

John Hopcroft Center for Computer Science

CS 445: Combinatorics

Shuai Li

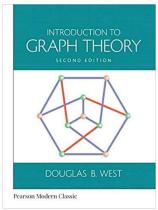
John Hopcroft Center, Shanghai Jiao Tong University

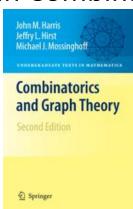
https://shuaili8.github.io

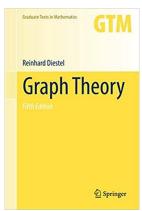
https://shuaili8.github.io/Teaching/CS445/index.html

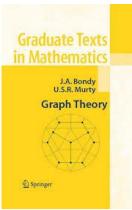
References

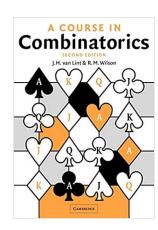
- References:
 - Introduction to Graph Theory, by Douglas West
 - Combinatorics and Graph Theory, by Harris, Hirst and Mossinghoff
 - Graph Theory, Reinhard Diestel
 - Graph Theory, by Bondy and Murty
 - A Course in Combinatorics, J. H. Van Lint











Previous courses

- Discrete Mathematics
 - Basic concepts for graph theory
- Mathematical Foundations of Computer Science (CS 499)
 - Basic notions and hand shaking lemma
 - Graph isomorphism and graph score
 - Applications of handshake lemma: Parity argument
 - The number of spanning trees
 - Isomorphism of trees
 - Random graphs

Goal

- Knowledge of the basic problems for graph theory
 - Bipartite graphs/Matching/Coloring/Flows/...
- Knowledge of the important counting related results on graphs
- Familiar with the common proof techniques
- Awareness of the popular applications of graphs in many fields

Grading policy

- Attendance and participance: 5%
- Assignments: 35%
- Midterm exam: 15%
- Entry editing: 5%
- Reading report: 10%
- Final exam: 30%

Honor code

Discussions are encouraged

Independently write-up homework and project

Same reports and homework will be reported

Teaching Assistant

- Fang Kong (孔芳)
 - Email: fangkong@sjtu.edu.cn
 - 2nd year PhD student
 - Research interests on bandit algorithms
 - Office hour: Thu 7-9 PM
- Ruofeng Yang (杨若峰)
 - Email: wanshuiyin@sjtu.edu.cn
 - Senior undergraduate student
 - Research interests on optimization
 - Office hour: Tue 7-9 PM

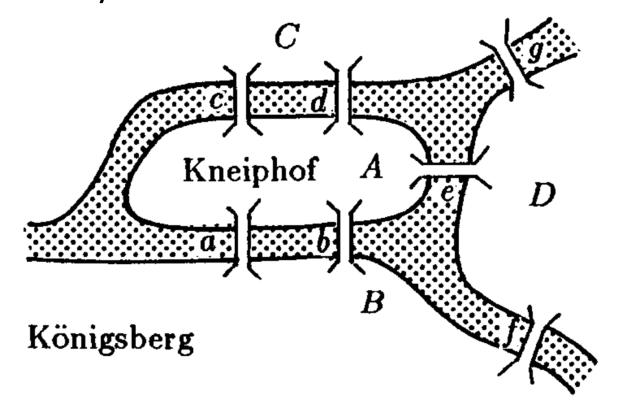
Course Outline

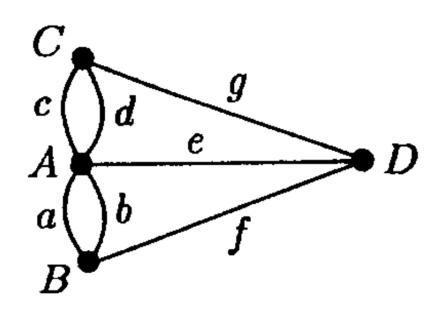
- Basics
 - Graphs, paths and cycles, connectivity, bipartite graphs
- Trees
- Matching
- Connectivity
- Planar Graphs
- Coloring
- Circuits

Introduction

Seven bridges of Königsberg 七桥问题

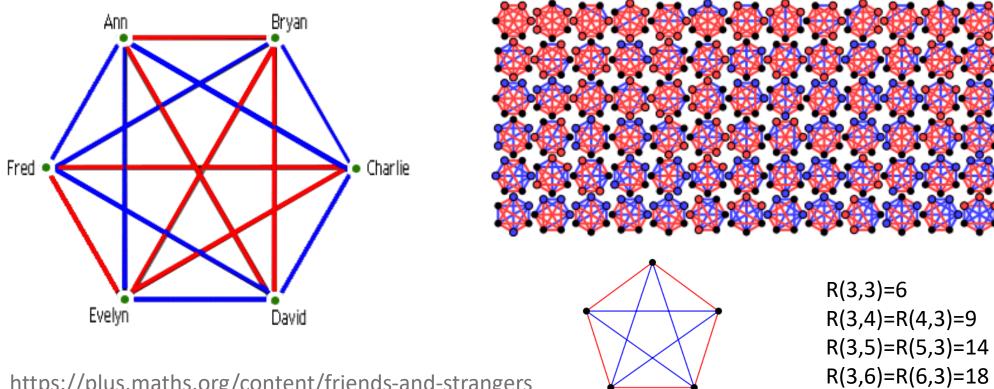
 Leonhard Euler 1736: Is it possible to make a walk through the city, returning to the starting point and crossing each bridge exactly once?





The friendship riddle

 Does every set of six people contain three mutual acquaintances or three mutual strangers?



https://plus.maths.org/content/friends-and-strangers Wikipedia

Examples of general combinatorics problems using graph theory

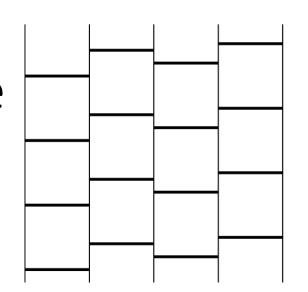
- Instant Insanity 四色方柱问题
 - make a stack of these cubes so that all four colors appear on each of the four sides of the stack

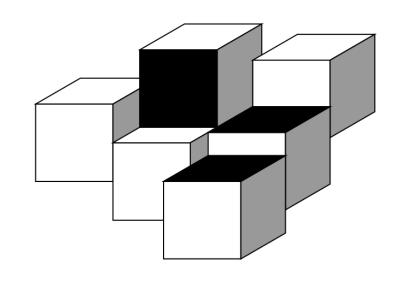
A set problem

• Let A_1, \ldots, A_n be n distinct subsets of the n-set $N := \{1, \ldots, n\}$. Show that there is an element $x \in N$ such that the sets $A_i \setminus \{x\}, 1 \le i \le n$, are all distinct

Keller's conjecture

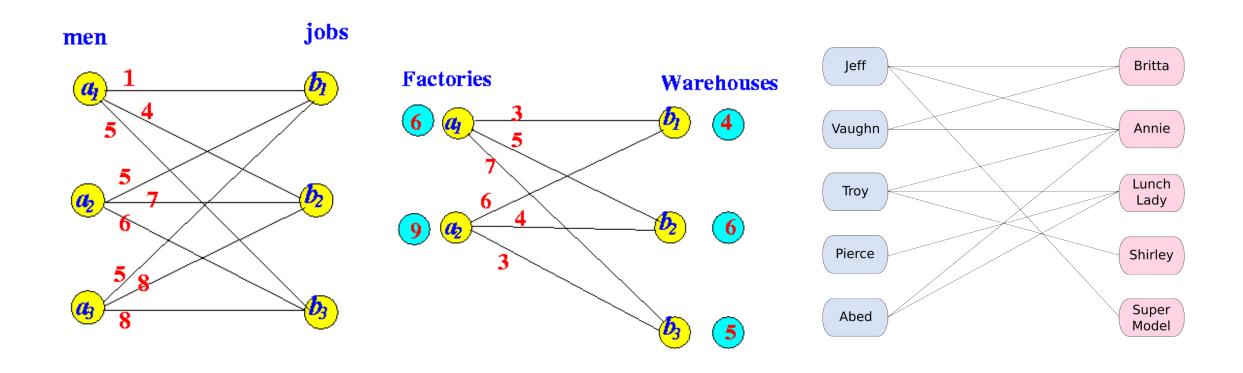
In 1930, Keller conjectured that any tiling of n-dimensional space by translates of the unit cube must contain a pair of cubes that share a complete (n – 1)-dimensional face





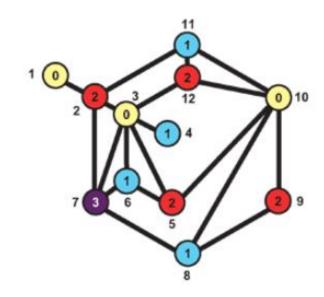
- Corrádi and Szabó transfer it into a graph theory problem
 - Constructing Keller graph
- The conjecture is solved by computer search recently (June 2020)

Assignment problems



Scheduling and coloring

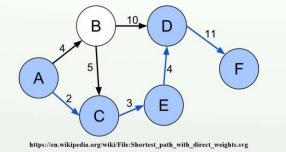
- University examination timetabling
 - Two courses linked by an edge if they have the same students
- Meeting scheduling
 - Two meetings are linked if they have same member

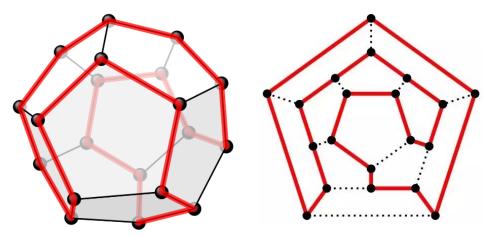


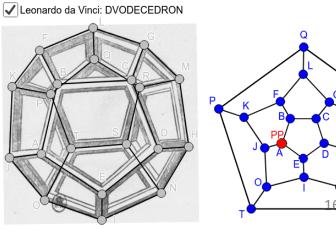
Routes in road networks

- How can we find the shortest route from A to F?
- If the vertices of the graph represent our house and other places to visit, then we may want to follow a route that visits every vertex exactly once, so as to visit everyone without overstaying our welcome
 - Hamilton circuit

Shortest path problem

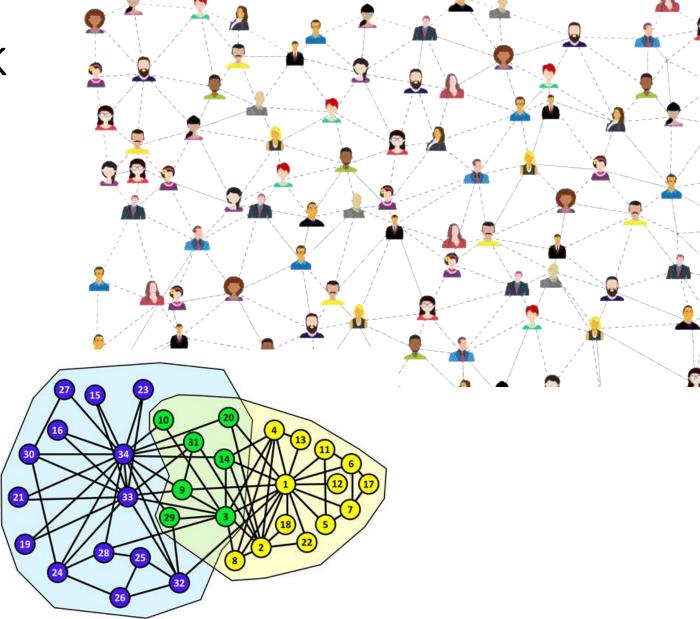






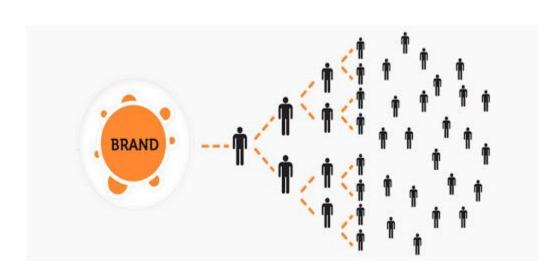
Social network

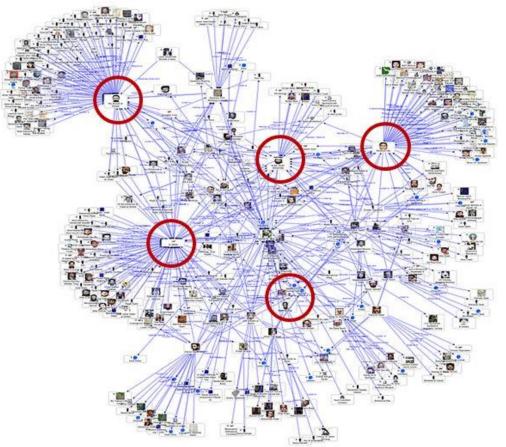
- Recommendation
- Clustering



Influence maximization

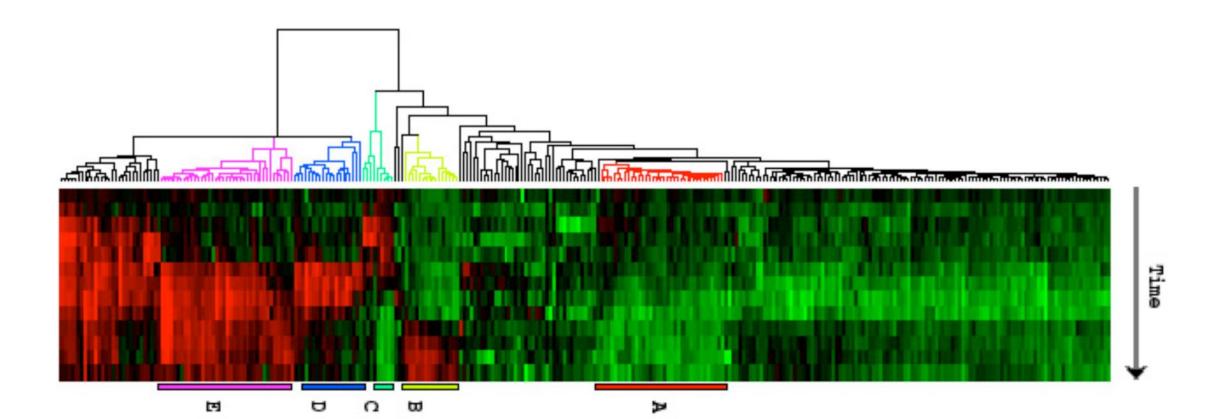
Select the best seed set



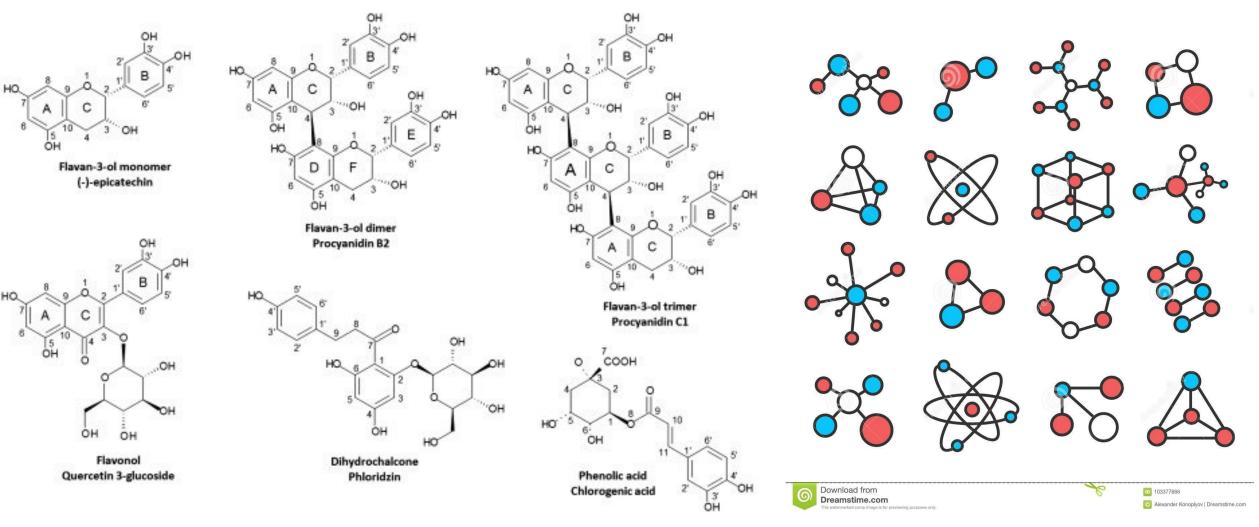


Gene structure

- Tree graph
 - Agglomerative clustering method



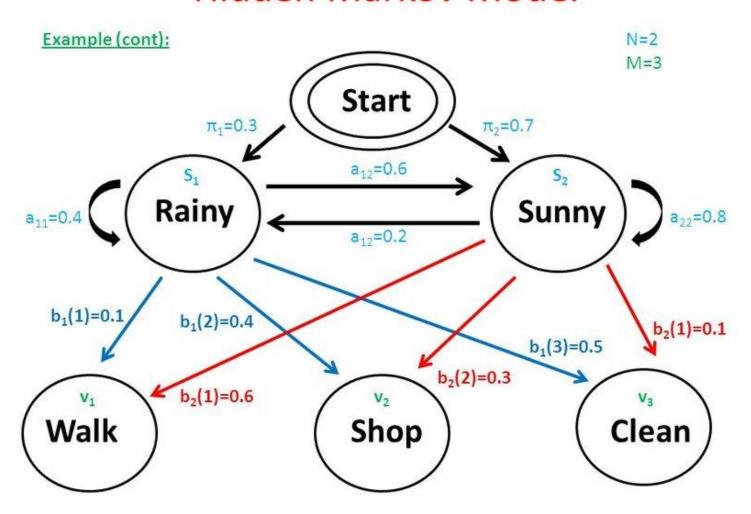
Molecular structure



Graph neural network (GNN)



Hidden Markov Model

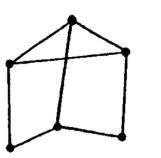


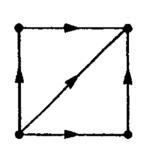
Basics

Graphs

- Definition A graph G is a pair (V, E)
 - *V*: set of vertices
 - *E*: set of edges
 - $e \in E$ corresponds to a pair of endpoints $x, y \in V$

edge	ends
a	x, z
b	y, w
c	x, z
d	z, w
e	$ \hspace{.05cm} z,w\hspace{.05cm} $
f	x, y
$\mid g \mid$	z,w

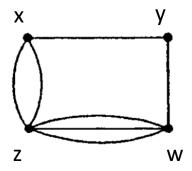




We mainly focus on

No loops, no multi-edges

Simple graph:



(i) graph

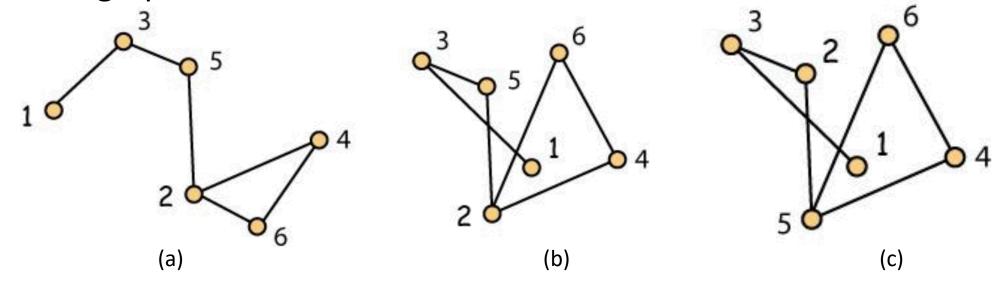
(ii) graph with loop (iii) digraph (iv) multiple edges

Figure 1.2

Figure 1.1

Graphs: All about adjacency

Same graph or not

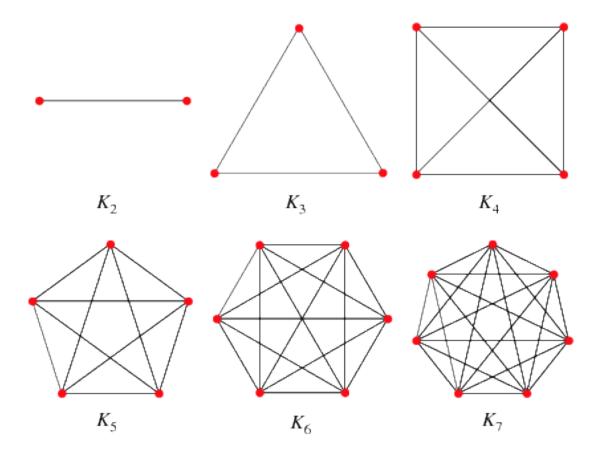


• Two graphs $G_1=(V_1,E_1)$, $G_1=(V_2,E_2)$ are isomorphic if there is a bijection $f\colon V_1\to V_2$ s.t.

$$e = \{a, b\} \in E_1 \iff f(e) := \{f(a), f(b)\} \in E_2$$

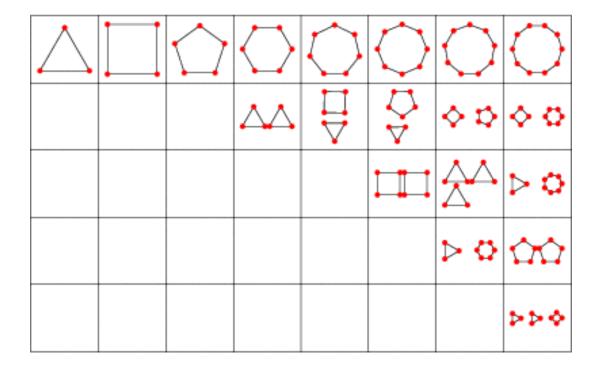
Example: Complete graphs

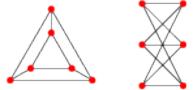
• There is an edge between every pair of vertices

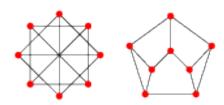


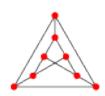
Example: Regular graphs

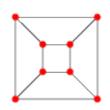
• Every vertex has the same degree

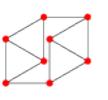


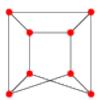






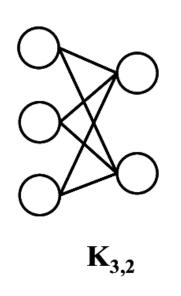


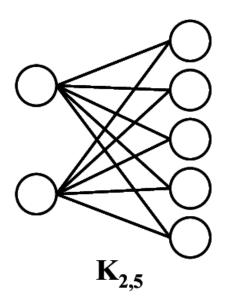




Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs





Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

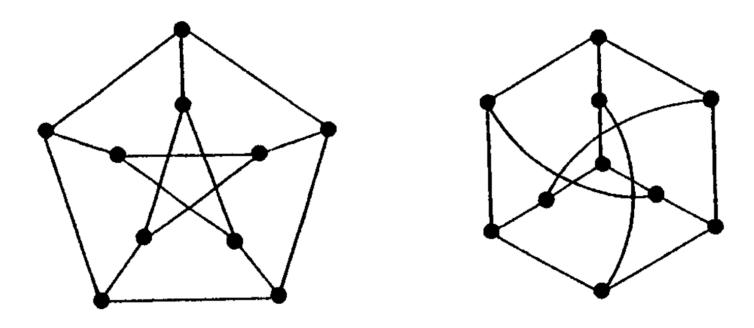
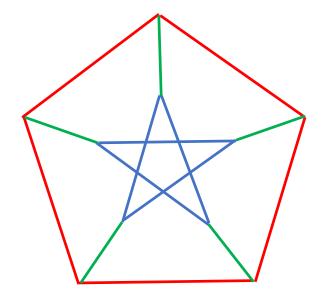
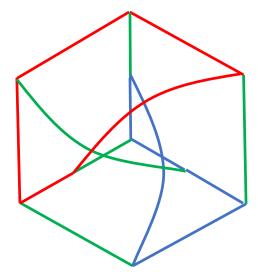


Figure 1.4

Example: Peterson graph (cont.)

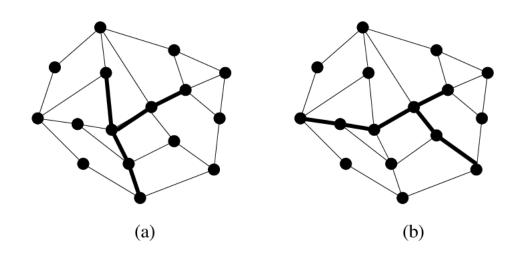
• Show that the following two graphs are same/isomorphic

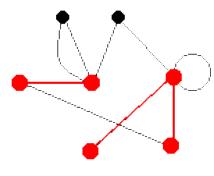




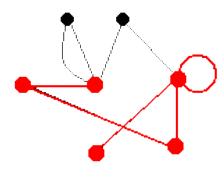
Subgraphs

- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and the ends of an edge $e \in E(H)$ are the same as its ends in G
 - *H* is a spanning subgraph when V(H) = V(G)
 - The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S





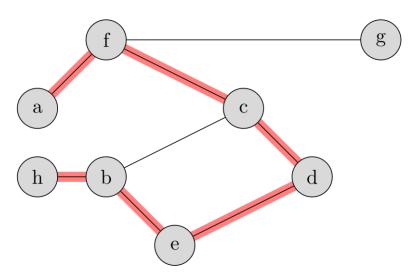
Subgraph (in red)



Induced Subgraph

Paths (路径)

- A path is a non-empty alternating sequence $v_0e_1v_1e_2\dots e_kv_k$ where vertices are all distinct
 - Or it can be written as $v_0v_1 \dots v_k$ in simple graphs
- P^k : path of length k (the number of edges)

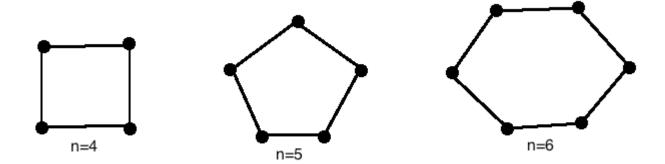


Walk (游走)

- A walk is a non-empty alternating sequence $v_0e_1v_1e_2\dots e_kv_k$
 - The vertices not necessarily distinct
 - The length = the number of edges
- Proposition (1.2.5, W) Every u-v walk contains a u-v path

Cycles (环)

- If $P=x_0x_1\dots x_{k-1}$ is a path and $k\geq 3$, then the graph $C\coloneqq P+x_{k-1}x_0$ is called a cycle
- C^k : cycle of length k (the number of edges/vertices)



• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

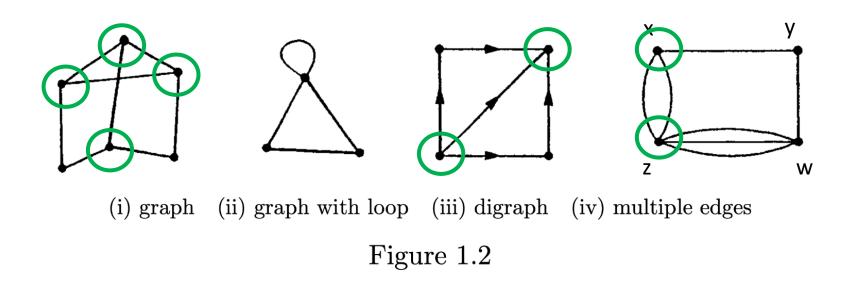
- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
 - N(x): set of all vertices adjacent to x
 - neighbors of x
 - A vertex is isolated vertex if it has no neighbors
- The number of edges incident with a vertex x is called the degree of x
 - A loop contributes 2 to the degree

• A graph is finite when both E(G) and V(G) are finite sets

graph with loop

Handshaking Theorem (Euler 1736)

• Theorem A finite graph G has an even number of vertices with odd degree



Proof

- Theorem A finite graph G has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$\sum_{x \in V(G)} \deg(x) = 2|E(G)|$$

edge	ends
a	x, z
b	y,w
c	x, z
d	z,w
e	z,w
f	x, y
g	z,w

Figure 1.1

Degree

- Minimal degree of $G: \delta(G) = \min\{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G) = \max\{d(v): v \in V\}$
- Average degree of $G: d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{2|E|}{|V|}$
- All measure the 'density' of a graph

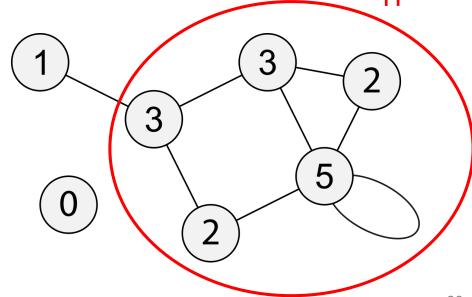
• $d(G) \ge \delta(G)$

Degree (global to local)

• Proposition (1.2.2, D) Every graph G with at least one edge has a subgraph H with

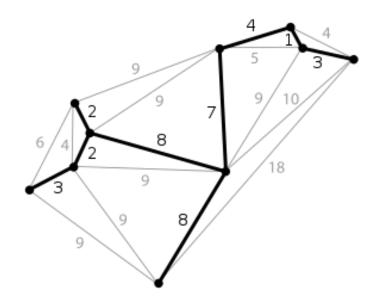
$$\delta(H) > \frac{1}{2}d(H) \ge \frac{1}{2}d(G)$$

- Example: |G| = 7, $d(G) = \frac{16}{7}$
- $\delta(H) = 2, d(H) = \frac{14}{5}$



Minimal degree guarantees long paths and cycles

• Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, provided $\delta(G) \geq 2$.



Distance and diameter

- The distance $d_G(x,y)$ in G of two vertices x,y is the length of a shortest $x{\sim}y$ path
 - if no such path exists, we set $d(x,y) := \infty$
- The greatest distance between any two vertices in G is the diameter of G

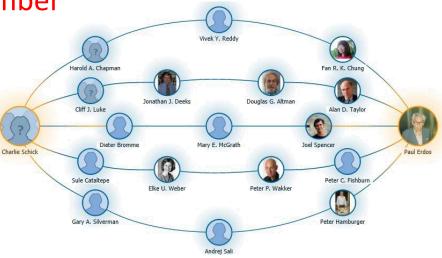
$$diam(G) = \max_{x,y \in V} d(x,y)$$

Example -- Erdős number

- The state of the

- A well-known graph
 - vertices: mathematicians of the world
 - Two vertices are adjacent if and only if they have published a joint paper

• The distance in this graph from some mathematician to the vertex Paul Erdős is known as his or her Erdős number

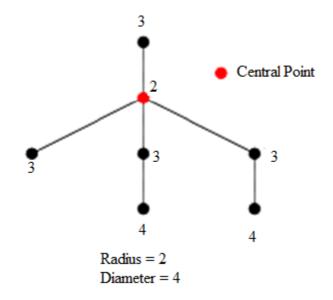


Radius and diameter

• A vertex is central in G if its greatest distance from other vertex is smallest, such greatest distance is the radius of G

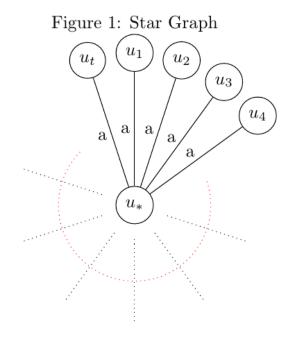
$$rad(G) := \min_{x \in V} \max_{y \in V} d(x, y)$$

• Proposition (1.4, H; Ex1.6, D) $rad(G) \leq diam(G) \leq 2 rad(G)$



Radius and maximum degree control graph size

• Proposition (1.3.3, D) A graph G with radius at most r and maximum degree at most $\Delta \ge 3$ has fewer than $\frac{\Delta}{\Delta - 2} (\Delta - 1)^r$.



Summary

- Motivation and applications
- Basic concepts:
 - graph, isomorphism, subgraphs, paths, walks, cycles,
 - Neighbors, degree, distance, diameter, radius
- Examples:
 - Complete/regular/bipartite graphs, Peterson graph
- Theorems:
 - Handshaking
 - Large average degree guarantees dense subgraphs
 - Large minimal degree guarantees long paths and cycles
 - Radius and maximum degree control graph size

Shuai Li

https://shuaili8.github.io

Questions?