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Outline

• Discriminative / Generative Models

• Logistic regression (binary classification)
• Cross entropy

• Formulation, sigmoid function

• Training—gradient descent

• More measures for binary classification (AUC, AUPR)

• Class imbalance

• Multi-class logistic regression
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Discriminative / Generative 
Models
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Discriminative / Generative Models

• Discriminative models
• Modeling the dependence of unobserved variables on observed ones

• also called conditional models.

• Deterministic:

• Probabilistic:

• Generative models
• Modeling the joint probabilistic distribution of data

• Given some hidden parameters or variables

• Then do the conditional inference
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Discriminative Models

• Discriminative models
• Modeling the dependence of unobserved variables on observed ones

• also called conditional models.

• Deterministic:

• Probabilistic:

• Directly model the dependence for label prediction

• Easy to define dependence on specific features and models

• Practically yielding higher prediction performance

• E.g. linear regression, logistic regression, k nearest neighbor, SVMs, (multi-
layer) perceptrons, decision trees, random forest
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Generative Models

• Generative models
• Modeling the joint probabilistic distribution of data
• Given some hidden parameters or variables

• Then do the conditional inference

• Recover the data distribution [essence of data science]

• Benefit from hidden variables modeling

• E.g. Naive Bayes, Hidden Markov Model, Mixture Gaussian, Markov 
Random Fields, Latent Dirichlet Allocation
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Discriminative Models vs Generative Models

• In General
• A Discriminative model models the decision boundary between the classes

• A Generative Model explicitly models the actual distribution of each class

• Example: Our training set is a bag of fruits. Only apples and oranges
Each labeled. Imagine a post-it note stuck to the fruit
• A generative model will model various attributes of fruits such as color, 

weight, shape, etc

• A discriminative model might model color alone, should that suffice to 
distinguish apples from oranges
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Linear Discriminative Models 

• Discriminative model
• modeling the dependence of unobserved variables on observed ones

• also called conditional models

• Deterministic: 𝑦 = 𝑓𝜃(𝑥)

• Probabilistic: 𝑝𝜃(𝑦|𝑥)

• Linear regression model
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Logistic Regression
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VS. linear regression

• Logistic regression
• Similarity with linear regression

• Given the numerical features of a sample, predict the numerical label value

• E.g. given the size, weight, and thickness of the cell wall, predict the age of the cell

• The values 𝑦 we now want to predict take on only a small number of discrete 
values
• E.g. to predict the cell is benign or malignant
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Example

• Given the data of cancer cells below, how to predict they are benign 
or malignant?
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Logistics regression

• It is a Classification problem
• Compared to regression problem, which predicts the labels from many 

numerical features

• Many applications
• Spam Detection: Predicting if an email is Spam or not based on word 

frequencies

• Credit Card Fraud: Predicting if a given credit card transaction is fraud or not 
based on their previous usage

• Health: Predicting if a given mass of tissue is benign or malignant

• Marketing: Predicting if a given user will buy an insurance product or not
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Classification problem

• Given:
• A description of an instance 𝑥 ∈ 𝑋

• A fixed set of categories:

• Determine:
• The category of                     ,  where 𝑓(𝑥) is a categorization function whose 

domain is      and whose range is 𝐶

• If the category set binary, i.e. 𝐶 = {0, 1} ({false, true}, {negative, positive}) 
then it is called binary classification
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Binary classification

Linearly separable Nonlinearly separable 
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Linear discriminative model

• Discriminative model
• modeling the dependence of unobserved variables on observed ones

• also called conditional models.

• Deterministic:

• Probabilistic:

• For binary classification
• 𝑝𝜃(𝑦 = 1 | 𝑥)

• 𝑝𝜃(𝑦 = 0 | 𝑥) = 1 − 𝑝𝜃(𝑦 = 1 | 𝑥)
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Loss Functions
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• Regression: mean squared error (MSE) 

• Kullback-Leibler divergence (KL divergence)
• Measure the dissimilarity of two probability distributions

KL divergence

Entropy

Cross entropy

Question: 
Which one is more similar to 
norm distribution?
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• Information inequality

• Entropy
•

• Is a measure of the uncertainty

• Discrete distribution with the maximum entropy is the uniform distribution

• Cross entropy 
•

• Is the average number of bits needed to encode data coming from a source 
with distribution p when we use model q to define our codebook

KL divergence (cont.)
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Cross entropy loss

• Cross entropy
• Discrete case:  𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Continuous case: 𝐻 𝑝, 𝑞 = 𝑥׬− 𝑝 𝑥 log 𝑞(𝑥)

• Cross entropy loss in classification:
• Red line 𝑝: the ground truth label distribution.

• Blue line 𝑞: the predicted label distribution.
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Example for binary classification

• Cross entropy: 𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Given a data point (𝑥, 0) with prediction probability 
𝑞𝜃 𝑦 = 1 𝑥 = 0.4

the cross entropy loss on this point is 
𝐿 = −𝑝 𝑦 = 0 𝑥 log 𝑞𝜃 𝑦 = 0 𝑥 − 𝑝 𝑦 = 1 𝑥 log 𝑞𝜃 𝑦 = 1 𝑥

= − log 1 − 0.4 = log
5

3
• What is the cross entropy loss for data point (𝑥, 1) with prediction 

probability 
𝑞𝜃 𝑦 = 1 𝑥 = 0.3
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Cross entropy loss for binary classification

• Loss function for data point (𝑥, 𝑦) with prediction model
𝑝𝜃 ∙ 𝑥

is
𝐿 𝑦, 𝑥, 𝑝𝜃
= −1𝑦=1log 𝑝𝜃 1 𝑥) − 1𝑦=0log 𝑝𝜃(0|𝑥)
= −𝑦 log 𝑝𝜃 1 𝑥 − (1 − y)log (1 − 𝑝𝜃(1|𝑥))
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Cross entropy loss for multiple classification

• Loss function for data point (𝑥, 𝑦) with prediction model
𝑝𝜃 ∙ 𝑥

is

𝐿 𝑦, 𝑥, 𝑝𝜃 = −෍

𝑖=1

𝑚

1𝑦=𝐶𝑘 log 𝑝𝜃(𝐶𝑘|𝑥)
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Binary Classification
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Binary classification: linear and logistic
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Binary classification: linear and logistic

• Linear regression:
• Target is predicted by ℎ𝜃 𝑥 = 𝜃⊤𝑥

• Logistic regression

• Target is predicted by ℎ𝜃 𝑥 = 𝜎 𝜃⊤𝑥 =
1

1+ 𝑒−𝜃
⊤𝑥

where

𝜎 𝑧 =
1

1 + 𝑒−𝑧
is the logistic function or the sigmoid function
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Properties for the sigmoid function

• 𝜎 𝑧 =
1

1+ 𝑒−𝑧

• Bounded in (0,1)

• 𝜎(𝑧) → 1 when 𝑧 → ∞

• 𝜎 𝑧 → 0 when 𝑧 → −∞

• 𝜎′ 𝑧 =
𝑑

𝑑𝑧

1

1+𝑒−𝑧
= − 1 + 𝑒−𝑧 −2 ∙ −𝑒−𝑧

=
1

1 + 𝑒−𝑧
𝑒−𝑧

1 + 𝑒−𝑧

=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎 𝑧 1 − 𝜎 𝑧
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Logistic regression

• Binary classification

• Cross entropy loss function

• Gradient

is convex in 𝜃
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Convex set

30



Convex function
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Gradient interpretation

• Gradient is the vector (the red one) along which the value of the 
function increases most rapidly. Thus its opposite direction is where 
the value decreases most rapidly.
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Gradient descent

• To find a (local) minimum of a function using gradient descent, one 
takes steps proportional to the negative of the gradient (or an 
approximation) of the function at the current point

• For a smooth function 𝑓(𝑥), 
𝜕𝑓

𝜕𝑥
is the direction that 𝑓 increases most 

rapidly. So we apply 

𝑥𝑡+1 = 𝑥𝑡 − 𝜂
𝜕𝑓

𝜕𝑥
(𝑥𝑡)

until 𝑥 converges
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Comparisons
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Uniqueness of minimum for convex 
objectives

35



Learning rate
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Label decision

• Logistic regression provides the probability

• The final label of an instance is decided by setting a threshold ℎ
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How to choose the threshold

• Precision-recall trade-off

• Precision =
TP

TP+FP

• Recall =
TP

TP+FN

• Higher threshold
• More FN and less FP

• Higher precision

• Lower recall

• Lower threshold
• More FP and less FN

• Lower precision

• Higher recall
38



Example

• We have the heights and weights of a group of 
students
• Height: in inches,

• Weight: in pounds

• Male: 1, female, 0

• Please build a Logistic regression model to predict 
their genders
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Example (cont.)

• As there are only two features, height and weight, the logistic 

regression equation is: ℎ𝜃 𝑥 =
1

1+𝑒−(𝜃0+𝜃1𝑥1+𝜃2𝑥2)

• Solve it by gradient descent

• The solution is 𝜃 =
0.69254
−0.49269
0.19834

40



Example (cont.)

• Threshold ℎ = 0.5

• Decision boundary is
𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 = 0

• Above the decision boundary lie most of 
the blue points that correspond to the 
Male class, and below it all the pink 
points that correspond to the Female 
class.

• The predictions won’t be perfect and can 
be improved by including more features 
(beyond weight and height), and by 
potentially using a different decision 
boundary (e.g. nonlinear)
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Example 2

• A group of 20 students spends between 0 and 6 hours studying for an 
exam. How does the number of hours spent studying affect the 
probability of the student passing the exam?

Hours Pass Hours Pass

0.50 0 2.75 1

0.75 0 3.00 0

1.00 0 3.25 1

1.25 0 3.50 0

1.50 0 4.00 1

1.75 0 4.25 1

1.75 1 4.50 1

2.00 0 4.75 1

2.25 1 5.00 1

2.50 0 5.50 1 42



Example 2 (cont.)

• ℎ𝜃 𝑥 =
1

1+𝑒−(1.5046∗ℎ𝑜𝑢𝑟𝑠 −4.0777)

Study Hours

P
ro

b
ab

ility o
f p

assin
g
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Interpretation of logistic regression

• Given a probability 𝑝, the odds of 𝑝 is defined as 𝑜𝑑𝑑𝑠 =
𝑝

1−𝑝

• The logit is defined as the log of the odds: ln 𝑜𝑑𝑑𝑠 = ln
𝑝

1−𝑝

• Let ln(𝑜𝑑𝑑𝑠) = 𝜃⊤𝑥 , we will have ln
𝑝

1−𝑝
= 𝜃⊤𝑥, and  

𝑝 =
1

1 + 𝑒−𝜃
⊤𝑥

• So in logistic regression, the logit of an event(predicted positive)’s 
probability is defined as a result of linear regression
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More Measures for Classification
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Confusion matrix

• Remember what we have learned about the confusion matrix

• These are the basic metrics to measure the classifier
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Area Under ROC Curve (AUC)

• A performance measurement for 
classification problem at various thresholds 
settings

• Tells how much the model is capable of 
distinguishing between classes

• The higher, the better

• Receiver Operating Characteristic (ROC) 
Curve
• TPR against FPR

• TPR/Recall/Sensitivity =
TP

TP+FN
FPR=1-Specificity=

FP

TN+FP
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AUC (cont.)

TPR: true positive rate
FPR: false positive rate 

• It’s the relationship between TPR and FPR when the 
threshold is changed from 0 to 1

• In the top right corner, threshold is 0, and every thing 
is predicted to be positive, so both TPR and FPR is 1

• In the bottom left corner, threshold is 1, and every 
thing is predicted to be negative, so both TPR and FPR 
is 0

• The size of the area under this curve (AUC) is an 
important metric to binary classifier

• Perfect classifier get AUC=1 and random classifier get 
AUC = 0.5
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AUC (cont.)

• It considers all possible thresholds.
• Various thresholds result in different true/false 

positive rates.
• As you decrease the threshold, you get more true 

positives, but also more false positives. 

• From a random classifier you can expect as many true 
positives as false positives. That’s the dashed line on 
the plot. AUC score for the case is 0.5. A score for a 
perfect classifier would be 1. Most often you get 
something in between.
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AUC example
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Precision recall curve

• The precision recall curve, or pr curve, is another plot to measure the 
performance of binary classifier.

• It’s the relationship between Precision and Recall 
when the threshold is changed from 0 to 1

• It’s more complex than the ROC curve
• The size of the area under this curve is an important 

metric to binary classifier
• It can handle imbalanced dataset
• Usually, the classifiers gets lower AUPR value than AUC 

value
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AUPR examples

Perfect: 1 Good: 0.92 Random: 0.56
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Class Imbalance
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Class imbalance

• Down sampling
• Sample less on frequent class

• Up sampling
• Sample more on infrequent class

• Hybrid Sampling
• Combine them two
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Weighted loss functions

𝐿 𝑦, 𝑥, 𝑝𝜃 = −𝑦 log 𝑝𝜃 1 𝑥 − (1 − y)log (1 − 𝑝𝜃(1|𝑥))

𝐿 𝑦, 𝑥, 𝑝𝜃 = −𝑤1𝑦 log 𝑝𝜃 1 𝑥 − 𝑤0(1 − y)log (1 − 𝑝𝜃(1|𝑥))
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Multi-Class Logistic Regression
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Multi-class classification

• 𝐿 𝑦, 𝑥, 𝑝𝜃 = −σ𝑖=1
𝑚 1𝑦=𝐶𝑘 log 𝑝𝜃(𝐶𝑘|𝑥)

57



58



59



Summary

• Discriminative / Generative Models

• Logistic regression (binary classification)
• Cross entropy

• Formulation, sigmoid function

• Training—gradient descent

• More measures for binary classification (AUC, AUPR)

• Class imbalance

• Multi-class logistic regression

Questions?

https://shuaili8.github.io

Shuai Li
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