Lecture 9: Ramsey Theory

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

The friendship riddle

• Does every set of six people contain three mutual acquaintances or three mutual strangers?

https://plus.maths.org/content/friends-and-strangers Wikipedia R(3,5)=R(5,3)=14

R(3,6)=R(6,3)=18

(classical) Ramsey number

- A 2-coloring of the edges of a graph *G* is any assignment of one of two colors of each of the edges of *G*
- Let p and q be positive integers. The (classical) Ramsey number associated with these integers, denoted by R(p,q), is defined to be the smallest integer n such that every 2-coloring of the edges of K_n either contains a red K_p or a blue K_q as a subgraph
- It is a typical problem of extremal graph theory

Examples

- R(1,3) = 1
- (Ex2, S1.8.1, H) R(1, k) = 1
- R(2,4) = 4
- (Ex3, S1.8.1, H) R(2, k) = k
- Theorem (1.61, H; 8.3.1, 8.3.9, W) R(3,3) = 6

Examples (cont.)

• Theorem (1.62, H; 8.3.10, W) R(3,4) = 9

Theorem A finite graph G has an even number of vertices with odd degree

• (Ex4, S1.8.1, H) R(p,q) = R(q,p)

Values / known	bounding ranges for R	msey numbers $R(r, s)$) (sequence	A212954 P in the OEIS)
----------------	-----------------------	------------------------	-------------	------------------------

r	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40-42
4				18	25 ^[10]	36–41	49–61	59 ^[14] -84	73–115	92–149
5					43-48	58-87	80-143	101-216	133–316	149 ^[14] -442
6						102-165	115 ^[14] -298	134 ^[14] -495	183-780	204-1171
7							205-540	217-1031	252-1713	292-2826
8								282-1870	329–3583	343-6090
9									565-6588	581-12677
10										798-23556

Bounds on Ramsey numbers

• Theorem (1.64, H; 2.28, H; 8.3.11, W) If $q \ge 2, q \ge 2$, then $R(p,q) \le R(p-1,q) + R(p,q-1)$

Furthermore, if both terms on the RHS are even, then the inequality

is strict Theorem A finite graph G has an even number of vertices with odd degree

- Theorem (1.63, H; 2.29, H) $R(p,q) \le {p+q-2 \choose p-1}$
- Theorem (1.65, H) For integer $q \ge 3$, $R(3,q) \le \frac{q^2+3}{2}$
- Theorem (1.66, H; 8.3.12, W; Erdős and Szekeres 1935) If $p \ge 3$, $R(p,p) > \lfloor 2^{p/2} \rfloor$

Graph Ramsey Theory

- Given two graphs G and H, define the graph Ramsey number R(G, H) to be the smallest value of n such that any 2-coloring of the edges of K_n contains either a red copy of G or a blue copy of H
 - The classical Ramsey number R(p,q) would in this context be written as $R(K_p, K_q)$
- Theorem (1.67, H) If G is a graph of order p and H is a graph of order q, then $R(G, H) \leq R(p, q)$
- Theorem (1.68, H) Suppose the order of the largest component of H is denoted as C(H). Then $R(G,H) \ge (\chi(G) - 1)(C(H) - 1) + 1$

Graph Ramsey Theory (cont.)

• Theorem (1.69, H; 8.3.14, W) $R(T_m, K_n) = (m-1)(n-1) + 1$

Theorem (1.45, H; Ex6, S1.6.2, H) For any graph G of order n, $\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$

Proposition (5.2.13, W) Let G be a k-critical graph (a) For every $v \in V(G)$, there is a proper coloring such that v has a unique color and other k - 1 colors all appear on N(v) $\Rightarrow \delta(G) \ge k - 1$

Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

More on pigeonhole principle

- Proposition (8.3.1, W) Among 6 people, it is possible to find 3 mutual acquaintances or 3 mutual non-acquaintances
 - \Leftrightarrow For every simple graph with 6 vertices, there is a triangle in G or in \overline{G}
- Theorem (8.3.2, W) If T is a spanning tree of the k-dimensional cube Q_k , then there is an edge of Q_k outside T whose addition to T creates a cycle of length at least 2k

T is a tree of order $n \Leftrightarrow Any two vertices of T$ are linked by a unique path in T

• \Rightarrow Every spanning tree of Q_k has diameter at least 2k - 1

More on pigeonhole principle 2

- Theorem (8.3.3, W; Erdős–Szekeres 1935) Every list of $\ge n^2 + 1$ distinct numbers has a monotone sublist of length $\ge n + 1$
 - Generalization. (r-1)(s-1)+1
- Theorem (8.3.4, W; Graham-Kleitman 1973) In every labeling of $E(K_n)$ using distinct integers, there is a walk of length at least n 1 along which the labels strictly increase

Summary

- Ramsey number
- Graph Ramsey Theory
- More on pigeonhole principle

Shuai Li

https://shuaili8.github.io

Questions?