Lecture 5: Logistic Regression

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

Outline

- Discriminative / Generative Models
- Logistic regression (binary classification)
 - Cross entropy
 - Formulation, sigmoid function
 - Training—gradient descent
- More measures for binary classification (AUC, AUPR)
- Class imbalance
- Multi-class logistic regression

Discriminative / Generative Models

Discriminative / Generative Models

- Discriminative models
 - Modeling the dependence of unobserved variables on observed ones
 - also called conditional models.
 - Deterministic: $y = f_{ heta}(x)$
 - Probabilistic: $p_{ heta}(y|x)$
- Generative models
 - Modeling the joint probabilistic distribution of data
 - Given some hidden parameters or variables

 $p_{\theta}(x,y)$

• Then do the conditional inference

$$p_{\theta}(y|x) = \frac{p_{\theta}(x,y)}{p_{\theta}(x)} = \frac{p_{\theta}(x,y)}{\sum_{y'} p_{\theta}(x,y')}$$

Discriminative Models

- Discriminative models
 - Modeling the dependence of unobserved variables on observed ones
 - also called conditional models.
 - Deterministic: $y = f_{\theta}(x)$
 - Probabilistic: $p_{ heta}(y|x)$
 - Directly model the dependence for label prediction
 - Easy to define dependence on specific features and models
 - Practically yielding higher prediction performance
 - E.g. linear regression, logistic regression, k nearest neighbor, SVMs, (multilayer) perceptrons, decision trees, random forest

Generative Models

- Generative models
 - Modeling the joint probabilistic distribution of data
 - Given some hidden parameters or variables $p_{ heta}(x,y)$
 - Then do the conditional inference

$$p_{\theta}(y|x) = \frac{p_{\theta}(x,y)}{p_{\theta}(x)} = \frac{p_{\theta}(x,y)}{\sum_{y'} p_{\theta}(x,y')}$$

- Recover the data distribution [essence of data science]
- Benefit from hidden variables modeling
- E.g. Naive Bayes, Hidden Markov Model, Mixture Gaussian, Markov Random Fields, Latent Dirichlet Allocation

Discriminative Models vs Generative Models

- In General
 - A Discriminative model models the **decision boundary between the classes**
 - A Generative Model explicitly models the actual distribution of each class
- Example: Our training set is a bag of fruits. Only apples and oranges Each labeled. Imagine a post-it note stuck to the fruit
 - A generative model will model various attributes of fruits such as color, weight, shape, etc
 - A discriminative model might model color alone, should that suffice to distinguish apples from oranges

	Discriminative model	Generative model		
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$		
What's learned	Decision boundary Probability distributions of the data			
Illustration				
Examples	Regressions, SVMs	GDA, Naive Bayes		

Discriminative

Generative

Linear Discriminative Models

- Discriminative model
 - modeling the dependence of unobserved variables on observed ones
 - also called conditional models
 - **Deterministic**: $y = f_{\theta}(x)$
 - Probabilistic: $p_{\theta}(y|x)$
- Linear regression model

$$egin{aligned} y &= f_ heta(x) = heta_0 + \sum_{j=1}^d heta_j x_j = heta^ op x \ x &= (1, x_1, x_2, \dots, x_d) \end{aligned}$$

Logistic Regression

VS. linear regression

- Logistic regression
 - Similarity with linear regression
 - Given the numerical features of a sample, predict the numerical label value
 - E.g. given the size, weight, and thickness of the cell wall, predict the age of the cell
 - The values y we now want to predict take on only a small number of discrete values
 - E.g. to predict the cell is benign or malignant

Example

• Given the data of cancer cells below, how to predict they are benign or malignant?

ld 🌣	Cl.thickness	Cell.size 🔅	Cell.shape 🍦	Marg.adhesion 🚊	Epith.c.size $^{\circ}$	Bare.nuclei 🍦	Bl.cromatin 🗘	Normal.nucleoli	Mitoses 🍦	Class [‡]
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	benign
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10	9	7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	1	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign
1035283	1	1	1	1	1	1	3	1	1	benign
1036172	2	1	1	1	2	1	2	1	1	benign
1041801	5	3	3	3	2	3	4	4	1	malignant

Logistics regression

- It is a Classification problem
 - Compared to regression problem, which predicts the labels from many numerical features
- Many applications
 - Spam Detection: Predicting if an email is Spam or not based on word frequencies
 - Credit Card Fraud: Predicting if a given credit card transaction is fraud or not based on their previous usage
 - Health: Predicting if a given mass of tissue is benign or malignant
 - Marketing: Predicting if a given user will buy an insurance product or not

Classification problem

- Given:
 - A description of an instance $x \in X$
 - A fixed set of categories: $C = \{c_1, c_2, \dots, c_m\}$
- Determine:
 - The category of $x : f(x) \in C$ where f(x) is a categorization function whose domain is X and whose range is C
 - If the category set binary, i.e. $C = \{0, 1\}$ ({false, true}, {negative, positive}) then it is called binary classification

Binary classification

Linear discriminative model

- Discriminative model
 - modeling the dependence of unobserved variables on observed ones
 - also called conditional models.
 - Deterministic: $y = f_{\theta}(x)$
 - Probabilistic: $p_{\theta}(y|x)$
- For binary classification
 - $p_{\theta}(y = 1 \mid x)$
 - $p_{\theta}(y = 0 \mid x) = 1 p_{\theta}(y = 1 \mid x)$

Loss Functions

KL divergence

- Regression: mean squared error (MSE)
- Kullback-Leibler divergence (KL divergence)
 - Measure the dissimilarity of two probability distributions

KL divergence (cont.)

Information inequality

 $\mathbb{KL}(p||q) \geq 0$ with equality iff p = q.

- Entropy

 - If (X) = -∑^K_{k=1} p(X = k) log₂ p(X = k)
 Is a measure of the uncertainty
 - Discrete distribution with the maximum entropy is the uniform distribution
- Cross entropy
 - $\mathbb{H}(p,q) \triangleq -\sum p_k \log q_k$
 - Is the average number of bits needed to encode data coming from a source with distribution p when we use model q to define our codebook

Cross entropy loss

- Cross entropy
 - Discrete case: $H(p,q) = -\sum_{x} p(x) \log q(x)$

• Continuous case:
$$H(p,q) = -\int_x p(x) \log q(x)$$

- Cross entropy loss in classification:
 - Red line *p*: the ground truth label distribution.
 - Blue line q: the predicted label distribution.

Example for binary classification

- Cross entropy: $H(p,q) = -\sum_{x} p(x) \log q(x)$
- Given a data point (x, 0) with prediction probability $q_{\theta}(y = 1|x) = 0.4$ the cross entropy loss on this point is $L = -p(y = 0|x) \log q_{\theta}(y = 0|x) - p(y = 1|x) \log q_{\theta}(y = 1|x)$ $= -\log(1 - 0.4) = \log \frac{5}{3}$
- What is the cross entropy loss for data point (*x*, 1) with prediction probability

$$q_{\theta}(y=1|x) = 0.3$$

Cross entropy loss for binary classification

- Loss function for data point (x,y) with prediction model $p_{\theta}(\cdot | x)$

is

$$\begin{split} & L(y, x, p_{\theta}) \\ &= -1_{y=1} \log p_{\theta}(1|x) - 1_{y=0} \log p_{\theta}(0|x) \\ &= -y \log p_{\theta}(1|x) - (1-y) \log (1-p_{\theta}(1|x)) \end{split}$$

Cross entropy loss for multiple classification

• Loss function for data point (x, y) with prediction model $p_{\theta}(\cdot | x)$ is

$$L(y, x, p_{\theta}) = -\sum_{i=1}^{m} \mathbb{1}_{y=C_k} \log p_{\theta}(C_k | x)$$

Binary Classification

Binary classification: linear and logistic

Binary classification: linear and logistic

- Linear regression:
 - Target is predicted by $h_{\theta}(x) = \theta^{\top} x$
- Logistic regression
 - Target is predicted by $h_{\theta}(x) = \sigma(\theta^{\top}x) = \frac{1}{1 + e^{-\theta^{\top}x}}$ where

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
 is the logistic function or the sigmoid function

Properties for the sigmoid function

Logistic regression

- Binary classification $p_{\theta}(y = 1|x) = \sigma(\theta^{\top}x) = \frac{1}{1 + e^{-\theta^{\top}x}}$ $p_{\theta}(y = 0|x) = \frac{e^{-\theta^{\top}x}}{1 + e^{-\theta^{\top}x}}$ • Cross entropy loss function $\mathcal{L}(y, x, p_{\theta}) = -y \log \sigma(\theta^{\top}x) - (1 - y) \log(1 - \sigma(\theta^{\top}x))$
- Gradient

$$\frac{\partial \mathcal{L}(y, x, p_{\theta})}{\partial \theta} = -y \frac{1}{\sigma(\theta^{\top} x)} \sigma(z)(1 - \sigma(z))x - (1 - y) \frac{-1}{1 - \sigma(\theta^{\top} x)} \sigma(z)(1 - \sigma(z))x$$
$$= (\sigma(\theta^{\top} x) - y)x$$
$$\theta \leftarrow \theta + \eta(y - \sigma(\theta^{\top} x))x$$
$$\left[\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z)) \right] \theta_{\text{new}} \leftarrow \theta_{\text{old}} - \eta \frac{\partial \mathcal{L}(z)}{\partial \theta}$$

 θ

Convex set

• A convex set S is a set of points such that, given any two points A, B in that set, the line AB joining them lies entirely within S.

$$tx_1 + (1-t)x_2 \in S$$
 for all $x_1, x_2 \in S, 0 \leq t \leq 1$

Convex function

 $f : \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and $f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$ for all $x_1, x_2 \in \text{dom } f, 0 \leq t \leq 1$

Gradient interpretation

• Gradient is the vector (the red one) along which the value of the function increases most rapidly. Thus its opposite direction is where the value decreases most rapidly.

Gradient descent

- To find a (local) minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or an approximation) of the function at the current point
- For a smooth function f(x), $\frac{\partial f}{\partial x}$ is the direction that f increases most rapidly. So we apply

$$x_{t+1} = x_t - \eta \frac{\partial f}{\partial x}(x_t)$$

until x converges

Comparisons

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Uniqueness of minimum for convex objectives

Different initial parameters and different learning algorithm lead to the same optimum

Learning rate

• The initial point may be too far away from the optimal solution, which takes much time to converge

- May overshoot the minimum
- May fail to converge
- May even diverge
- To see if gradient descent is working, print out $J(\theta)$ for each or every several iterations. If $J(\theta)$ does not drop properly, adjust η

Label decision

• Logistic regression provides the probability

$$p_{\theta}(y = 1|x) = \sigma(\theta^{\top}x) = \frac{1}{1 + e^{-\theta^{\top}x}}$$
$$p_{\theta}(y = 0|x) = \frac{e^{-\theta^{\top}x}}{1 + e^{-\theta^{\top}x}}$$

• The final label of an instance is decided by setting a threshold h

$$\hat{y} = \begin{cases} 1, & p_{\theta}(y = 1 | x) > h \\ 0, & \text{otherwise} \end{cases}$$

How to choose the threshold

- Precision-recall trade-off
 - Precision = $\frac{TP}{TP+FP}$
 - Recall = $\frac{TP}{TP+FN}$

$$\hat{y} = egin{cases} 1, & p_{ heta}(y=1|x) > h \ 0, & ext{otherwise} \end{cases}$$

- Higher threshold
 - More FN and less FP
 - Higher precision
 - Lower recall
- Lower threshold
 - More FP and less FN
 - Lower precision
 - Higher recall

Example

- We have the heights and weights of a group of students
 - Height: in inches,
 - Weight: in pounds
 - Male: 1, female, 0
- Please build a Logistic regression model to predict their genders

"Height","Weight","Male" 73.847017017515,241.893563180437,1 68.7819040458903,162.3104725213,1 74.1101053917849,212.7408555565,1 71.7309784033377,220.042470303077,1 69.8817958611153,206.349800623871,1 67.2530156878065,152.212155757083,1 68.7850812516616,183.927888604031,1 68.3485155115879,167.971110489509,1 67.018949662883,175.92944039571,1 63.4564939783664,156.399676387112,1 63.1794982498071,141.266099582434,0 62.6366749337994,102.85356321483,0 62.0778316936514,138.691680275738,0 60.0304337715611,97.6874322554917,0 59.0982500313486,110.529685683049,0 66.1726521477708,136.777454183235,0 67.067154649054,170.867905890713,0 63.8679922137577,128.475318784122,0 69.0342431307346,163.852461346571,0 61.9442458795172,113.649102675312,0

Example (cont.)

- As there are only two features, height and weight, the logistic regression equation is: $h_{\theta}(x) = \frac{1}{1+e^{-(\theta_0+\theta_1x_1+\theta_2x_2)}}$
- Solve it by gradient descent

• The solution is
$$\theta = \begin{bmatrix} 0.69254 \\ -0.49269 \\ 0.19834 \end{bmatrix}$$

Example (cont.)

- Threshold h = 0.5
- Decision boundary is $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
- Above the decision boundary lie most of the blue points that correspond to the Male class, and below it all the pink points that correspond to the Female class.
- The predictions won't be perfect and can be improved by including more features (beyond weight and height), and by potentially using a different decision boundary (e.g. nonlinear)

Example 2

• A group of 20 students spends between 0 and 6 hours studying for an exam. How does the number of hours spent studying affect the probability of the student passing the exam?

Hours	Pass	Hours	Pass
0.50	0	2.75	1
0.75	0	3.00	0
1.00	0	3.25	1
1.25	0	3.50	0
1.50	0	4.00	1
1.75	0	4.25	1
1.75	1	4.50	1
2.00	0	4.75	1
2.25	1	5.00	1
2.50	0	5.50	1

•
$$h_{\theta}(x) = \frac{1}{1 + e^{-(1.5046 * hours - 4.0777)}}$$

Interpretation of logistic regression

- Given a probability p, the odds of p is defined as $odds = \frac{p}{1-p}$
- The logit is defined as the log of the odds: $\ln(odds) = \ln\left(\frac{p}{1-p}\right)$
- Let $\ln(odds) = \theta^{\top}x$, we will have $\ln\left(\frac{p}{1-p}\right) = \theta^{\top}x$, and $p = \frac{1}{1 + e^{-\theta^{\top}x}}$
- So in logistic regression, the logit of an event(predicted positive)'s probability is defined as a result of linear regression

More Measures for Classification

Confusion matrix

• Remember what we have learned about the confusion matrix

• These are the basic metrics to measure the classifier

Area Under ROC Curve (AUC)

- A performance measurement for classification problem at various thresholds settings
- Tells how much the model is capable of distinguishing between classes
- The higher, the better
- Receiver Operating Characteristic (ROC) Curve
 - TPR against FPR
 - TPR/Recall/Sensitivity = $\frac{TP}{TP+FN}$ FPR=1-Specificity= $\frac{FP}{TN+FP}$

AUC (cont.)

TPR: true positive rate FPR: false positive rate

- It's the relationship between TPR and FPR when the threshold is changed from 0 to 1
- In the top right corner, threshold is 0, and every thing is predicted to be positive, so both TPR and FPR is 1
- In the bottom left corner, threshold is 1, and every thing is predicted to be negative, so both TPR and FPR is 0
- The size of the area under this curve (AUC) is an important metric to binary classifier
- Perfect classifier get AUC=1 and random classifier get AUC = 0.5

AUC (cont.)

- It considers all possible thresholds.
- Various thresholds result in different true/false positive rates.
- As you decrease the threshold, you get more true positives, but also more false positives.
 - From a random classifier you can expect as many true positives as false positives. That's the dashed line on the plot. AUC score for the case is 0.5. A score for a perfect classifier would be 1. Most often you get something in between.

AUC example

Prediction	Label
0.91	1
0.85	0
0.77	1
0.72	1
0.61	0
0.48	1
0.42	0
0.33	0

AUC = 0.75

Precision recall curve

• The precision recall curve, or pr curve, is another plot to measure the performance of binary classifier.

- It's the relationship between Precision and Recall when the threshold is changed from 0 to 1
- It's more complex than the ROC curve
- The size of the area under this curve is an important metric to binary classifier
- It can handle imbalanced dataset
- Usually, the classifiers gets lower AUPR value than AUC value

AUPR examples

Class Imbalance

Class imbalance

- Down sampling
 - Sample less on frequent class
- Up sampling
 - Sample more on infrequent class
- Hybrid Sampling
 - Combine them two

Weighted loss functions

$$L(y, x, p_{\theta}) = -y \log p_{\theta}(1|x) - (1-y) \log (1-p_{\theta}(1|x))$$

$$L(y, x, p_{\theta}) = -w_1 y \log p_{\theta}(1|x) - w_0(1-y) \log (1-p_{\theta}(1|x))$$

Multi-Class Logistic Regression

Multi-class classification

•
$$L(y, x, p_{\theta}) = -\sum_{i=1}^{m} \mathbb{1}_{y=C_k} \log p_{\theta}(C_k | x)$$

Multi-Class Logistic Regression

• Class set
$$C = \{c_1, c_2, \dots, c_m\}$$

• Predicting the probability of $p_{ heta}(y=c_j|x)$

$$p_{ heta}(y=c_j|x) = rac{e^{ heta_j^ op x}}{\sum_{k=1}^m e^{ heta_k^ op x}} \; ext{ for } j=1,\ldots,m$$

- Softmax
 - Parameters $heta = \{ heta_1, heta_2, \dots, heta_m\}$
 - Can be normalized with m-1 groups of parameters

Multi-Class Logistic Regression

- Learning on one instance $(x, y = c_j)$
 - Maximize log-likelihood

$$\max_{ heta} \log p_{ heta}(y=c_j|x)$$

Gradient

$$egin{aligned} rac{\partial \log p_{ heta}(y=c_j|x)}{\partial heta_j} &= rac{\partial}{\partial heta_j} \log rac{e^{ heta_j^ op x}}{\sum_{k=1}^m e^{ heta_k^ op x}} \ &= x - rac{\partial}{\partial heta_j} \log \sum_{k=1}^m e^{ heta_k^ op x} \ &= x - rac{e^{ heta_j^ op x} x}{\sum_{k=1}^m e^{ heta_k^ op x}} \end{aligned}$$

Summary

Shuai Li

https://shuaili8.github.io

- Discriminative / Generative Models
- Logistic regression (binary classification)
 - Cross entropy
 - Formulation, sigmoid function
 - Training—gradient descent
- More measures for binary classification (AUC, AUPR)
- Class imbalance
- Multi-class logistic regression

Questions?