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Linear Regression



Regression example

* Given the following values of Xand Y :
(1,1), (2,2), (4,4), (100,100), (20, 20)
what is the value of Y when X =57

* The answer is 5, not difficult

 What if the given values are
(1,1),(2,4),(4,16),(100,10000), (20,400)

* Yis 25 when X =5, right?

e Rationale:

* Look at some examples and then tries to identify the most suitable relationship
between the sets Xand Y

e Using this identified relationship, try to predict the values for new examples



Regression example (cont.)
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Linear regression

e Use linear relationship to approximate the function of Y on X

* How to select the most appropriate linear model?
* Error: Mean squared error (MSE)

1 <& .
MSE = — Y: — Y;)?
- ;Zlﬁ( )

e Where Y and Y are the true values and predicted values respectively

* Find the linear model with the smallest MSE



price (in $1000)

Use linear model to fit the given data
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Linear regression 2D example

* In the 2D example, you are looking for a linear equation
y = xq1 * 081 + 0, to fit the data with smallest MSE
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Question

* Given the dataset {(1,1), (2,4), (3,5)} and the linear model Y = 2X +
1

* What is the mean squared error?

* The predicted points are (1,3),(2,5), (3,7)
* So the mean squared error (MSE) is % (22+1%2+2%) =3



Question 2

* Given the <real value, predicted value> pairs as:
<12,1.7 >,<09,0.2 ><-0.3,01><13,03><11,12 >
compute the mean squared error

* The answer is

1
E(O.S2 + 0.7% + 0.4% + 1% + 0.1%) = 0.382



How to get linear model with minimal MSE

* MSE for model parameter 6:

1
J©) =5 ) (= 07x)?
=1

* Find an estimator 8 to minimize J(6)

*y=0Tx+b+e. Thenwe canwritex’ = (1,x1,...,x%),0 =
(b,04,...,0,),theny =0"x" + ¢

* Note that J(8) is a convex function in 8, so it has a unique minimal
point



Interpretation

Sum of squares error contours for linear regression
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Convex set

* A convex set S is a set of points such that, given any
two points A, B in that set, the line AB joining them
lies entirely within S.

try + (1 —t)xe € S
forall 1,22 € S,0<t<1

Convex set Non-convex set
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Convex function

f(z2)

tf(z1) + (1 —t)f(z2)
f(t-Tl : 2 (1 = t).’BQ)

f(z1)

Z1 tr; + (1 —t)zy T2

f:R®™ = R isconvexif dom f is aconvex setand

fltzy + (1 —t)xo) < tf(xy) + (1 —1)f(x2)
forall 1,20 € dom f,0 <t <1
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J(8) is convex

A Check it by yourself !

* f(x) = - X)2= (x — y)2 IS convex in x

* g(8) = f(0"x)
9((1 = )6, + t6,)
— f ((1 _ t)elTx T tHZTx) 2 Convexity of f
< (1 -0f(6;'x) +tf(6;"x)
= (1—-1t)g(61) +tg(6;)

e The sum of convex functions is convex
* Thus J(6) is convex
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Minimal point (Normal equation)

aj(0) _ T T
° 38 Z 1(9 Xi — YL)XL — 1(xx H_xlyl)
* Letting the derivative be zero
N N
T _
z xix; |10 = z X;Yi
ol | [x o x® V1
clfwewriteX =1|: | = : ,y =1 |, then
xn | |xn xf\l,_ VN




Minimal point (Normal equation) (cont.)

c XTX0 = XTy
 When X "X is invertible A
h=(XTX)1xTy

* When X T X is not invertible )ewo_mverse
d=xX"X)"xTy

_1 - _1

e E.g. The pseudo-inverse of 2 IS




Interpretation of least square error

* For a perfect two-dimensional example: X; * 68, + X, * 8, = vy, where
y is the vector of all true prediction values and X; is the i-th column
vectorin X

* We are using the combination of X; to approximate the projection of
y at their plane

y
!

X2




Geometric interpretation

e N=3,d=2
1<
1 2 8.8957
X=(1 -2|, y= {06130
1 2 1.7761
argmin ly = ¥ll2.

yéEspan({Xy,....Xp })

column vectors in X

e =X"X)"XTy

P =X0=XX"X)"'XTy
X

Projection
hat matrix (put a “hat” ony)

Figure credit: Kevin Murphy
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Examples



Question 1

 Given the dataset

(1,1), (2,4), (3,5)
compute the normal equation for 8, solve 8 and compute the MSE

X'l 1 1 ﬁzXTy

1 1 17
X=|x,|=[1 2|,y=|4
x] 1 3. 5.
T v 3 61 1. [10
XX_[ 14]’X3’_[24

[2 164] rgj B B?L

0 = [—%,2],)/ = —§+2x. MSE=§



Question 2

* Some economist say that the impact of GDP in ‘current year’ will have
effect on vehicle sales ‘next year’. So whichever year GDP was less,
the coming year sales was lower and when GDP increased the next
year vehicle sales also increased

* Let’s have the equationasy = 6, + 6,x, where
y = number of vehicles sold in the year
x = GDP of prior year
We need to find 6, and 6,



Question 2 (cont.)
 Here is the data between 2011 and 2016.

Ve GDP |Selesofvehice

2011 6.2

2012 6.5 26.3

2013 5.48 26.65 Homework
2014 6.54 25.03

2015 7.18 26.01 /

2016 7.93 27.9

2017 30.47

2018

* Question 1: What is the normal equation?

* Question 2: Suppose the GDP increasement in 2017 is 7%, how many
vehicles will be sold in 20187?



Gradient methods



Motivation — large dataset

18

0 — (XTX)—1XTy 1ab N\

* Recall the objective is to minimize the
loss function L(6)

: : : : I

81

1 _ X
L(§) = J(8) = Nz(yl' —9Tx)? N S

* Gradient descent method — o en;weold
earning rate
\ AL (0)

enew A 901d — 784



(Batch) gradient descent

« fo(x) = 0T x 7(6) = — D= fola)) (0
d.J(6)

50 for the whole batch

° Update Onew < Oo1a — N

N
T - 23 i fatai 2

1=1 25



Stochastic gradient descent

? _ _ _ 1 ?
IO = = folw))® min gy JUO)

* Update Ohew = Oo1q — nan’;(a) for|every single instance
0™ (6) 0 fo(x:)

= —(yi — fo(x;))x;
Onew = Oold + n(yi — fo(xi))zi

* Compare with BGD
* Faster learning
* Uncertainty or fluctuation in learning
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Mini-Batch Gradient Descent

A combination of batch GD and stochastic GD

 Split the whole dataset into K mini-batches

1,2,3,....K}

*|For each mini-batch k,

towards minimizing

JH)(9) =

* Update Qnew — Qold — 1N

1
Ni 4=

perform one-step BGD

Ny,

(yi — fo(zs))?

0J k) (9)

5 for each mini-batch
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Mini-Batch Gradient Descent (cont.)

* Good learning stability (BGD)
* Good convergence rate (SGD)

* Easy to be parallelized
* Parallelization within a mini-batch

Map Parallelized Gradient Reduce Gradient

Sum
WorkerlIIIIII
WorkerZIIIIII

Worker3IIIIII
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Comparisons

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Searching

e Start with a new initial value 6
» Update @ iteratively (gradient descent)
* Ends at a minimum

1

J(eo'el) 0-

30



Unigueness of minimum for convex objectives

loss w.r.t. parameters

0.8

0.6 -

0.2 4

0.0 4

-0.2

-2 -1 0 1 2 3
H(i

* Different initial parameters and different learning algorithm lead to the
same optimum
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Learning rate

Qnew — Hold — 1

18

16}
14}

7 too small

12+

o\ slow convergence

J(0)

s —4 -2 0 2 4 6

* The initial point may be too far away
from the optimal solution, which
takes much time to converge

J(0)

. (6)

00

18

ol 7 too large
1) ‘Increasing value of J(0)

12+

10

-6 '} =2 0 2 a
0

* May overshoot the minimum

* May fail to converge

* May even diverge

* To see if gradient descent is working, print out J(6) for each or every
several iterations. If J(8) does not drop properly, adjust 7
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Probabilistic view



Probabilistic view

* Assume for each sampled (x, y)~D,
y=0"x+¢
where ¢ is Gaussian noise and e~N'(0, 62), or equivalently,
y~N(0Tx,0%)

* The linear regression estimator 6 is the maximal likelihood estimator
(MLE) of the data



Maximum likelihood estimation (MLE)

* Frequentists’ view

éMLE = arg max P(X;6)
= argmax P(x1;0)P(x2;0) - - - -P(x,;0)

= arg max log H P(x;;0)
i—1

= arg max Z log P(x;;6)
—1

1=

= arg min — Z log P(x;;0)
i=1
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MLE view

e Given dataset S, find @ to maximli,ze the likelihood of S, which is
Pisio] = | [Prylx. 6
i=1

* § = argmaxyP[S]6]
= argmaxg I(K’g P[S|6]

= argmaxg 2 log P|y;|x;, 6]
i=1

1 (=0T x?

o P[yilxi' Q] — — e 2 g2 :l_‘ Gaussian distribution

36



MLE view (cont.)
:!P[ T 0] =
* § = argmaxg Y.\, log IPL%- X;, g

B 2 1 (vi — 60"x)?
= argmax, ) log—— >3

llN

s ) 3~

T 2
argming ) (y; — 6" x;)

llN

1
= argming Nz(yi — 67x;)?
i=1
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Application Examples



Trend line

* A trend line represents a trend, the long-term movement in time
series data after other components have been accounted for

e E.g. Stock price, heart rate, sales volume, temperature

* Given a set of points in time t and data values y;, find the linear
relationship of y; with respectto ¢

* Find a and b to minimize

Z[yt — (at + b)]?

i



Finance: Capital asset pricing model (CAPM)

* Describes the relationship between systematic risk and expected
return for assets, particularly stocks

* Is widely used throughout finance for pricing risky securities and
generating expected returns for assets given the risk of those assets
and cost of capital

E(R;) = Ry + Bi(E(R.) — Ry)
where:

e E(R;) isthe expected return on the capital asset

¢ Ry is the risk-free rate of interest such as interest arising from government bonds

e B; (the beta) is the sensitivity of the expected excess asset returns to the expected excess market returns,

« E(R,,) isthe expected return of the market

. . . 40
o E(R,,) — Ry is sometimes known as the market premium



Example of CAPM

* The risk-free rate of return (which is usually the return rate of
government bonds) is 3%, and average market rate is 5%. Suppose
the beta in car industry is 1.4, what is the average return rate for the
car industry?

* In another way, if we have the risk-free return rate, the market return
rate and the return rate of 10 car companies, how to compute the
beta for car industry?



Regularization



Problems of ordinary least squares (OLS)

e Best model is to minimize both the bias and the

variance
* Ordinary IeaSt Squares (OLS) Low Variance High Variance
* Previous linear regression
* Unbiased
* Can have huge variance :
e Multi-collinearity among data 3
* When predictor variables are correlated to each other and to the
response variable
e E.g. To predict patient weight by the height, sex, and diet. But height
and sex are correlated
e Many predictor variables
* Feature dimension close to number of data points 3
;_f:u

 Solution
e Reduce variance at the cost of introducing some bias
* Add a penalty term to the OLS equation
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Ridge regression

* Regularization with L2 norm
LRidge = (y _X9)2+/1”9“%

* )l’ — O’ HRldge — HOLS wy A '
A F IR ENFAL
el —> 00,0 -0 - /
* As A becomes larger, the variance decreases but the N\
I I 36 4 AR B — (NS
bias increases RREHA— PN
. . LR EEs /ST W}\'\‘ e o
* A: Trade-off between bias and variance ) / //,/ N
* Choose by cross-validation < % w;
* Ridge regression decreases the complexity of a
model but does not reduce the number of variables V

(compared to other regularization like Lasso) 2



Solution of the ridge regression

a l e
Lg;g =230 1(0Tx; — y)x; + 226

* Letting the derivative be zero

/11+2XXT 9—2 XiVi

x; xXi e x{l V1
clfwewriteX =1|: | = : ,y =1 |, then
Xy Xy e x,‘\l, VN
— (Al + XTX)H =Xy

Hrldge — (/11 + XTX) 1XT

Always invertible
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Maximum A Posteriori (MAP)

* Bayesians’ view

P(X|0) x P(6)

P(4|X) = 0

Aniap = arg max P(6|X)

= arg min —

= arg min —

log P(6] X)
log P(X|0) — log P(0) + log P(X)

= arg min — .

log P(X|0) — log P(6)

46



Probabilistic view (MAP)

* Ridge regression estimator is an MAP estimator with Gaussian prior
e Suppose 0 has the prior P(0) = N (0, t2]) _ep(—3- )" (x - p))

" v 2m)F[X
* Opap = argmaxg Yi-4 log P[)’un 6] + log P(@)

HT % 1
rgmaxez: Oi—0 x)° 1 012

1 00T 272
P[)’i|xi;9]=me 20°

= argmaxy — 2(% 07x;)% — All6]l5
:|./1—02/er

= argming — Z(yl 67 x;)* + All6]l5

47



15—

10F

Linear regression with non-linear relationships

*Eg. p(x) = (1, x,x%, ..., x and y~N (8T p(x),02)

e Features: Last hidden layer of Neural Networks

degree 14

15

degree 20

101

-10—

15 20

Figure credit: Kevin Murphy
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Logistic Regression



From linear regression to logistic regression

* Logistic regression

e Similar to linear regression
* Given the numerical features of a sample, predict the numerical label value
* E.g. given the size, weight, and thickness of the cell wall, predict the age of the cell
* The values y we now want to predict take on only a small number of discrete
values
* E.g.to predict the cell is benign or malignant



Example

* Given the data of cancer cells below, how to predict they are benign

or malignant?

Id

1000025
1002945
1015425
1016277
1017023
1017122
1018099
1018561
1033078
1033078
1035283
1036172
1041801

Cl.thickness
5

(¥

i N = bR NN = 0 A W

Cell.size

= 0o = A

[t

0

W = = RN e

Cell.shape

= 00 = A

W o e e e N

Marg.adhesion

1
5
1
1
3
8
1
1
1
1
1
1
3

Epith.c.size

NN E RN NN NN NN W NN

Bare.nuclei
1

10

2

4

10

W o= = e e e

Bl.cromatin

BN W N2 W WO W W W W W

Normal.nucleoli

T = = T = N = R = I N B ST N RN ST ¥

Mitoses

e e e ¥ B e e e I = = =

Class
benign
benign
benign
benign
benign
malignant
benign
benign
benign
benign
benign
benign

malignant
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Logistics regression

* It is a Classification problem

 Compared to regression problem, which predicts the labels from many
numerical features

* Many applications

* Spam Detection: Predicting if an email is Spam or not based on word
frequencies

* Credit Card Fraud: Predicting if a given credit card transaction is fraud or not
based on their previous usage

* Health: Predicting if a given mass of tissue is benign or malignant
* Marketing: Predicting if a given user will buy an insurance product or not

52



Classification problem

* Given:

e A description of aninstance x € X

* Afixed set of categories: C = {ci1,¢2,...,¢m}
* Determine:

* The category of z: f(x) € C where f(x) is a categorization function whose
domain is X and whose range is C

* If the category set binary, i.e. C = {0, 1} ({false, true}, {negative, positive})
then it is called binary classification



Binary classification

10
. o
a1 L] -
L ﬂl- .
A S
. ] - a¥a *
gl .-l:‘ |.:‘ h‘!l'...
-w :.-.. F__‘& .
al * Jhad .-"l"‘-’- o *
. :.-'1:.'. ,"‘ﬂ*’ K3 -
l.-. L ...‘-‘-. ",‘I
2F ™ #__*".tlf \E# $- ‘.‘- .
TR
ar ) .- . -I
"L 1 0 1 z 3 3 5

Toy binary classification data set

Class 0
. Class 1
. .oo : - 2 .
o ‘.. CA e 0"
L of .
. :*%?:%é&‘:o'
..oo ¢... . ) o.:
'f?k‘:*-‘:o&.?::(%%. “.?tt.' -

Linearly separable

Nonlinearly separable



Linear discriminative model

e Discriminative model
* modeling the dependence of unobserved variables on observed ones
* also called conditional models.
« Deterministic: ¥ = fo(x)
* Probabilistic: pe(y\ﬂﬁ)

* For binary classification

*po(y=1[x)
*po(y=0|x)=1 —pg(y =1]x)



Loss Functions



KL divergence

* Regression: mean squared error (MSE)

* Kullback-Leibler divergence (KL divergence)
* Measure the dissimilarity of two probability distributions

L (pllq) = Z‘u‘;i 1(){., o Entropy
Cross entropy

— Z})k 1()g Pk — Zpk lt)g qi = —H (p) + H (p’ f}')V ;‘"_'
k k s
- 1
0.8+ : |
X
0.6} !
0.4} ;
Question:
Which one is more similar to 0.2r

normal distribution?




KL divergence (cont.)

* Information inequality
KIL (pllg) > 0 with equality iff p = q.

. Entropy
Zp = k)logy p(X = k)
. Is a measure of the uncertainty
» Discrete distribution with the maximum entropy is the uniform distribution

* Cross entropy
e Hip, q) Zp;, log qj.

* |s the average number of bits needed to encode data coming from a source
with distribution p when we use model g to define our codebook



Cross entropy loss

* Cross entropy
e Discrete case: H(p,q) = — ., p(x)logqg(x)

 Continuous case: H(p,q) = — fx p(x)logqg(x)

* Cross entropy loss in classification:
* Red line p: the ground truth label distribution.

* Blue line g: the predicted label distribution.

_




Example for binary classification

* Cross entropy: H(p,q) = — 2, p(x) log q(x)

* Given a data point (x, 0) with prediction probability
qo(y = 1|x) = 0.4
the cross entropy loss on this point is
L=—-p(y=0|x) logqeéy = 0|x) —p(y = 1l|x) log qo(y = 1|x)

= —log(1—-04) = log§

* What is the cross entropy loss for data point (x, 1) with prediction
probability

qgo(y = 1|x) = 0.3



Cross entropy loss for binary classification

* Loss function for data point (x, y) with prediction model
| pe (- |x)
is
L(y' X, pH)
—1;=1log pg(1lx) — 1=0log pg(0]x)
—y logpe(1lx) — (1 —y)log (1 — pe(1]x))



Cross entropy loss for multiple classification

* Loss function for data point (x, y) with prediction model

| po (- [x)
is

m
L(y,x,pg) = — Z 1y-c, logpe(Ck|x)
=1



Binary Classification



Binary classification: linear and logistic

Linear Regression Logistic Regression

LA L 2 B RN 22 o000 OPOPOROIRRNEDS

Predicted Y lies within

Predicted Y can exceed
0 and 1 range

0 and 1 range




Binary classification: linear and logistic

* Linear regression:
e Target is predicted by hg(x) = 0"x

* Logistic regression

e Target is predicted by hy(x) = (6 Tx) =
where

1
1+ e=0"x

1
0(2) = 1+ e 2

is the logistic function or the sigmoid function

0.5

9(z)

Logistic function

t
-20

65
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Properties for the sigmoid function

1
) U(Z) - 1+ e 2

* Bounded in (0,1)
*g(z) > 1whenz -
* 0(z) > 0Owhenz » —

. 7 . d 1 _ —7 _2._10_ -B_Z
0'(2) =Ll = (1467 (—e )

1
=1+e‘Z 1_1+e‘Z)
= a(z)(l — a(z))
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Logistic regression

* Binary classification
po(y = 1|z) = 0(0'z) =

g—l_

1
1+ e 0z

e I

pe(y = Olz) =
1+ E—HTI . / is also convexin 6
* Cross entropy loss function

L(y,z,pg) = —ylogo(0'z) — (1 —y)log(l — (8 'x))

* Gradient
8£(yt:rap9) _ 1 1
50 = _yg(ﬁTm)J(z)(l —o(z))z — (1 — y)l — g(ﬂTm)g(z)(l —o(z))z
= (0(0"2) —y)z 502) o
6 —0+n(y—o(0T2) 8:; =0(2)(1—0(2)) | Onew < 0w —6:78—((9)




Label decision

* Logistic regression provides the probability

1
—1lz) =0(0'z) =
Pe(y | ) ( ) ]."‘E’._HT'I
e—BTm
Po(y = 0lz) = < g

* The final label of an instance could be decided, for example, by
setting a threshold h

§ = 1, pe(y=1lz)>h
0, otherwise



Threshold is trade-off

* Precision-recall :crr;)ade—off . {1, po(y = 1|z) > h
* Precision = e 0, otherwise
. Recall = ——
TP+FN

* Higher threshold
 More FN and less FP
* Higher precision
* Lower recall

* Lower threshold
* More FP and less FN
* Lower precision
* Higher recall



Example

* We have the heights and weights of a group of T ——
students 45890
* Height: in inches,
* Weight: in pounds
* Male: 1, female, O

* Please build a logistic regression model to predict
their genders
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Example (cont.)

* As there are only two features, height and weight, the logistic

. o 1
regression equation is: hg (X) = ——@ s 576570

* Solve it by gradient descent

\ There will be a lab on

T 0.69254 logistic regression

* The solutionis @ = |—0.49269
1 0.19834
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Weight (pounds)

Example (cont.)

Decision boundary

1 ® Male
250

4 Female
200
150 - _
100 4

50 55 60 65 70 75 80 85
Height (inches)

Threshold h = 0.5

Decision boundary
HO -+ 91x1 + 92X2 = O

Above the decision boundary lie most of
the blue points that correspond to the
Male class, and below it all the pink
plomts that correspond to the Female
class

The predictions won’t be perfect and can

be improved by including more features
(beyond weight and height), and by

Botentlally using a different decision
oundary (e.g. nonlinear)
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Example 2

* A group of 20 students spends between 0 and 6 hours studying for an

exam. How does the number of hours spent studying affect the
probability of the student passing the exam?

Hours ___lPass | [Hours __|Pass
0.50 0 2.75 1
0.75 0 3.00 0
1.00 0 3.25 1
1.25 0 3.50 0
1.50 0 4.00 1
1.75 0 4.25 1
1.75 1 4.50 1
2.00 0 4.75 1
2.25 1 5.00 1
2.50 0 5.50 1
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Example 2 (cont.)

1
* h9 (X) ~  1{4+e—(1.5046xhours —4.0777)

00000

duissed jo Ayjiqeqoud

00D~ © o e° & 9 o 9

Study Hours



Interpretation of logistic regression

* Given a probability p, the odds of p is defined as odds = pa—

4
—p
* The logit is defined as the log of the odds: In(odds) = In (%)

e Let In(odds) = 8" x, then we will have In (&) =0 "x, and

P = 14+ e 0'x

* So in logistic regression, the logit of an event (predicted positive)’s
probability is defined as a result of linear regression



Multi-Class Logistic Regression



Multi-class classification

* L(y' X pH) — _271'11 1y=Ck lngg (Cklx)

Binary classification: Multi-class classification:
A A
X ol xX
|l o X " X, AN X X
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Multi-Class Logistic Regression

* Class set C = {ci,c2,...,Cm}

* Predicting the probability of pe(y = ¢j|z)

-
693‘ T

pe(y:Cj|$) for 9 =1,...,m

Zkle"

* Softmax
* Parameters 0 = {61,09,...,0,}
* Can be normalized with m-1 groups of parameters
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Multi-Class Logistic Regression 2

* Learning on one instance (z,y = ¢;)
* Maximize log-likelihood

max log ps(y = ¢;j|x)

7]
 Gradient
T.T
Ologps(y = cjla) _ 0 | e’s
893 893 E?:l 66;‘3—3:
=T — ilogieeg“’
00
k=1
eg:mea:
-t m 0, z

k=1 € "
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Shuai Li

S umma ry https://shuaili8.github.io

* Linear regression .
* Normal equation Que5t|on5?
* Gradient methods
* Examples

Probabilistic view

Applications

Regularization

* Logistic regression (binary classification)
* Cross entropy
* Formulation, sigmoid function
* Training—gradient descent

* Multi-class logistic regression


https://shuaili8.github.io/

