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Linear Regression
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Regression example

• Given the following values of X and Y : 
(1,1), (2,2), (4,4), (100,100), (20, 20)

what is the value of Y when X = 5?

• The answer is 5, not difficult

• What if the given values are 
(1,1), (2,4), (4,16), (100,10000), (20, 400)

• Y is 25 when X =5, right?

• Rationale: 
• Look at some examples and then tries to identify the most suitable relationship 

between the sets X and Y
• Using this identified relationship, try to predict the values for new examples 3



Regression example (cont.)
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Linear regression

• Use linear relationship to approximate the function of 𝑌 on 𝑋

• How to select the most appropriate linear model?

• Error: Mean squared error (MSE)

• Where 𝑌 and ෠𝑌 are the true values and predicted values respectively

• Find the linear model with the smallest MSE
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Use linear model to fit the given data
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Linear regression 2D example

• In the 2D example, you are looking for a linear equation

𝑦 = 𝑥1 ∗ 𝜃1 + 𝜃0 to fit the data with smallest MSE

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Linear_regression.svg/1200px-Linear_regression.svg.png7



Question

• Given the dataset { 1,1 , 2,4 , 3,5 } and the linear model 𝑌 = 2𝑋 +
1

• What is the mean squared error?

• The predicted points are 1,3 , 2,5 , (3,7)

• So the mean squared error (MSE) is 
1

3
22 + 12 + 22 = 3
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Question 2

• Given the <real value, predicted value> pairs as: 
< 1.2, 1.7 >,< 0.9, 0.2 >,< −0.3,0.1 >,< 1.3, 0.3 >,< 1.1, 1.2 >
compute the mean squared error

• The answer is
1

5
0.52 + 0.72 + 0.42 + 12 + 0.12 = 0.382
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How to get linear model with minimal MSE

• MSE for model parameter 𝜃:

𝐽(𝜃) =
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

• Find an estimator መ𝜃 to minimize 𝐽(𝜃)

• 𝑦 = 𝜃⊤𝑥 + 𝑏 + 𝜀. Then we can write 𝑥′ = 1, 𝑥1, … , 𝑥𝑑 , 𝜃 =
(𝑏, 𝜃1, … , 𝜃𝑑), then 𝑦 = 𝜃⊤𝑥′ + 𝜀

• Note that 𝐽(𝜃) is a convex function in 𝜃, so it has a unique minimal 
point
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Interpretation

Figure credit: Kevin Murphy 11



Convex set
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Convex function
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𝐽(𝜃) is convex

• 𝑓 𝑥 = (𝑦 − 𝑥)2= (𝑥 − 𝑦)2 is convex in 𝑥

• 𝑔 𝜃 = 𝑓 𝜃⊤𝑥
𝑔 1 − 𝑡 𝜃1 + 𝑡𝜃2
= 𝑓 1 − 𝑡 𝜃1

⊤𝑥 + 𝑡𝜃2
⊤𝑥

≤ 1 − 𝑡 𝑓 𝜃1
⊤𝑥 + 𝑡𝑓 𝜃2

⊤𝑥
= 1 − 𝑡 𝑔 𝜃1 + 𝑡𝑔(𝜃2)

• The sum of convex functions is convex

• Thus 𝐽(𝜃) is convex

Check it by yourself !

Convexity of f
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Minimal point (Normal equation)

•
𝜕𝐽(𝜃)

𝜕𝜃
=

2

𝑁
σ𝑖=1
𝑁 𝜃⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 =

2

𝑁
σ𝑖=1
𝑁 𝑥𝑖𝑥𝑖

⊤𝜃 − 𝑥𝑖𝑦𝑖

• Letting the derivative be zero

෍

𝑖=1

𝑁

𝑥𝑖𝑥𝑖
⊤ 𝜃 =෍

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

• If we write 𝑋 =
𝑥1
⊤

⋮
𝑥𝑁
⊤

=
𝑥1
1 ⋯ 𝑥1

𝑑

⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
, 𝑦 =

𝑦1
⋮
𝑦𝑁

, then

𝑋⊤𝑋𝜃 = 𝑋⊤𝑦
15



Minimal point (Normal equation) (cont.)

• 𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

• When 𝑋⊤𝑋 is invertible
መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

• When 𝑋⊤𝑋 is not invertible
መ𝜃 = 𝑋⊤𝑋 †𝑋⊤𝑦

• E.g. The pseudo-inverse of 
1

2
0

is 

1
1

2

0

pseudo-inverse
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Interpretation of least square error

• For a perfect two-dimensional example: ෤𝑥1 ∗ 𝜃1 + ෤𝑥2 ∗ 𝜃2 = 𝑦, where 
𝑦 is the vector of all true prediction values and ෤𝑥𝑖 is the 𝑖-th column 
vector in 𝑋

• We are using the combination of ෤𝑥𝑖 to approximate the projection of 
𝑦 at their plane

Figure credit: Trevor Hastie
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Geometric interpretation

• 𝑁 = 3, 𝑑 = 2

• መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

• ො𝑦 = 𝑋 መ𝜃 = 𝑋 𝑋⊤𝑋 −1𝑋⊤𝑦

column vectors in X

Projection
hat matrix (put a ”hat” on y) Figure credit: Kevin Murphy 18



Examples
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Question 1

• Given the dataset
1,1 , 2,4 , 3,5

compute the normal equation for 𝜃, solve 𝜃 and compute the MSE

• 𝑋 =

𝑥1
⊤

𝑥2
⊤

𝑥3
⊤

=
1 1
1 2
1 3

, 𝑦 =
1
4
5

𝑋⊤𝑋 =
3 6
6 14

, 𝑋⊤𝑦 =
10
24

3 6
6 14

𝜃1
𝜃2

=
10
24

• 𝜃 = −
2

3
, 2 , 𝑦 = −

2

3
+ 2𝑥. MSE=

2

9

𝑋⊤𝑋𝜃 = 𝑋⊤𝑦
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Question 2

• Some economist say that the impact of GDP in ‘current year’ will have 
effect on vehicle sales ‘next year’. So whichever year GDP was less, 
the coming year sales was lower and when GDP increased the next 
year vehicle sales also increased

• Let’s have the equation as 𝑦 = 𝜃0 + 𝜃1𝑥, where
𝑦 = number of vehicles sold in the year
𝑥 = GDP of prior year
We need to find 𝜃0 and 𝜃1

21



Question 2 (cont.)
• Here is the data between 2011 and 2016.

• Question 1: What is the normal equation?

• Question 2: Suppose the GDP increasement in 2017 is 7%, how many 
vehicles will be sold in 2018?

Year GDP Sales of vehicle 

2011 6.2

2012 6.5 26.3

2013 5.48 26.65

2014 6.54 25.03

2015 7.18 26.01

2016 7.93 27.9

2017 30.47

2018

Homework

22



Gradient methods
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Motivation – large dataset

• Too big to compute directly 
መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

• Recall the objective is to minimize the 
loss function

𝐿 𝜃 = 𝐽 𝜃 =
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

• Gradient descent method
learning rate

24



(Batch) gradient descent

• 𝑓𝜃 𝑥 = 𝜃⊤𝑥

25

2

2

2



Stochastic gradient descent
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Mini-Batch Gradient Descent 
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Mini-Batch Gradient Descent (cont.)
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Comparisons
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Searching

• Start with a new initial value 𝜃

• Update 𝜃 iteratively (gradient descent)

• Ends at a minimum

30



Uniqueness of minimum for convex objectives
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Learning rate
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Probabilistic view
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Probabilistic view

• Assume for each sampled 𝑥, 𝑦 ~𝐷,
𝑦 = 𝜃⊤𝑥 + 𝜀

where 𝜀 is Gaussian noise and 𝜀~𝒩(0, 𝜎2), or equivalently, 
𝑦~𝒩(𝜃⊤𝑥, 𝜎2)

• The linear regression estimator መ𝜃 is the maximal likelihood estimator 
(MLE) of the data

34



Maximum likelihood estimation (MLE)

• Frequentists’ view
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MLE view

• Given dataset 𝑆, find 𝜃 to maximize the likelihood of 𝑆, which is

ℙ 𝑆|𝜃 =ෑ

𝑖=1

𝑁

ℙ[𝑦𝑖|𝑥𝑖 , 𝜃]

• መ𝜃 = argmax𝜃ℙ 𝑆|𝜃
= argmax𝜃 log ℙ 𝑆|𝜃

= argmax𝜃෍

𝑖=1

𝑁

log ℙ 𝑦𝑖|𝑥𝑖 , 𝜃

• ℙ 𝑦𝑖|𝑥𝑖 , 𝜃 =
1

2𝜋𝜎2
𝑒
−
(𝑦𝑖−𝜃

⊤𝑥𝑖)
2

2𝜎2 Gaussian distribution
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MLE view (cont.)

• መ𝜃 = argmax𝜃 σ𝑖=1
𝑁 log ℙ 𝑦𝑖|𝑥𝑖 , 𝜃

= argmax𝜃෍

𝑖=1

𝑁

log
1

2𝜋𝜎2
−
(𝑦𝑖 − 𝜃⊤𝑥𝑖)

2

2𝜎2

= argmax𝜃 −෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

= argmin𝜃෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

= argmin𝜃
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

residual sum of squares (RSS) 

ℙ 𝑦𝑖|𝑥𝑖 , 𝜃 =
1

2𝜋𝜎2
𝑒
−
(𝑦𝑖−𝜃

⊤𝑥𝑖)
2

2𝜎2

37



Application Examples
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Trend line

• A trend line represents a trend, the long-term movement in time 
series data after other components have been accounted for

• E.g. Stock price, heart rate, sales volume, temperature

• Given a set of points in time 𝑡 and data values 𝑦𝑡, find the linear 
relationship of 𝑦𝑡 with respect to 𝑡

• Find 𝑎 and 𝑏 to minimize

39



Finance: Capital asset pricing model (CAPM)

• Describes the relationship between systematic risk and expected 
return for assets, particularly stocks

• Is widely used throughout finance for pricing risky securities and 
generating expected returns for assets given the risk of those assets 
and cost of capital

40



Example of CAPM

• The risk-free rate of return (which is usually the return rate of 
government bonds) is 3%, and average market rate is 5%. Suppose 
the beta in car industry is 1.4, what is the average return rate for the 
car industry?

• In another way, if we have the risk-free return rate, the market return 
rate and the return rate of 10 car companies, how to compute the 
beta for car industry?

41



Regularization

42



Problems of ordinary least squares (OLS)
• Best model is to minimize both the bias and the 

variance

• Ordinary least squares (OLS)
• Previous linear regression
• Unbiased
• Can have huge variance

• Multi-collinearity among data
• When predictor variables are correlated to each other and to the 

response variable
• E.g. To predict patient weight by the height, sex, and diet. But height 

and sex are correlated

• Many predictor variables
• Feature dimension close to number of data points

• Solution
• Reduce variance at the cost of introducing some bias
• Add a penalty term to the OLS equation

43



Ridge regression
• Regularization with L2 norm

𝐿𝑅𝑖𝑑𝑔𝑒 = (𝑦 − 𝑋𝜃)2+𝜆 𝜃 2
2

• 𝜆 → 0, መ𝜃𝑅𝑖𝑑𝑔𝑒 → መ𝜃𝑂𝐿𝑆

• 𝜆 → ∞, መ𝜃 → 0

• As 𝜆 becomes larger, the variance decreases but the 
bias increases

• 𝜆: Trade-off between bias and variance
• Choose by cross-validation

• Ridge regression decreases the complexity of a 
model but does not reduce the number of variables 
(compared to other regularization like Lasso) 44



Solution of the ridge regression

•
𝜕𝐿𝑅𝑖𝑑𝑔𝑒

𝜕𝜃
= 2σ𝑖=1

𝑁 𝜃⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 + 2𝜆𝜃

• Letting the derivative be zero

𝜆𝐼 +෍

𝑖=1

𝑁

𝑥𝑖𝑥𝑖
⊤ 𝜃 =෍

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

• If we write 𝑋 =
𝑥1
⊤

⋮
𝑥𝑁
⊤

=
𝑥1
1 ⋯ 𝑥1

𝑑

⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
, 𝑦 =

𝑦1
⋮
𝑦𝑁

, then

𝜆𝐼 + 𝑋⊤𝑋 𝜃 = 𝑋⊤𝑦
መ𝜃ridge = 𝜆𝐼 + 𝑋⊤𝑋 −1𝑋⊤𝑦

45

Recall the normal 
equation for OLS is
𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

Always invertible



Maximum A Posteriori (MAP)

• Bayesians’ view
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Probabilistic view (MAP)

• Ridge regression estimator is an MAP estimator with Gaussian prior
• Suppose 𝜃 has the prior 𝑃 𝜃 = 𝒩 0, 𝜏2𝐼

• መ𝜃MAP = argmax𝜃 σ𝑖=1
𝑁 logℙ 𝑦𝑖|𝑥𝑖 , 𝜃 + log𝑃(𝜃)

= argmax𝜃෍

𝑖=1

𝑁

−
(𝑦𝑖 − 𝜃⊤𝑥𝑖)

2

2𝜎2
−

1

2𝜏2
𝜃 2

2

= argmax𝜃 −
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2 − 𝜆 𝜃 2

2

= argmin𝜃
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2 + 𝜆 𝜃 2

2

47

ℙ 𝑦𝑖|𝑥𝑖 , 𝜃 =
1

2𝜋𝜎2
𝑒
−
(𝑦𝑖−𝜃

⊤𝑥𝑖)
2

2𝜎2

𝜆 = 𝜎2/ N𝜏2



Linear regression with non-linear relationships

• E.g. 𝜙 𝑥 = (1, 𝑥, 𝑥2, … , 𝑥𝑑) and 𝑦~𝒩(𝜃⊤𝜙 𝑥 , 𝜎2)
• Features: Last hidden layer of Neural Networks

Figure credit: Kevin Murphy 48



Logistic Regression
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From linear regression to logistic regression

• Logistic regression
• Similar to linear regression

• Given the numerical features of a sample, predict the numerical label value

• E.g. given the size, weight, and thickness of the cell wall, predict the age of the cell

• The values 𝑦 we now want to predict take on only a small number of discrete 
values
• E.g. to predict the cell is benign or malignant

50



Example

• Given the data of cancer cells below, how to predict they are benign 
or malignant?
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Logistics regression

• It is a Classification problem
• Compared to regression problem, which predicts the labels from many 

numerical features

• Many applications
• Spam Detection: Predicting if an email is Spam or not based on word 

frequencies

• Credit Card Fraud: Predicting if a given credit card transaction is fraud or not 
based on their previous usage

• Health: Predicting if a given mass of tissue is benign or malignant

• Marketing: Predicting if a given user will buy an insurance product or not
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Classification problem

• Given:
• A description of an instance 𝑥 ∈ 𝑋

• A fixed set of categories:

• Determine:
• The category of                     ,  where 𝑓(𝑥) is a categorization function whose 

domain is      and whose range is 𝐶

• If the category set binary, i.e. 𝐶 = {0, 1} ({false, true}, {negative, positive}) 
then it is called binary classification

53



Binary classification

Linearly separable Nonlinearly separable 

54



Linear discriminative model

• Discriminative model
• modeling the dependence of unobserved variables on observed ones

• also called conditional models.

• Deterministic:

• Probabilistic:

• For binary classification
• 𝑝𝜃(𝑦 = 1 | 𝑥)

• 𝑝𝜃(𝑦 = 0 | 𝑥) = 1 − 𝑝𝜃(𝑦 = 1 | 𝑥)
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Loss Functions
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• Regression: mean squared error (MSE) 

• Kullback-Leibler divergence (KL divergence)
• Measure the dissimilarity of two probability distributions

KL divergence

Entropy

Cross entropy

Question: 
Which one is more similar to 
normal distribution?

57



• Information inequality

• Entropy
•

• Is a measure of the uncertainty

• Discrete distribution with the maximum entropy is the uniform distribution

• Cross entropy 
•

• Is the average number of bits needed to encode data coming from a source 
with distribution p when we use model q to define our codebook

KL divergence (cont.)

58



Cross entropy loss

• Cross entropy
• Discrete case:  𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Continuous case: 𝐻 𝑝, 𝑞 = 𝑥׬− 𝑝 𝑥 log 𝑞(𝑥)

• Cross entropy loss in classification:
• Red line 𝑝: the ground truth label distribution.

• Blue line 𝑞: the predicted label distribution.
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Example for binary classification

• Cross entropy: 𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Given a data point (𝑥, 0) with prediction probability 
𝑞𝜃 𝑦 = 1 𝑥 = 0.4

the cross entropy loss on this point is 
𝐿 = −𝑝 𝑦 = 0 𝑥 log 𝑞𝜃 𝑦 = 0 𝑥 − 𝑝 𝑦 = 1 𝑥 log 𝑞𝜃 𝑦 = 1 𝑥

= − log 1 − 0.4 = log
5

3
• What is the cross entropy loss for data point (𝑥, 1) with prediction 

probability 
𝑞𝜃 𝑦 = 1 𝑥 = 0.3

60



Cross entropy loss for binary classification

• Loss function for data point (𝑥, 𝑦) with prediction model
𝑝𝜃 ∙ 𝑥

is
𝐿 𝑦, 𝑥, 𝑝𝜃
= −1𝑦=1log 𝑝𝜃 1 𝑥) − 1𝑦=0log 𝑝𝜃(0|𝑥)
= −𝑦 log 𝑝𝜃 1 𝑥 − (1 − y)log (1 − 𝑝𝜃(1|𝑥))

61



Cross entropy loss for multiple classification

• Loss function for data point (𝑥, 𝑦) with prediction model
𝑝𝜃 ∙ 𝑥

is

𝐿 𝑦, 𝑥, 𝑝𝜃 = −෍

𝑖=1

𝑚

1𝑦=𝐶𝑘 log 𝑝𝜃(𝐶𝑘|𝑥)
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Binary Classification
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Binary classification: linear and logistic

64



Binary classification: linear and logistic

• Linear regression:
• Target is predicted by ℎ𝜃 𝑥 = 𝜃⊤𝑥

• Logistic regression

• Target is predicted by ℎ𝜃 𝑥 = 𝜎 𝜃⊤𝑥 =
1

1+ 𝑒−𝜃
⊤𝑥

where

𝜎 𝑧 =
1

1 + 𝑒−𝑧
is the logistic function or the sigmoid function
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Properties for the sigmoid function

• 𝜎 𝑧 =
1

1+ 𝑒−𝑧

• Bounded in (0,1)

• 𝜎(𝑧) → 1 when 𝑧 → ∞

• 𝜎 𝑧 → 0 when 𝑧 → −∞

• 𝜎′ 𝑧 =
𝑑

𝑑𝑧

1

1+𝑒−𝑧
= − 1 + 𝑒−𝑧 −2 ∙ −𝑒−𝑧

=
1

1 + 𝑒−𝑧
𝑒−𝑧

1 + 𝑒−𝑧

=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎 𝑧 1 − 𝜎 𝑧
66



Logistic regression

• Binary classification

• Cross entropy loss function

• Gradient

is also convex in 𝜃
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Label decision

• Logistic regression provides the probability

• The final label of an instance could be decided, for example, by 
setting a threshold ℎ
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Threshold is trade-off

• Precision-recall trade-off

• Precision =
TP

TP+FP

• Recall =
TP

TP+FN

• Higher threshold
• More FN and less FP

• Higher precision

• Lower recall

• Lower threshold
• More FP and less FN

• Lower precision

• Higher recall
69



Example

• We have the heights and weights of a group of 
students
• Height: in inches,

• Weight: in pounds

• Male: 1, female, 0

• Please build a logistic regression model to predict 
their genders
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Example (cont.)

• As there are only two features, height and weight, the logistic 

regression equation is: ℎ𝜃 𝑥 =
1

1+𝑒−(𝜃0+𝜃1𝑥1+𝜃2𝑥2)

• Solve it by gradient descent

• The solution is 𝜃 =
0.69254
−0.49269
0.19834

There will be a lab on 
logistic regression
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Example (cont.)

• Threshold ℎ = 0.5

• Decision boundary is
𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 = 0

• Above the decision boundary lie most of 
the blue points that correspond to the 
Male class, and below it all the pink 
points that correspond to the Female 
class.

• The predictions won’t be perfect and can 
be improved by including more features 
(beyond weight and height), and by 
potentially using a different decision 
boundary (e.g. nonlinear)
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Example 2

• A group of 20 students spends between 0 and 6 hours studying for an 
exam. How does the number of hours spent studying affect the 
probability of the student passing the exam?

Hours Pass Hours Pass

0.50 0 2.75 1

0.75 0 3.00 0

1.00 0 3.25 1

1.25 0 3.50 0

1.50 0 4.00 1

1.75 0 4.25 1

1.75 1 4.50 1

2.00 0 4.75 1

2.25 1 5.00 1

2.50 0 5.50 1 73



Example 2 (cont.)

• ℎ𝜃 𝑥 =
1

1+𝑒−(1.5046∗ℎ𝑜𝑢𝑟𝑠 −4.0777)

Study Hours

P
ro

b
ab

ility o
f p

assin
g
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Interpretation of logistic regression

• Given a probability 𝑝, the odds of 𝑝 is defined as 𝑜𝑑𝑑𝑠 =
𝑝

1−𝑝

• The logit is defined as the log of the odds: ln 𝑜𝑑𝑑𝑠 = ln
𝑝

1−𝑝

• Let ln(𝑜𝑑𝑑𝑠) = 𝜃⊤𝑥 , then we will have ln
𝑝

1−𝑝
= 𝜃⊤𝑥, and  

𝑝 =
1

1 + 𝑒−𝜃
⊤𝑥

• So in logistic regression, the logit of an event (predicted positive)’s 
probability is defined as a result of linear regression
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Multi-Class Logistic Regression
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Multi-class classification

• 𝐿 𝑦, 𝑥, 𝑝𝜃 = −σ𝑖=1
𝑚 1𝑦=𝐶𝑘 log 𝑝𝜃(𝐶𝑘|𝑥)
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Multi-Class Logistic Regression
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Multi-Class Logistic Regression 2
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Summary

• Linear regression
• Normal equation

• Gradient methods

• Examples

• Probabilistic view

• Applications

• Regularization

• Logistic regression (binary classification)
• Cross entropy

• Formulation, sigmoid function

• Training—gradient descent

• Multi-class logistic regression

Questions?

https://shuaili8.github.io

Shuai Li
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