Lecture 5: Matchings

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

Motivating example

![Diagram showing relationships between candidates and jobs.]
Definitions

• A **matching** is a set of independent edges, in which no pair of edges shares a vertex

• The vertices incident to the edges of a matching M are M-saturated (饱和的); the others are M-unsaturated

• A **perfect matching** in a graph is a matching that saturates every vertex

• **Example** (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is $n!$

• **Example** (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n - 1)(2n - 3) \cdots 1 = (2n - 1)!!$
Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged by adding an edge

• A maximum matching is a matching of maximum size among all matchings in the graph

• Example: P_3, P_5

• Every maximum matching is maximal, but not every maximal matching is a maximum matching
Symmetric difference of matchings

• The symmetric difference of M, M' is $M \Delta M' = (M - M') \cup (M' - M)$

• Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle
Maximum matching and augmenting path

• Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M.

• An M-alternating path whose endpoints are M-unsaturated is an M-augmenting path.

• Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in G \iff G has no M-augmenting path.

Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle.
Hall’s theorem (TONCAS)

• **Theorem** (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y. G contains a matching of $X \iff |N(S)| \geq |S|$ for all $S \subseteq X$

• **Exercise**. Read the other two proofs in Diestel.

• **Corollary** (3.1.13, W; 2.1.3, D) Every k-regular ($k > 0$) bipartite graph has a perfect matching
General regular graph

• **Corollary** (2.1.5, D) Every regular graph of positive even degree has a 2-factor
 • A k-regular spanning subgraph is called a k-factor
 • A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian \iff it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular ($k > 0$) bipartite graph has a perfect matching
Application to SDR

• Given some family of sets \(X \), a system of distinct representatives for the sets in \(X \) is a ‘representative’ collection of distinct elements from the sets of \(X \).

\[
\begin{align*}
S_1 &= \{2, 8\}, \\
S_2 &= \{8\}, \\
S_3 &= \{5, 7\}, \\
S_4 &= \{2, 4, 8\}, \\
S_5 &= \{2, 4\}.
\end{align*}
\]

• **Theorem** (1.52, H) Let \(S_1, S_2, \ldots, S_k \) be a collection of finite, nonempty sets. This collection has SDR \(\iff \) for every \(t \in [k] \), the union of any \(t \) of these sets contains at least \(t \) elements.

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let \(G \) be a bipartite graph with partition \(X, Y \).
\(G \) contains a matching of \(X \) \(\iff \) \(|N(S)| \geq |S| \) for all \(S \subseteq X \).
König Theorem
Augmenting Path Algorithm
Vertex cover

• A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U

• Example:
 • Art museum is a graph with hallways are edges and corners are nodes
 • A security camera at the corner will guard the paintings on the hallways
 • The minimum set to place the cameras?
König-Egeváry Theorem (Min-max theorem)

- **Theorem** (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
 Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges.

- **Theorem** (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in G \iff G has no M-augmenting path.
Augmenting path algorithm (3.2.1, W)

- **Input:** G is Bipartite with X, Y, a matching M in G

 $U = \{M$-unsaturated vertices in $X \}$

- **Idea:** Explore M-alternating paths from U letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached

- **Initialization:** $S = U, T = \emptyset$ and all vertices in S are unmarked

- **Iteration:**
 - If S has no unmarked vertex, stop and report $T \cup (X - S)$ as a minimum cover and M as a maximum matching
 - Otherwise, select an unmarked $x \in S$ to explore
 - Consider each $y \in N(x)$ such that $xy \notin M$
 - If y is unsaturated, terminate and report an M-augmenting path from U to y
 - Otherwise, $yw \in M$ for some w
 - include y in T (reached from x) and include w in S (reached from y)
 - After exploring all such edges incident to x, mark x and iterate.
Example

Red: A random matching
Theoretical guarantee for Augmenting path algorithm

• **Theorem** (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size
Weighted Bipartite Matching
Hungarian Algorithm
Weighted bipartite matching

• The **maximum weighted matching problem** is to seek a perfect matching M to maximize the total weight $w(M)$

• Bipartite graph
 • W.l.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \geq 0$ for all $i, j \in [n]$
 • Optimization:

 $\max w(M_a) = \sum_{i,j} a_{i,j}w_{i,j}$

 $s.t.$ $a_{i,1} + \ldots + a_{i,n} \leq 1$ for any i
 $a_{1,j} + \ldots + a_{n,j} \leq 1$ for any j
 $a_{i,j} \in \{0,1\}$

• Integer programming
 • General IP problems are NP-Complete
(Weighted) cover

- A (weighted) cover is a choice of labels u_1, \ldots, u_n and v_1, \ldots, v_n such that $u_i + v_j \geq w_{i,j}$ for all i, j
 - The cost $c(u, v)$ of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
 - The minimum weighted cover problem is that of finding a cover of minimum cost

- Optimization problem

$$\min c(u, v) = \sum_i u_i + \sum_j v_j$$
$$s.t. u_i + v_j \geq w_{i,j} \text{ for any } i, j$$
$$u_i, v_j \geq 0 \text{ for any } i, j$$
Duality

• Weak duality theorem
 • For each feasible solution \(a \) and \((u, v)\)

\[
\sum_{i,j} a_{i,j} w_{i,j} \leq \sum_i u_i + \sum_j v_j
\]

thus \(\max \sum_{i,j} a_{i,j} w_{i,j} \leq \min \sum_i u_i + \sum_j v_j \)
Duality (cont.)

• Strong duality theorem
 • If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight
 \[
 \max \sum_{i,j} a_{i,j}w_{i,j} = \min \sum_i u_i + \sum_j v_j
 \]

• Lemma (3.2.7, W) For a perfect matching \(M \) and cover \((u, v) \) in a weighted bipartite graph \(G \), \(c(u, v) \geq w(M) \).
 - \(c(u, v) = w(M) \iff M \) consists of edges \(x_iy_j \) such that \(u_i + v_j = w_{i,j} \)
 - In this case, \(M \) and \((u, v) \) are optimal.
Equality subgraph

• The equality subgraph $G_{u,v}$ for a cover (u, v) is the spanning subgraph of $K_{n,n}$ having the edges x_iy_j such that $u_i + v_j = w_{i,j}$
 • So if $c(u, v) = w(M)$ for some perfect matching M, then M is composed of edges in $G_{u,v}$
 • And if $G_{u,v}$ contains a perfect matching M, then (u, v) and M (whose weights are $u_i + v_j$) are both optimal
Hungarian algorithm

- **Input:** Weighted $K_{n,n} = B(X,Y)$
- **Idea:** Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching
- **Initialization:** Let (u, v) be a cover, such as $u_i = \max_j w_{i,j}$, $v_j = 0$

(Dual)

\[
\min \sum_i u_i + \sum_j v_j \\
\text{s. t. } u_i + v_j \geq w_{i,j} \text{ for any } i, j \\
u_i, v_j \geq 0
\]
Hungarian algorithm (cont.)

• **Iteration:** Find a maximum matching M in $G_{u,v}$
 - If M is a perfect matching, stop and report M as a maximum weight matching
 - Otherwise, let Q be a vertex cover of size $|M|$ in $G_{u,v}$
 - Let $R = X \cap Q, T = Y \cap Q$
 - $\epsilon = \min\{u_i + v_j - w_{i,j}: x_i \in X - R, y_j \in Y - T\}$
 - Decrease u_i by ϵ for $x_i \in X - R$ and increase v_j by ϵ for $y_j \in T$
 - Form the new equality subgraph and repeat
Example
Example 2: Excess matrix

Optimal value is the same
But the solution is not unique
Theoretical guarantee for Hungarian algorithm

• **Theorem (3.2.11, W)** The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover
Example 3
Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover
Stable Matchings
Stable matching

• A family \((\leq_v)_{\nu \in V}\) of linear orderings \(\leq_v\) on \(E(\nu)\) is a set of preferences for \(G\)

• A matching \(M\) in \(G\) is **stable** if for any edge \(e \in E \setminus M\), there exists an edge \(f \in M\) such that \(e\) and \(f\) have a common vertex \(v\) with \(e <_v f\)

 • **Unstable**: There exists \(xy \in E \setminus M\) but \(xy', x'y \in M\) with \(xy' <_x xy\)
 \[x'y <_y xy\]

3.2.16. **Example.** Given men \(x, y, z, w\), women \(a, b, c, d\), and preferences listed below, the matching \(\{xa, yb, zd, wc\}\) is a stable matching.

<table>
<thead>
<tr>
<th>Men {x, y, z, w}</th>
<th>Women {a, b, c, d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x : a > b > c > d)</td>
<td>(a : z > x > y > w)</td>
</tr>
<tr>
<td>(y : a > c > b > d)</td>
<td>(b : y > w > x > z)</td>
</tr>
<tr>
<td>(z : c > d > a > b)</td>
<td>(c : w > x > y > z)</td>
</tr>
<tr>
<td>(w : c > b > a > d)</td>
<td>(d : x > y > z > w)</td>
</tr>
</tbody>
</table>
Gale-Shapley Proposal Algorithm

• **Input:** Preference rankings by each of \(n \) men and \(n \) women

• **Idea:** Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom

• **Iteration:** Each man proposes to the highest woman on his preference list who has not previously rejected him

 • If each woman receives exactly one proposal, stop and use the resulting matching

 • Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list

 • Every woman receiving a proposal says “maybe” to the most attractive proposal received
Example
Example (gif)
Theoretical guarantee for the Proposal Algorithm

• **Theorem** (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching

• Who proposes matters (jobs/candidates)

• **Exercise** Among all stable matchings, every man is happiest in the one produced by the male-proposal algorithm and every woman is happiest under the female-proposal algorithm

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching \{xa, yb, zd, wc\} is a stable matching.

- Men \{x, y, z, w\}

- Women \{a, b, c, d\}

\begin{align*}
 x : & a > b > c > d \\
 y : & a > c > b > d \\
 z : & c > d > a > b \\
 w : & c > b > a > d \\
 a : & z > x > y > w \\
 b : & y > w > x > z \\
 c : & w > x > y > z \\
 d : & x > y > z > w
\end{align*}
Matchings in General Graphs
Perfect matchings

• K_{2n}, C_{2n}, P_{2n} have perfect matchings

• **Corollary** (3.1.13, W; 2.1.3, D) Every k-regular ($k > 0$) bipartite graph has a perfect matching

• **Theorem** (1.58, H) If G is a graph of order $2n$ such that $\delta(G) \geq n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is Hamiltonian
Tutte’s Theorem (TONCAS)

• Let $q(G)$ be the number of connected components with odd order

• **Theorem** (1.59, H; 2.2.1, D; 3.3.3, W)
 Let G be a graph of order $n \geq 2$. G has a perfect matching $\iff q(G - S) \leq |S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte’s condition $q(G - S) \leq |S|$ for $q = 3$, and the contracted graph G_S from Theorem 2.2.3.
Petersen’s Theorem

• **Theorem** (1.60, H; 2.2.2, D; 3.3.8, W)
 Every bridgeless, 3-regular graph contains a perfect matching

Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order $n \geq 2$. G has a perfect matching $\iff q(G - S) \leq |S|$ for all $S \subseteq V$
Find augmenting paths in general graphs

• Different from bipartite graphs, a vertex can belong to both S and T
• Example: How to explore from M-unsaturated point u

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a **maximum** matching in G if G has no M-augmenting path

• Flower/stem/blossom
Lifting

Case 1.

Case 2.
Edmonds’ blossom algorithm (3.3.17, W)

• **Input:** A graph G, a matching M in G, an M-unsaturated vertex u

• **Idea:** Explore M-alternating paths from u, recording for each vertex the vertex from which it was reached, and **contracting blossoms** when found
 - Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
 - Reaching an unsaturated vertex yields an augmentation.

• **Initialization:** $S = \{u\}$ and $T = \emptyset$

• **Iteration:** If S has no unmarked vertex, stop; there is no M-augmenting path from u
 - Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
 - If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
 - If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
 - Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
 - After exploring all such neighbors of v, mark v and iterate
Illustration

Forest expansion

Blossom contraction

Path detection in G'

Path lifting
Example
Example 2
Example 2 (cont.)
Summary

• Matching in bipartite graphs
 • Hall’s Theorem (TONCAS)
 • König Theorem: For bipartite graph, the maximum size of a matching is equal to the minimum size of a vertex cover of its edges
 • Augmenting Path Algorithm

• Matchings in weighted bipartite graphs
 • Weighted cover, Hungarian algorithm, equality subgraph, excess matrix

• Stable matching in bipartite graphs with full preference lists
 • Gale-Shapley Proposal Algorithm

• Matchings in general graphs
 • M-alternating path, M-augmenting path
 • Berge Theorem: A matching \(M \) in a graph \(G \) is a maximum \(\iff G \) has no \(M \)-augmenting path
 • Tutte’s Theorem (TONCAS), Petersen’s Theorem, Edmonds’ blossom algorithm

Shuai Li
https://shuaili8.github.io

Questions?