑉𝑛 = 𝛼𝑥𝑛 + 𝛼 1 − 𝛼 𝑥𝑛−1 +⋯+ 𝛼 1 − 𝛼 𝑛−2𝑥2 + 1 − 𝛼 𝑛−1𝑥1

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages
• Note 𝑉𝑛 = 𝛼𝑛𝑥𝑛 + 1 − 𝛼𝑛 𝛼𝑛−1𝑥𝑛−1 +⋯

+ 1 − 𝛼𝑛 1 − 𝛼𝑛−1 ∙ ⋯ ∙ 1 − 𝛼3 𝛼2𝑥2
+ 1 − 𝛼𝑛 1 − 𝛼𝑛−1 ∙ ⋯ ∙ (1 − 𝛼3)(1 − 𝛼2)𝑥1

38

Example: Temporal Difference Value Learning

39

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values

• Makes action selection model-free too!

40

a

s

s, a

s,a,s’

s’

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

41

Q-Value Iteration

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:

42

Model-Free Learning

• Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman updates

43

a

s

s, a

s’

a’

s’, a’

s’’

Q-Learning

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)

• Consider your old estimate:

• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

44
[Demo: Q-learning – gridworld (L10D2)]

[Demo: Q-learning – crawler (L10D3)]

no longer policy
evaluation!

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

45

Video of Demo Q-Learning -- Gridworld

46

Video of Demo Q-Learning -- Crawler

47

Active Reinforcement Learning

48

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

49

Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find

out what happens…

50

Exploration vs. Exploitation

51

Video of Demo Q-learning – Manual
Exploration – Bridge Grid

52

How to Explore?

• Several schemes for forcing exploration
• Simplest: random actions (-greedy)

• Every time step, flip a coin

• With (small) probability , act randomly

• With (large) probability 1-, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around

once learning is done

• One solution: lower  over time

• Another solution: exploration functions

53
[Demo: Q-learning – manual exploration – bridge grid (L10D5)]

[Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]

Video of Demo Q-learning – Epsilon-Greedy –
Crawler

54

Exploration Functions

• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

•

• Action selection: Use 𝑎 ← argmax𝑎 𝑄(𝑠, 𝑎)
• Note: this propagates the “bonus” back to states that lead to unknown states as well!

55

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

A commonly used ‘exploration function’ is

𝑓 𝑢, 𝑛 = 𝑢 + 𝑐 log(1/𝛿) /𝑛, which is
derived by Chernoff-Hoeffding inequality
and 𝛿 is confidence level

Video of Demo Q-learning – Exploration
Function – Crawler

56

Regret

• Even if you learn the optimal policy,
you still make mistakes along the
way!

• Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards

• Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

• Example: random exploration and
exploration functions both end up
optimal, but random exploration
has higher regret

57

Regret 2

• Cumulative regret, i.e., for episodic MDP with fixed horizon

𝑅 𝑇 =෍
𝑡=1

𝑇

(𝑉∗ 𝑠𝑡 − 𝑉𝜋𝑡(𝑠𝑡))

where 𝑠𝑡 is the starting state of the 𝑡-th interaction game

• The algorithm is learning if the average regret converges, i.e.
𝑅 𝑇

𝑇
→ 0, or equivalently 𝑅 𝑇 = 𝑜(𝑇)

• Smaller order of 𝑅(𝑇) means faster learning speed

• Worst-case regret bound 𝑅 𝑇 = Ω(𝑇), which holds for a fixed
game with arbitrary transitions and arbitrary (bounded) rewards

58

The Story So Far: MDPs and RL

59

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect
experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

• Approximate Reinforcement Learning (= to handle large state spaces)
• Approximate Q-Learning
• Policy Search

60

Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn
about every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll

see it over and over again

61

Example: Pacman

62

[Demo: Q-learning – pacman – tiny – watch all (L11D4)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D5)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny –
Watch All

63

Video of Demo Q-Learning Pacman – Tiny –
Silent Train

64

Video of Demo Q-Learning Pacman – Tricky –
Watch All

65

Feature-Based Representations

• Solution: describe a state using a vector of features
(properties)
• Features are functions from states to real numbers (often 0/1)

that capture important properties of the state
• Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

66

Linear Value Functions

• Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in
value!

67

Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features

that were on: disprefer all states with that state’s features

• Formal justification: online least squares

68

Exact Q’s

Approximate Q’s

𝐸𝑟𝑟𝑜𝑟 𝑤 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄(𝑠, 𝑎) 2

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑤𝑖
= − 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄 𝑠, 𝑎 𝑓𝑖(𝑠, 𝑎)

Example: Q-Pacman

69[Demo: approximate Q-
learning pacman (L11D8)]

Video of Demo Approximate Q-Learning --
Pacman

70

DeepMind Atari (© Two Minute Lectures)
approximate Q-learning with neural nets

71

Q-Learning and Least Squares

72

Linear Approximation: Regression

73

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Prediction: Prediction:

Optimization: Least Squares

74

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

• Imagine we had only one point x, with features f(x), target value y,
and weights w:

• Approximate q update explained:

75

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help

760 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Recent Advancements: Deep Q-Networks

• Deep Mind, 2015

• Used a deep learning network to represent Q:
• Input is last 4 images (84x84 pixel values) plus score

• 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

77

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect
experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

• Approximate Reinforcement Learning (= to handle large state spaces)
• Approximate Q-Learning
• Policy Search

78

Policy Search

• Problem: often the feature-based policies that work well
(win games, maximize utilities) aren’t the ones that
approximate V / Q best
• E.g. some value functions have probably horrible estimates of future rewards, but they still

produced good decisions

• Q-learning’s priority: get Q-values close (modeling)

• Action selection priority: get ordering of Q-values right (prediction)

• We’ll see this distinction between modeling and prediction again later in the course

• Solution: learn policies that maximize rewards, not the values that predict them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

79

Policy Search 2

• Simplest policy search:
• Start with an initial linear value function or Q-function

• Nudge each feature weight up and down and see if your policy is better than before

• Problems:
• How do we tell the policy got better?

• Need to run many sample episodes!

• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

80

MDPs and RL

81

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning

*use features
to generalize

*use features
to generalize

Summary

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Model-free Passive RL
• Direct Evaluation & TD Learning

• Q learning

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
• Active Q-learning

• Exploration vs Exploitation

• Approximate Reinforcement Learning (= to handle large state spaces)
• Approximate Q-Learning

• Policy Search

Questions?

https://shuaili8.github.io

Shuai Li

82

https://shuaili8.github.io/

