#### **Tutorial 2: Project 1 / GCN**

2020.10.29 Qizhi Li

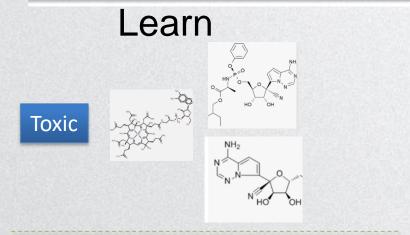
# Outline

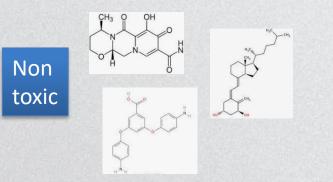
- Drug Molecular Toxicity Prediction
- Introduction of GCN

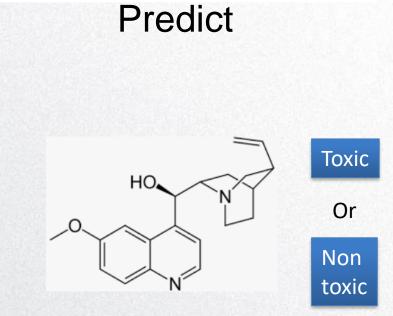
# **Drug Molecular Toxicity Prediction**

- Task
- SMILES
- AUC
- Submission Requirements

#### Task







#### SMILES (Simplified Molecular Input Line Entry System)

Allows a user to represent a chemical structure in a way that can be used by the computer

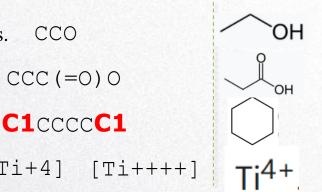
- Simple Chains: Combining atomic symbols and bond symbols. CCO 1.
- 2. **Branches**: the branch between parenthesis.
- **Rings**: identify the opening and closing ring atom. 3.
- Charged Atoms: The Charged Atoms between brackets. 4.

#### Connection signal:

- Single bond
- Double bond =
- # Triple bond
- \* Aromatic bond

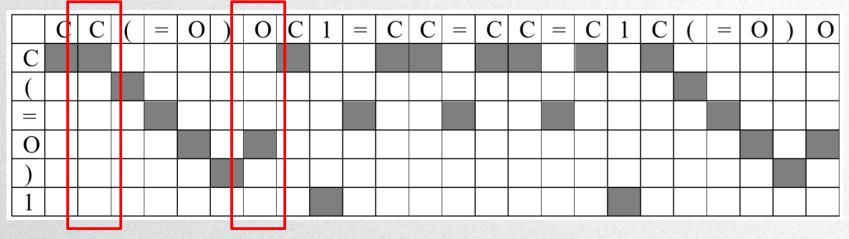
To get the Adjacency matrix of the molecular, you may need to preprocess your data(SMILES) with rdkit or pysmiles.

[Ti+4]



#### Dataset

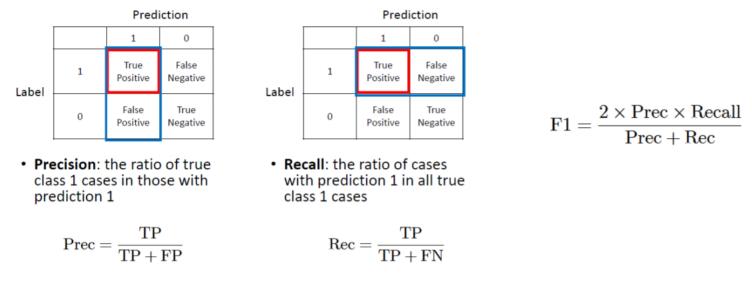
- 1. names\_labels.txt: Toxic or not
- 2. names\_smiles.txt: ascii string of SMILES of each molecule
- 3. names\_onehots.npy: one hot of each Ascii char



 $[1,0,0,0,0,0]^T$   $[0,0,0,1,0,0]^T$ 

## Evaluation

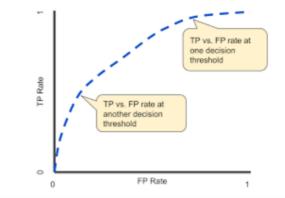
Remember what we have learned about the confusion matrix

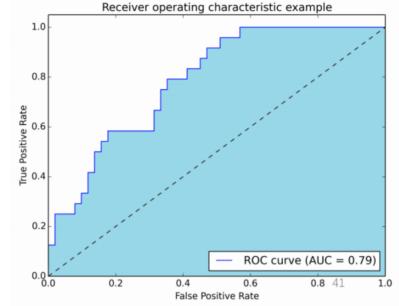


These are the basic metrics to measure the classifier

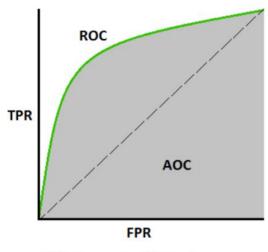
## Area Under ROC Curve (AUC)

- A performance measurement for classification problem at various thresholds settings
- Tells how much the model is capable of distinguishing between classes
- The higher, the better
- Receiver Operating Characteristic (ROC) Curve
  - TPR against FPR
  - TPR/Recall/Sensitivity =  $\frac{1}{FP}$ FPR=1-Specificity=  $\frac{\Gamma T}{TN+FP}$





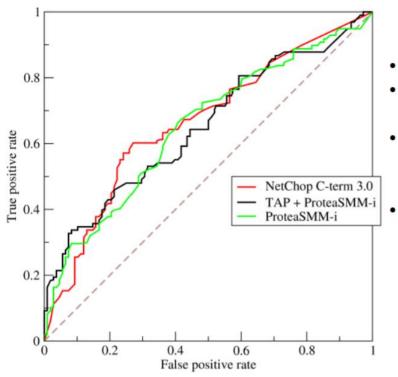
# AUC (cont.)



TPR: true positive rate FPR: false positive rate

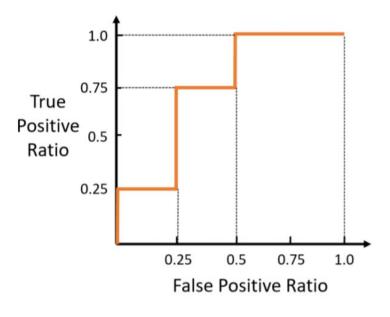
- It's the relationship between TPR and FPR when the threshold is changed from 0 to 1
- In the top right corner, threshold is 0, and every thing is predicted to be positive, so both TPR and FPR is 1
- In the bottom left corner, threshold is 1, and every thing is predicted to be negative, so both TPR and FPR is 0
- The size of the area under this curve (AUC) is an important metric to binary classifier
- Perfect classifier get AUC=1 and random classifier get AUC = 0.5

## AUC (cont.)



- It considers all possible thresholds.
- Various thresholds result in different true/false positive rates.
- As you decrease the threshold, you get more true positives, but also more false positives.
- From a random classifier you can expect as many true positives as false positives. That's the dashed line on the plot. AUC score for the case is 0.5. A score for a perfect classifier would be 1. Most often you get something in between.

### AUC example



| Prediction | Label |
|------------|-------|
| 0.91       | 1     |
| 0.85       | 0     |
| 0.77       | 1     |
| 0.72       | 1     |
| 0.61       | 0     |
| 0.48       | 1     |
| 0.42       | 0     |
| 0.33       | 0     |

AUC = 0.75

#### **Assignment Requirements**

- 1. Output: the probability of current drugs are toxic [0, 1] (Softmax and sigmoid might be useful)
- 2. Model: Any DNN architecture. (CNN, RNN, GCN, etc)

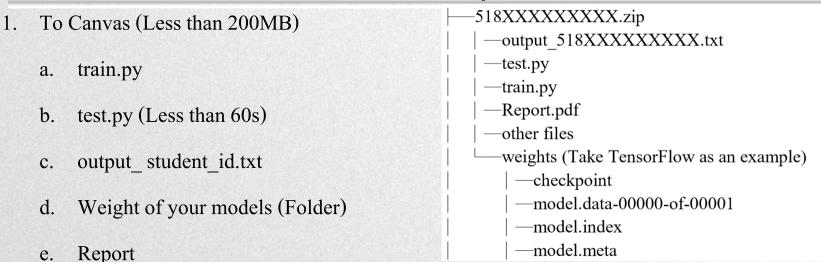
Anyone who can solve the problem by using graph embedding of the smiles can have the ranking of their **GCN output score** increased by 8

3. You can choose one of the following three versions

Python 3.6 or Python 3.7

- a. NumPy, Pandas and TensorFlow-gpu 1.15.0.
- b. NumPy, Pandas and TensorFlow-cpu 1.15.0.
- c. NumPy, Pandas and PyTorch 1.1.0.

### **Submission Requirement**



2. To Kaggle

output\_ student\_id.txt (follow the format of output\_sample.txt)

The output\_student\_id.txt you uploaded to **Canvas**, uploaded to **Kaggle** and the **running output of the submitted model (test.py)** should be the same, or you violate Honor Code

#### Demo

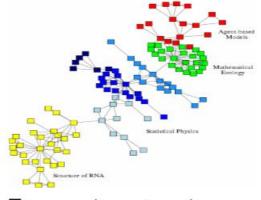
- 1. The entire folder demo: <u>https://github.com/Ritchiegit/CS410\_2020\_fall\_project\_1</u>
- 2. Kaggle notebook demo: <u>https://www.kaggle.com/qizhili/project1-cnn-demo</u>

# Introduction of GCN

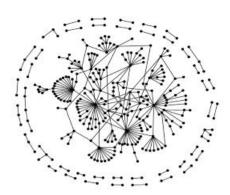
- Compared with Image and text
- Idea
- Formulate the Model
- Example



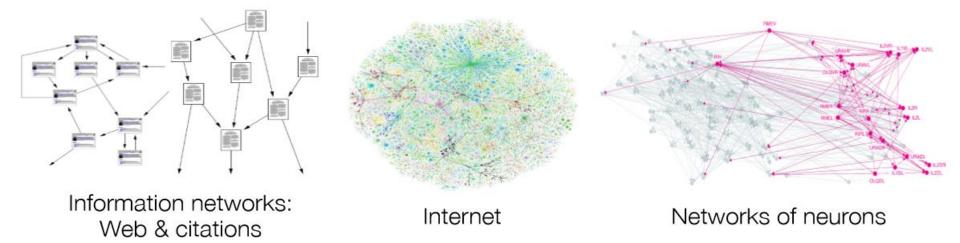
#### Social networks



Economic networks

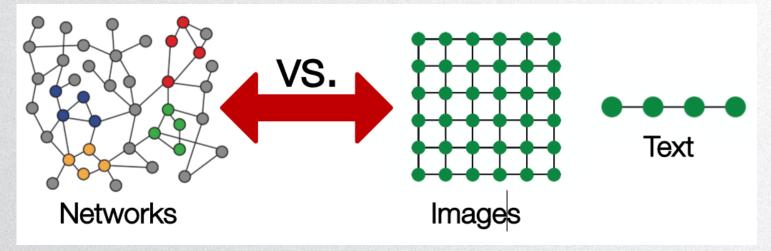


#### Communication networks



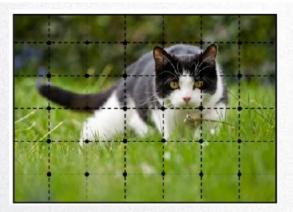
### Compare with Image and text

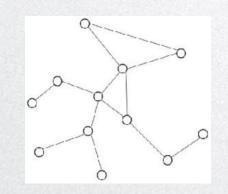
- 1. Networks are far more complex
  - a. No fixed node ordering or reference point
  - b. Often dynamic and have multimodal features



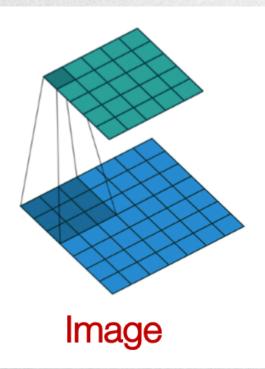
#### Compare with Image and text

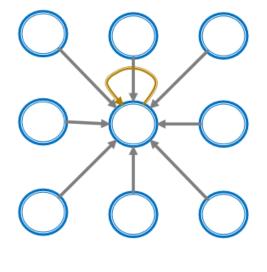
- 1. Pros of CNNs
  - a. Local connections
  - b. Shared weights
  - c. Use of multiple layers
- 2. Cons of CNNs
  - a. hard to define convolutional and pooling layers for non-Euclidean data





1. Convolution with local neighborhoods

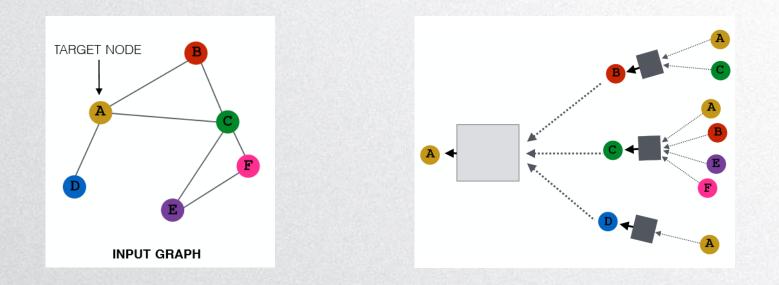






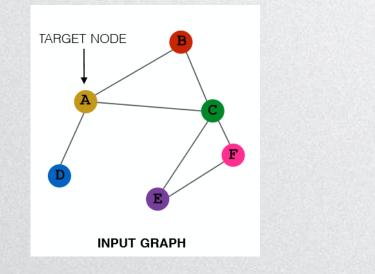
#### Convolution with local neighborhoods

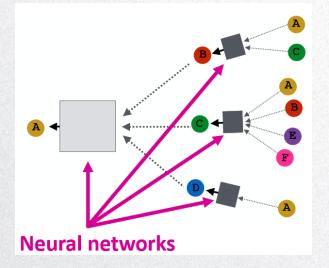
1. Generate node embeddings based on local neighborhoods



#### Convolution with local neighborhoods

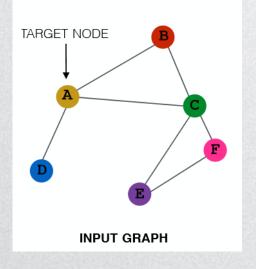
1. Generate node embeddings based on local neighborhoods

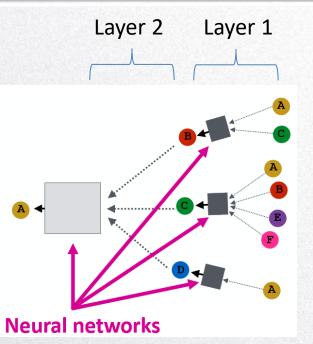




### Convolution with local neighborhoods

2. Model can be of arbitrary depth





#### Formulate the problem

- 1. V is the vertex set
- 2. A is Adjacent matrix (with shape  $N \times N$ )
- 3.  $X \in \mathbb{R}^{m \times |V|}$  is a matrix of node features (m is number of feature)
- 4. Hidden neural network layer

$$H^{(l+1)} = f(H^{(l)}, A)$$
$$H^{(0)} = X$$

#### Limitations and solutions

#### 1. Limitations:

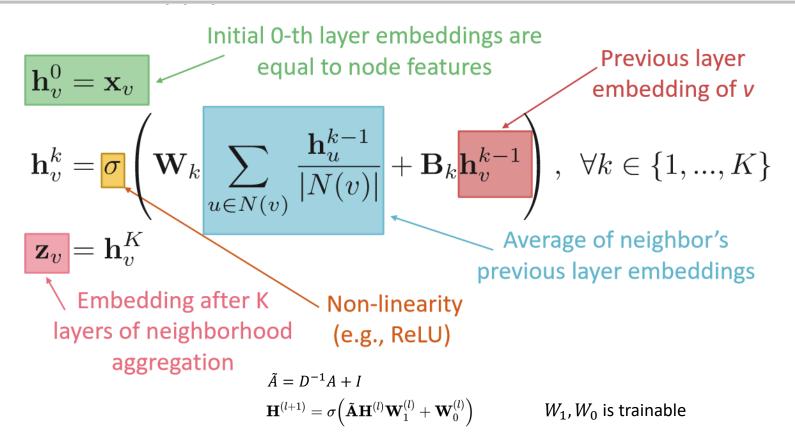
- a. Sum up all feature vectors of all neighbor nodes except the node itself
- b. *A* is not normalized
- 2. Solution
  - a. Enforce self-loop in graph: add identity matrix to A
  - b. Normalize A: all rows sum to one
    - i.e.  $D^{-1}A(D)$ : diagonal node degree matrix)
    - Use symmetrical normalization in practice:  $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- 3. Real used propagate rules

$$f(H^{(l)}, A) = \sigma(\widehat{D}^{-\frac{1}{2}}\widehat{A}\widehat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$$

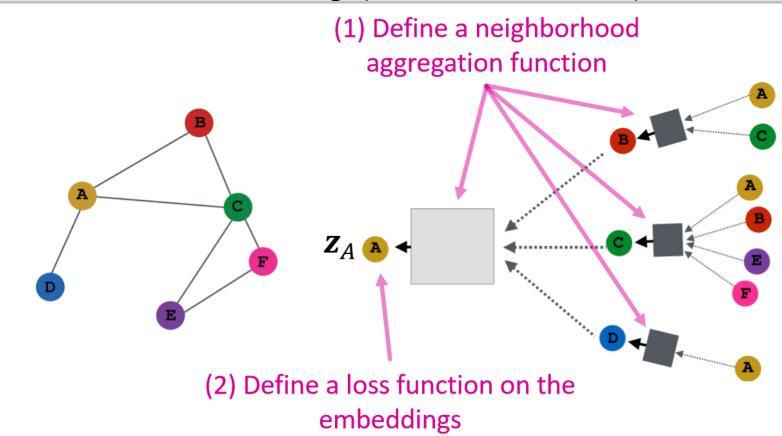
where  $\hat{A} = A + I$  and  $\hat{D}$  is the diagonal node degree matrix of  $\hat{A}$ 

Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

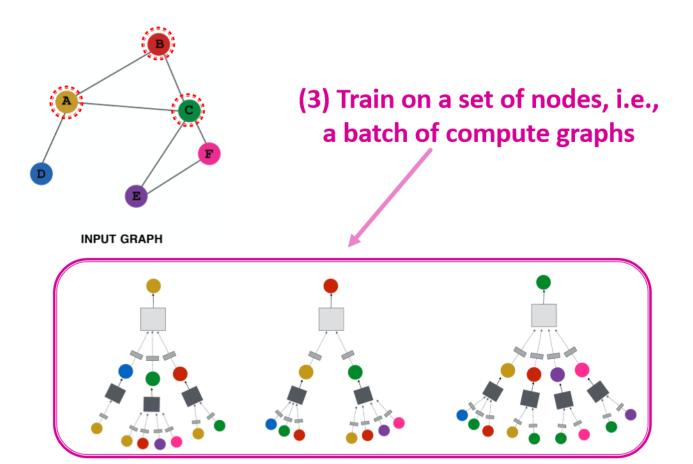
#### Formulate to be trainable



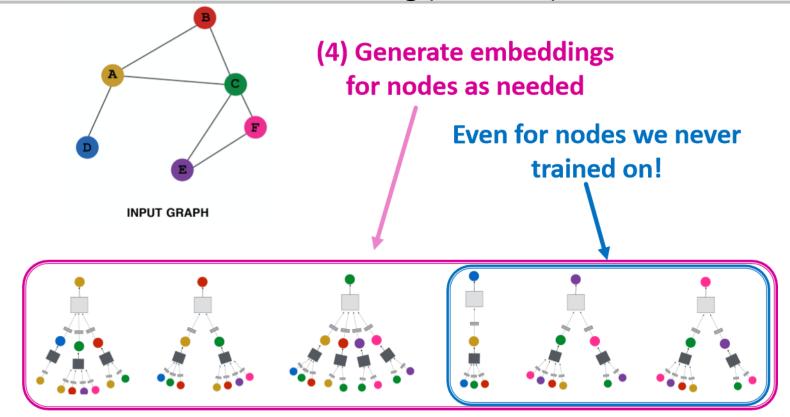
#### **Processing (Define structure)**



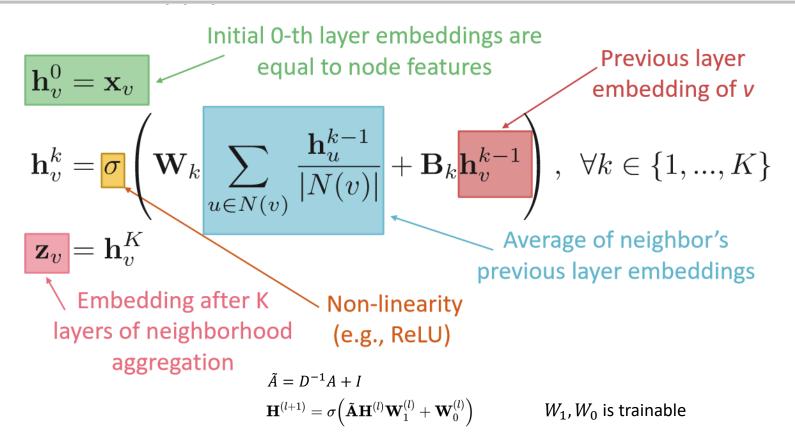
#### Processing(Training)



#### **Processing(Predict)**



#### Formulate to be trainable



### Example of GCN

1. Two Convolution layer

```
class GCN(nn.Module):
    """a simple two layer GCN"""
    def __init__(self, nfeat, nhid, nclass):
        super(GCN, self).__init__()
        self.gc1 = GraphConvolution(nfeat, nhid)
        self.gc2 = GraphConvolution(nhid, nclass)
    def forward(self, input, adj):
        h1 = F.relu(self.gc1(input, adj))
        logits = self.gc2(h1, adj)
        return logits
```

### Example of GCN

2.

```
\mathbf{H}^{(l+1)} = \sigma \left( \tilde{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}_{1}^{(l)} + \mathbf{W}_{0}^{(l)} \right)
class GraphConvolution(nn.Module):
    """GCN layer"""
    def __init__(self, in_features, out_features, bias=True):
         super(GraphConvolution, self).__init__()
         self.in_features = in_features
         self.out_features = out_features
         self.weight = nn.Parameter(torch.Tensor(in_features, out_features))
         if bias:
              self.bias = nn.Parameter(torch.Tensor(out_features))
    def forward(self, input, adj):
         support = torch.mm(input, self.weight) # H * weight
         output = torch.spmm(adj, support) # adj * H * weight A * H * W
         if self.bias is not None:
              return output + self.bias
         else:
              return output
```

#### Example of GCN

1. Build symmetric adjacency matrix and & normalize it & add self loop

adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)

adj = normalize(adj + sp.eye(adj.shape[0]))

#### def normalize(mx):

"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r\_inv = np.power(rowsum, -1).flatten()
r\_inv[np.isinf(r\_inv)] = 0.
r\_mat\_inv = sp.diags(r\_inv)
mx = r\_mat\_inv.dot(mx)
return mx

 $\tilde{A} = D^{-1}A + I$ 

### **Resource Of GCN**

#### Summary

1. https://github.com/sungyongs/graph-based-nn

Tutorial

- 1. http://web.stanford.edu/class/cs224w/slides/08-GNN.pdf
- 2. <u>http://geometricdeeplearning.com/</u>
- 3. <u>https://nips.cc/Conferences/2017/Schedule?showEvent=8735</u>

**Basic Project** 

- 1. <u>https://github.com/tkipf/pygcn</u>
- 2. <u>https://github.com/tkipf/gcn</u>

### Project 1 and GCN

- Task
- SMILES
- AUC
- Requirements

- Compare with Image and Text
- Idea
- Formulate the Model
- Example

