Lecture: More on
Connectivity

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.htm|

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html

Vertex cut and connectivity

* A proper subset S of vertices is a vertex cut set if the graph G — S is
disconnected

* The connectivity, k(G), is the minimum size of a vertex set S of G such that
G — S is disconnected or has only one vertex

* The graph is k-connected if k < k(G)
s k(K"):=n-1
* If G is disconnected, k(G) =0

= Agraphis connected = k(G) > 1

* |If ¢ is connected, non-complete graph of order n, then 0.

000 100

011 111

* For convention, k(K;) = 0
(4.1.3, W) For k-dimensional cube Q, = {0,1}%, k(Q)) = k

Edge-connectivity

disconnecting set edge cut

* A disconnecting set of edgesisaset F € E(G) such that G — F has
more than one component

* A graph is k-edge-connected if every disconnecting set has at least k edges

* The edge-connectivity of G, written A(G), is the minimum size of a
disconnecting set

* Given S, T € V(G), we write [S, T] for the set of edges having one
endpoint in S and the otherin T

* An edge cut is an edge set of the form [S, S¢] where S is a nonempty proper
subset of V' (G)

* Every edge cut is a disconnecting set, but not vice versa

* Every minimal disconnecting set of edges is an edge cut

Connectivity and edge-connectivity

(1.4.2, D) If G is non-trivial, then k(G) < A(G) < 6(6)‘
* Example (4.1.10, W) Possibility of k(G) < A(G) < §(G)

[P

(4.1.11, W) If G is a 3-regular graph, then k(G) = A(G)

Properties of edge cut

* When A(G) < §(G), a minimum edge cut cannot isolate a vertex
 Similarly for edge cut
(4.1.12, W) If S is a set of vertices in a graph G, then

5,501 =), dw) — 2e(GIS)

(4.1.13, W) If G is a simple graph and |[S, S¢]| < 6(G) for
some nonempty proper subset S of V(G), then |S| > 6 (G)

Bond

* An edge cut may contain another edge cut .\53/.

* Example: K, , or star graphs
* A bond is a minimal nonempty edge cut

(4.1.15, W) If G is a connected graph, then an edge cut F
is a bond & G — F has exactly two components

Blocks

* A block of a graph G is a maximal connected subgraph of G that has
no cut-vertex. If G itself is connected and has no cut-vertex, then G is

a block =

* Example

* An edge of a cycle cannot itself be a block

* An edge is block & it is a bridge @
* The blocks of a tree are its edges

* |If a block has more than two vertices, then it is 2-connected

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs

Intersection of two blocks

(4.1.19, W) Two blocks in a graph share at most one
vertex

* When two blocks share a vertex, it must be a cut-vertex

* Every edge is a subgraph with no cut-vertex and hence is in a block.
Thus blocks in a graph decompose the edge set

Block-cutpoint graph

* The block-cutpoint graph of a graph G is a bipartite graph H in which
one partite set consists of the cut-vertices of G, and the other has a
vertex b; for each block B; of G. We include vb; as an edge of H &

UEBi

* (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a
tree

Depth-first search (DFS)

* Depth-first search | I M

u a b c

(4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices
v, w such that v lies on the u, w-path in T

Finding blocks by DFS

* Input: A connected graph G

* ldea: Build a DFS tree T of G, discarding portions of T as blocks are
identified. Maintain one vertex called ACTIVE

* Initialization: Pick a root x € VV(H); make x ACTIVE; set T = {x}

 lteration: Let v denote the current active vertex

* If v has an unexplored incident edge vw, then
e Ifw & V(T), then add vw to T, mark vw explored, make w ACTIVE
 Ifw € V(T), then wis an ancestor of v; mark vw explored

* |If v has no more unexplored incident edges, then

* If v # x and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T’
rooted at v has an explored edge to an ancestor above w, then V(T") U {w} is the vertex
set of a block; record this information and delete V(T")

* if v = x, terminate

12

Strong orientation

(2.5, L) Let G be a finite connected graph without bridges.
Then G admits a strong orientation, i.e. an orientation that is a
strongly connected digraph

* A directed graph is strongly connected if for every pair of vertices (v, w),
there is a directed path fromvtow

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs

