Tutorial 2: Project 1 / GCN

2020.10.29
Qizhi Li

Outline

® Drug Molecular Toxicity Prediction

® Introduction of GCN

Drug Molecular Toxicity Prediction

® Task
®* SMILES
e AlLC

® Submission Requirements

Task
Predict

Toxic

SMILES (Simplified Molecular Input Line Entry System)

Allows a user to represent a chemical structure in a way that can be used by the computer

1. Simple Chains: Combining atomic symbols and bond symbols. CCO N OH
o)

2. Branches: the branch between parenthesis. CCC(=0)0 \)kOH

3. Rings: identify the opening and closing ring atom. ClccccCl O

4. Charged Atoms: The Charged Atoms between brackets. [T1+4] [Ti++++] T i4 +

Connection signal:

- Single bond : :
- Double bond To get the Adjacency matrix of the molecular,
o o Ron you may need to preprocess your data(SMILES)
Triple bond

with rdkit or pysmiles.
* Aromatic bond

Dataset

names_labels.txt: Toxic or not
names_smiles.txt: ascii string of SMILES of each molecule

names_onechots.npy: one hot of each Ascii char
—

[1,0,0,0,0,0]" [0,0,0,1,0,0]7

Evaluation

* Remember what we have learned about the confusion matrix

Prediction Prediction

1 0 0
True False

1 1 True False
Positive Negative Positive Negative
Label Label

o Fa_ls_e Trug o Fa_ls_e Trutf 2 X Prec X Reca_ll
Positive Negative Positive Negative F]_ e
Prec + Rec
* Precision: the ratio of true * Recall: the ratio of cases
class 1 cases in those with with prediction 1 in all true
prediction 1 class 1 cases
TP TP
Prec = Rec =
TP + FP TP + FN

* These are the basic metrics to measure the classifier

Area Under ROC Curve (AUC)

* A performance measurement for

classification problem at various thresholds

settings

* Tells how much the model is capable of
distinguishing between classes

* The higher, the better

* Receiver Operating Characteristic (ROC)

Curve
* TPR against FPR

* TPR/Recall/Sensitivity =

FPR=1-Specificity=

Fp TP+FN

TN+FP

True Positive Rate

b
&

1.0

0.8

e
o

0.2

09 al

ate

TPR

— ROC curve (AUC = 0.79)

0.4 0.6 0.8
False Positive Rate

1.0

AUC (cont.)

* It’s the relationship between TPR and FPR when the
threshold is changed from 0 to 1

* Inthe top right corner, threshold is 0, and every thing
is predicted to be positive, so both TPR and FPRis 1

* Inthe bottom left corner, threshold is 1, and every
thing is predicted to be negative, so both TPR and FPR
isO

* The size of the area under this curve (AUC) is an
important metric to binary classifier

* Perfect classifier get AUC=1 and random classifier get
AUC=0.5

TPR

FPR

TPR: true positive rate
FPR: false positive rate

True positive rate

AUC (cont.)

"4
- 7y
/"/_’)
/J/'
08
0.6 — /
/
I p — NetChop C-term 3.0
0.4 }— J = TAP + ProteaSMM-i
' A —— ProteaSMM-i
;/'/
5
0.2 1
r /
O 1 l l 1 l 1 l 1
0 0.2 0.4 0.6 0.8 [

False positive rate

It considers all possible thresholds.

Various thresholds result in different true/false
positive rates.

As you decrease the threshold, you get more true
positives, but also more false positives.

From a random classifier you can expect as many true
positives as false positives. That’s the dashed line on
the plot. AUC score for the case is 0.5. A score for a
perfect classifier would be 1. Most often you get
something in between.

AUC example

1.0 0.91 1
0.85 0

0.75
True 0.77 1
Posnt.lve o5 | 0.72 1

Ratio

0.61 0

0.25
0.48 1
L . 0.42 0
0.25 0.5 075 1.0 0.33 0

False Positive Ratio

AUC=0.75

Assignment Requirements

Output: the probability of current drugs are toxic [0, 1] (Softmax and sigmoid might be useful)
Model: Any DNN architecture. (CNN, RNN, GCN, etc)

Anyone who can solve the problem by using graph embedding of the smiles can have the

ranking of their GCN output score increased by 8
You can choose one of the following three versions
Python 3.6 or Python 3.7

a. NumPy, Pandas and TensorFlow-gpu 1.15.0.
b. NumPy, Pandas and TensorFlow-cpu 1.15.0.

c. NumPy, Pandas and PyTorch 1.1.0.

Submission Requirement

518X XXXXXXXX.zip

To Canvas (Less than 200MB)

a. train.py

b. test.py (Less than 60s)

c. output student id.txt

d. Weight of your models (Folder)
e. Report

To Kaggle

| —output 518X XXXXXXXX.txt
| —test.py
| —train.py
| —Report.pdf
| —other files
L—weights (Take TensorFlow as an example)
| —checkpoint
| —model.data-00000-0f-00001
| —model.index
| —model.meta

output student id.txt (follow the format of output sample.txt)

The output student id.txt you uploaded to Canvas, uploaded to Kaggle and the running

output of the submitted model (test.py) should be the same, or you violate Honor Code

Demo
1. The entire folder demo: https://github.com/Ritchiegit/CS410 2020 fall project 1

2. Kaggle notebook demo: https://www.kaggle.com/qizhili/project]-cnn-demo

https://github.com/Ritchiegit/CS410_2020_fall_project_1
https://www.kaggle.com/qizhili/project1-cnn-demo

Introduction of GCN

® Compared with Image and text

® Idea
® Formulate the Model

® Example

b ”

|

'
o

Information networks:
Web & citations

Economic networks

. ..
- LRSI
L - -
N .
e O it
'.[,] & H
> - N
- A NN
A 3 ~
X
3.5

Internet

Sy
- * AR PN
. e 3
s Y o -
e e apn Rarte 9 L=
va =

=

Networks of neurons

Compare with Image and text

1. Networks are far more complex
a. No fixed node ordering or reference point

b. Often dynamic and have multimodal features

e

Networks Imagés

http://web.stanford.edu/class/cs224w/slides/08-GNN.pdf

Compare with Image and text
1. Pros of CNNs

a. Local connections
b. Shared weights

c. Use of multiple layers

2. Cons of CNNs

a. hard to define convolutional and

pooling layers for non-Euclidean data

= 0O

Q

|dea

1. Convolution with local neighborhoods

Image

Convolution with local neighborhoods

1. Generate node embeddings based on local neighborhoods

TARGET NODE “‘
l o

A
W <« e ¥

(R

]

INPUT GRAPH

Convolution with local neighborhoods

1. Generate node embeddings based on local neighborhoods

TARGET NODE

l

A

/

INPUT GRAPH Neural networks

Convolution with local neighborhoods

2. Model can be of arbitrary depth Layer 2 Layer 1
\ \

TARGET NODE

l

A

/

INPUT GRAPH Neural networks

Formulate the problem

V is the vertex set
A is Adjacent matrix (with shape N X N)
X € R™*IVl {5 a matrix of node features (m is number of feature)
Hidden neural network layer
Ha+1) — f(H(l), A)
HO® = x

Limitations and solutions

Limitations:

a. Sum up all feature vectors of all neighbor nodes except the node itself
b. Ais not normalized

Solution

a. Enforce self-loop in graph: add identity matrix to A

b. Normalize A4: all rows sum to one

® ie D71A(D : diagonal node degree matrix)

1 1

® Use symmetrical normalization in practice: D 24D 2

Real used propagate rules
s o s
f(HY,A) = o(D2ZAD 2HOW®)

where A = A + I and D is the diagonal node degree matrix of A

Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

- Formulate to be trainable

Initial O-th layer embeddings are

__— equal to node features Previous layer
embedding of v

, Vke{l,...K}

+ By

\ Average of neighbor’s

_ 1. K
= ! - -
previous layer embeddings
\ Embedding after K Non-linearity
layers of neighborhood (e.g., RelU)
aggregation

A=D1A+1
HOD — J(AH(i)wgﬂ + wg)) W;, W, is trainable

Processing (Define structure)

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

Processing(Training)

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

Processing(Predict)

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH
. k. ¢ * hd
o \-.-f - .""r f -.. v
, o o o X B o ¢ o ® o
N » Ypgut B a o e
\ *ee° e oo ®Cee° N ¢ @ Gee o éd

- Formulate to be trainable

Initial O-th layer embeddings are

__— equal to node features Previous layer
embedding of v

, Vke{l,...K}

+ By

\ Average of neighbor’s

_ 1. K
= ! - -
previous layer embeddings
\ Embedding after K Non-linearity
layers of neighborhood (e.g., RelU)
aggregation

A=D1A+1
HOD — J(AH(i)wgﬂ + wg)) W;, W, is trainable

Example of GCN

1. Two Convolution layer
GCN(nn.Module):

(nfeat, nhid, nclass):
super (GCN). 0
.gcl GraphConvolution(nfeat, nhid)
.gc2 GraphConvolution(nhid, nclass)

forward(input, adj):

hl = F.relu(.gcl(input, adj))
logits .gc2(h1, adj)

logits

https://github.com/tkipf/pygcn

Example of GCN

GraphConvolution(nn.Module):

C in_features, out_features, bias=
super (GraphConvolution). ()
.in_features = in_features
.out_features = out_features
.weight = nn.Parameter(torch.Tensor(in_features, out_features))
bias:
.bias = nn.Parameter(torch.Tensor(out_features))
forward(input, adj):
support = torch.mm(input .weight)
output = torch.spmm(adj, support)
.bias
output + .bias

output

Example of GCN

1. Build symmetric adjacency matrix and & normalize it & add self loop
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)

adj = normalize(adj + sp.eye(adj.shape[0]))

normalize(mx) : A=D1A+1

rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()

r_inv[np.isinf(r_inv)] = 0.

r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
mx

Resource Of GCN

Summary

1. https://github.com/sungyongs/graph-based-nn

Tutorial

1. http://web.stanford.edu/class/cs224w/slides/08-GNN.pdf

2. http://geometricdeeplearning.com/

3. https://nips.cc/Conferences/2017/Schedule?showEvent=8735

Basic Project

1. https://github.com/tkipf/pygcn

2. https://github.com/tkipt/ecn

https://github.com/sungyongs/graph-based-nn
http://web.stanford.edu/class/cs224w/slides/08-GNN.pdf
http://geometricdeeplearning.com/
https://nips.cc/Conferences/2017/Schedule?showEvent=8735
https://github.com/tkipf/pygcn
https://github.com/tkipf/gcn

Task

SMILES

AUC
Requirements

Project 1 and GCN

* Compare with Image and Text
* |dea

* Formulate the Model
 Example

THANKS!

