Lecture 6: More on Connectivity

Shuai Li

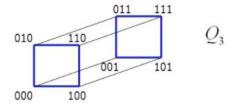
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

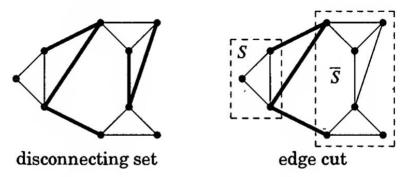
Vertex cut set and connectivity

- A proper subset S of vertices is a vertex cut set if the graph G − S is disconnected
- The connectivity, $\kappa(G)$, is the minimum size of a vertex set S of G such that G S is disconnected or has only one vertex
 - The graph is k-connected if $k \leq \kappa(G)$
- $\kappa(K_n) := n 1$
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$



- For convention, $\kappa(K_1) = 0$
- Example (4.1.3, W) For k-dimensional cube $Q_k = \{0,1\}^k$, $\kappa(Q_k) = k$

Edge-connectivity



- A disconnecting set of edges is a set F ⊆ E(G) such that G − F has more than one component
 - A graph is *k*-edge-connected if every disconnecting set has at least *k* edges
 - The edge-connectivity of G, written λ(G), is the minimum size of a disconnecting set
- Given $S, T \subseteq V(G)$, we write [S, T] for the set of edges having one endpoint in S and the other in T
 - An edge cut is an edge set of the form [*S*, *S^c*] where *S* is a nonempty proper subset of *V*(*G*)
- Every edge cut is a disconnecting set, but not vice versa
- Remark (4.1.8, W) Every minimal disconnecting set of edges is an edge cut

Connectivity and edge-connectivity

• Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$

• If
$$\delta(G) \ge n-2$$
, then $\kappa(G) = \delta(G)$

that is $\kappa(G) = \lambda(G) = \delta(G)$

• Theorem (4.1.11, W) If G is a 3-regular graph, then $\kappa(G) = \lambda(G)$

Properties of edge cut

- When $\lambda(G) < \delta(G)$, a minimum edge cut cannot isolate a vertex
- Similarly for (any) edge cut
- Proposition (4.1.12, W) If S is a set of vertices in a graph G, then $|[S, S^{c}]| = \sum_{v \in S} d(v) 2e(G[S])$
- Corollary (4.1.13, W) If G is a simple graph and $|[S, S^c]| < \delta(G)$, then $|S| > \delta(G)$
 - |S| must be much larger than a single vertex

Blocks

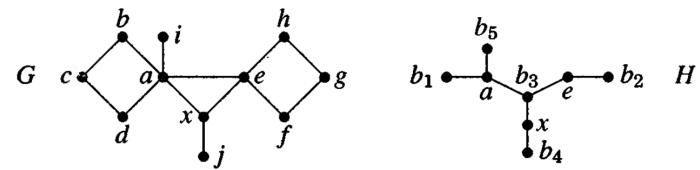
- A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block
- Example
- Proposition (1.2.14, W)
- An edge *e* is a bridge \Leftrightarrow *e* lies on no cycle of *G*
- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- An edge of a cycle cannot itself be a block
 - An edge is block \Leftrightarrow it is a bridge
 - The blocks of a tree are its edges
- If a block has more than two vertices, then it is 2-connected
 - The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

Intersection of two blocks

- Proposition (4.1.19, W) Two blocks in a graph share at most one vertex
 - When two blocks share a vertex, it must be a cut-vertex
- Every edge is a subgraph with no cut-vertex and hence is in a block. Thus blocks in a graph decompose the edge set

Block-cutpoint graph

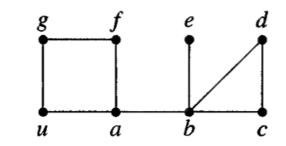
• The block-cutpoint graph of a graph G is a bipartite graph H in which one partite set consists of the cut-vertices of G, and the other has a vertex b_i for each block B_i of G. We include vb_i as an edge of $H \Leftrightarrow$ $v \in B_i$



• (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a tree

Depth-first search (DFS)

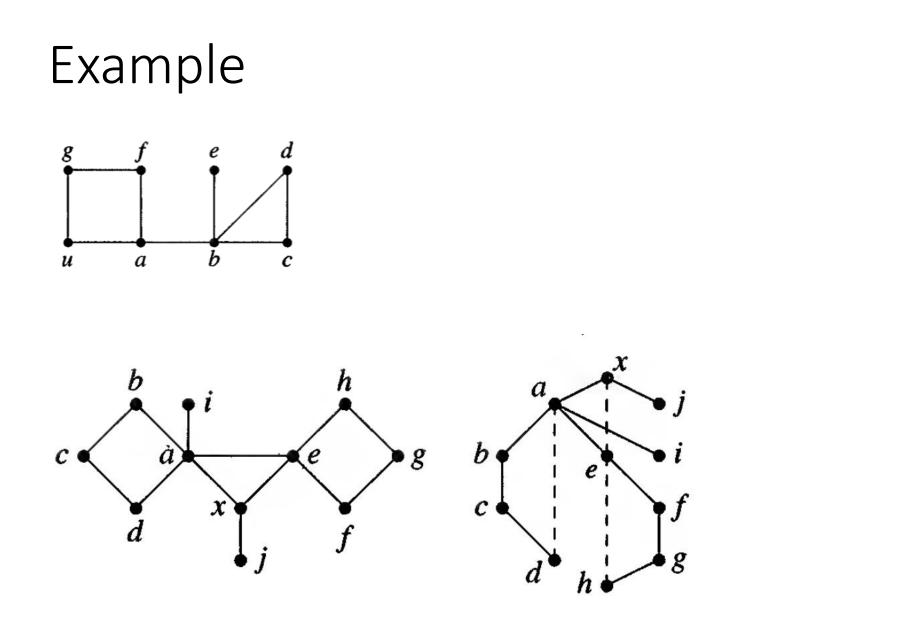
• Depth-first search



 Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

Finding blocks by DFS

- Input: A connected graph G
- Idea: Build a DFS tree T of G, discarding portions of T as blocks are identified. Maintain one vertex called ACTIVE
- Initialization: Pick a root $x \in V(H)$; make x ACTIVE; set $T = \{x\}$
- Iteration: Let v denote the current active vertex
 - If v has an unexplored incident edge vw, then
 - If $w \notin V(T)$, then add vw to T, mark vw explored, make w ACTIVE
 - If $w \in V(T)$, then w is an ancestor of v; mark vw explored
 - If v has no more unexplored incident edges, then
 - If $v \neq x$ and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T' rooted at v has an explored edge to an ancestor above w, then $V(T') \cup \{w\}$ is the vertex set of a block; record this information and delete V(T')
 - if v = x, terminate



Strong orientation

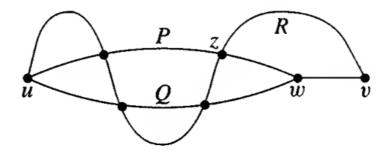
- Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong orientation, i.e. an orientation that is a strongly connected digraph ⇔ it is 2-edge-connected
 - A directed graph is strongly connected if for every pair of vertices (*v*, *w*), there is a directed path from *v* to *w*
 - Proposition (2.4, L) Let xy ∈ T which is not a bridge in G and x is a parent of y. Then there exists an edge in G but not in T joining some descendant a of y and some ancestor b of x
 - The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

2-Connected Graphs

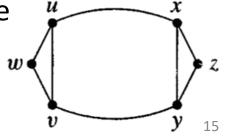
2-connected graphs

- Two paths from u to v are internally disjoint if they have no common internal vertex
- Theorem (4.2.2, W; Whitney 1932)
 A graph G having at least three vertices is 2-connected ⇔ for each pair u, v ∈ V(G) there exist internally disjoint u, v-paths in G



Equivalent definitions for 2-connected graphs

- Lemma (4.2.3, W; Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected
- Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
 - *G* is connected and has no cut-vertex
 - For all $x, y \in V(G)$, there are internally disjoint x, y-paths
 - For all $x, y \in V(G)$, there is a cycle through x and y
 - $\delta(G) \ge 1$ and every pair of edges in G lies on a common cycle



Ear decomposition

- An ear of a graph G is a maximal path whose internal vertices have degree 2 in G
- An ear decomposition of G is a decomposition P_0, \dots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an ear of $P_0 \cup \dots \cup P_i$
- Theorem (4.2.8, W)

A graph is 2-connected \Leftrightarrow it has an ear decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in some ear decomposition

- Corollary (4.2.6, W) If G is 2-connected, then the graph G' obtained by subdividing an edge of G is 2-connected
- (Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle

 P_3

 P_0

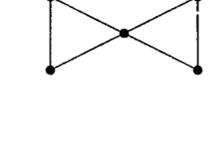
 P_4

 P_2

Closed-ear

- A closed ear of a graph G is a cycle C such that all vertices of C except one have degree 2 in G
- A closed-ear decomposition of G is a decomposition P_0, \ldots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an (open) ear or a closed ear in $P_0 \cup \cdots \cup P_i$ $P_3^{(open)}$

 P_2 (closed)



 P_0

P₁ (open)

 P_4 (closed)

Closed-ear decomposition

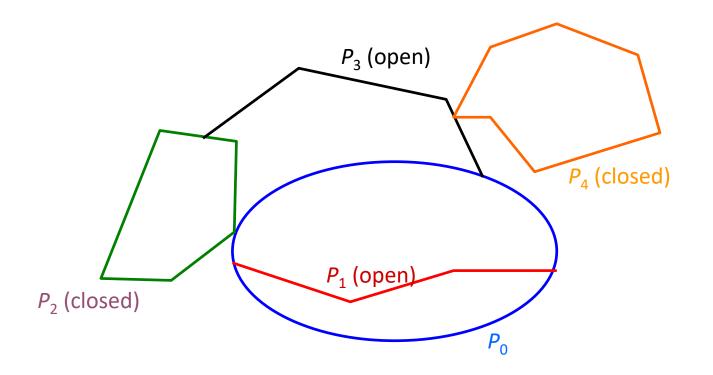
• Theorem (4.2.10, W)

A graph is 2-edge-connected \Leftrightarrow it has a closed-ear decomposition. Every cycle in a 2-edge-connected graph is the initial cycle in some such decomposition

```
Proposition (1.2.14, W)
An edge e is a bridge \Leftrightarrow e lies on no cycle of G
• Or equivalently, an edge e is not a bridge \Leftrightarrow e lies on a cycle of G
```

Strong orientation (Revisited)

Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong orientation, i.e. an orientation that is a strongly connected digraph ⇔ it is 2-edge-connected



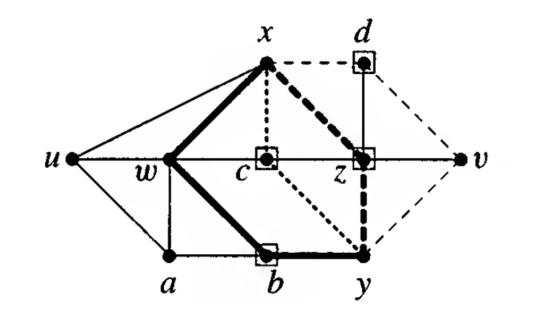
k-Connected and k-Edge-Connected graphs

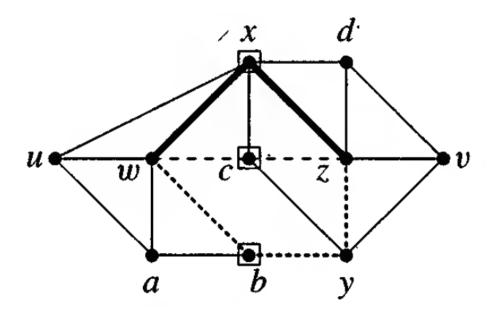
x,*y*-cut

- Given $x, y \in V(G)$, a set $S \subseteq V(G) \{x, y\}$ is an x, y-separator or x, y-cut if G S has no x, y-path
 - Let $\kappa(x, y)$ be the minimum size of an x, y-cut
 - Let $\lambda(x, y)$ be the maximum size of a set of pairwise internally disjoint x, y-paths
 - $\kappa(x, y) \ge \lambda(x, y)$
- For $X, Y \subseteq V(G)$, an X, Y-path is a path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$

Example (4.2.16, W)

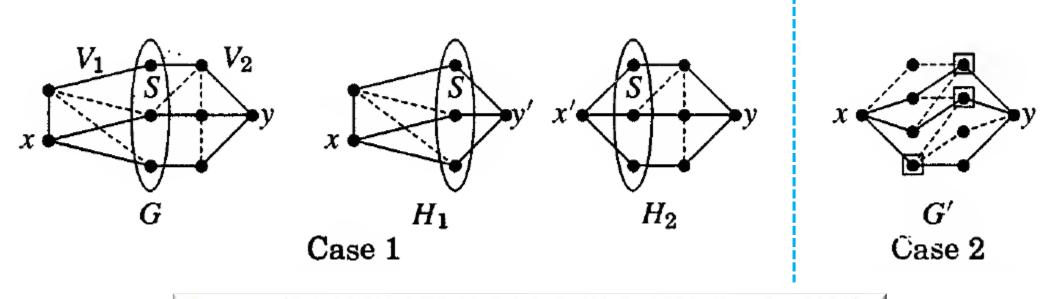
- $S = \{b, c, z, d\}$
- $\kappa(x, y) = \lambda(x, y) = 4$
- $\kappa(w, z) = \lambda(w, z) = 3$





Menger's Theorem

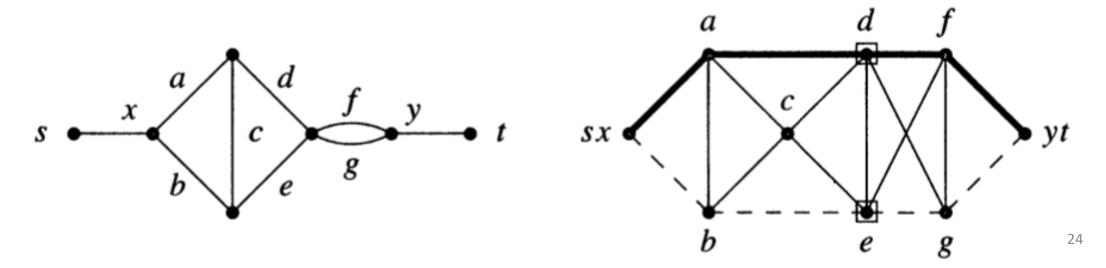
• Theorem (4.2.17, W; 3.3.1, D; Menger, 1927) If x, y are vertices of a graph G and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$



Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

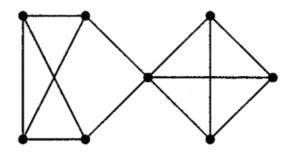
Edge version

- Theorem (4.2.19, W) If x and y are distinct vertices of a graph G, then the minimum size κ'(x, y) of an x, y-disconnecting set of edges equals the maximum number λ'(x, y) of pairwise edge-disjoint x, ypaths
 - The line graph L(G) of a graph G is the graph whose vertices are the edges of G with $ef \in E(L(G))$ when e = uv and f = vw in G



Back to connectivity

- Theorem (4.2.21, W) $\kappa(G) = \min_{\substack{x \neq y \in V(G)}} \lambda(x, y), \qquad \lambda(G) = \min_{\substack{x \neq y \in V(G)}} \lambda'(x, y)$
 - Lemma (4.2.20, W) Deletion of an edge reduces connectivity by at most 1



Application of Menger's Theorem

CSDR

Let A = A₁, ..., A_m and B = B₁, ..., B_m be two family of sets. A common system of distinct representatives (CSDR) is a set of m elements that is both an system of distinct representatives (SDR) for A and an SDR for B

Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

S₁ = {2,8},
S₂ = {8},
S₃ = {5,7},
S₄ = {2,4,8},
S₅ = {2,4}.

The family X₁ = {S₁, S₂, S₃, S₄} does have an SDR, namely {2,8,7,4}. The family X₂ = {S₁, S₂, S₄, S₅} does not have an SDR.
Theorem(1.52, H) Let S₁, S₂, ..., S_k be a collection of finite, nonempty sets. This collection has SDR ⇔ for every t ∈ [k], the union of any t of these sets contains at least t elements

Equivalent condition for CSDR

• Theorem (4.2.25, W; Ford-Fulkerson 1958) Families $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_m\}$ have a common system of distinct representatives (CSDR) \Leftrightarrow

$$\left| \left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) \right| \ge |I| + |J| - m$$

for every pair $I, J \subseteq [m]$

Summary

- Connectivity, edge-connectivity
- Blocks, block-cutpoint graph, DFS
- 2-connectivity
 - Equivalent definitions for 2-connected graphs
 - (Closed) Ear decomposition
- *k*-connectivity
 - Menger's Theorem, for $xy \notin E(G)$, $\kappa(x, y) = \lambda(x, y)$
 - $\kappa'(x,y) = \lambda'(x,y)$
 - $\kappa(G) = \min_{x \neq y \in V(G)} \lambda(x, y), \ \lambda(G) = \min_{x \neq y \in V(G)} \lambda'(x, y)$
 - Application: CSDR

Shuai Li

https://shuaili8.github.io

Questions?