Lecture: More on Connectivity (2)

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

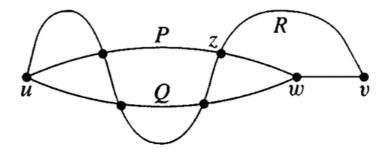
https://shuaili8.github.io/Teaching/CS445/index.html

2-Connected Graphs

2-connected graphs

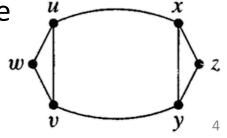
- Two paths from u to v are internally disjoint if they have no common internal vertex
- Theorem (4.2.2, W; Whitney 1932)

A graph G having at least three vertices is 2-connected \Leftrightarrow for each pair $u, v \in V(G)$ there exist internally disjoint u, v-paths in G



Equivalent definitions for 2-connected graphs

- Lemma (4.2.3, W; Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected
- Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
 - *G* is connected and has no cut-vertex
 - For all $x, y \in V(G)$, there are internally disjoint x, y-paths
 - For all $x, y \in V(G)$, there is a cycle through x and y
 - $\delta(G) \ge 1$ and every pair of edges in G lies on a common cycle



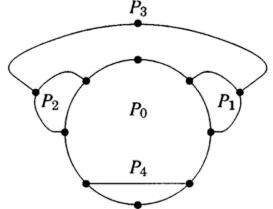
Subdivision keeps 2-connectivity

A subdivision of an edge e in G is a substitution of a path for e

 Corollary (4.2.6, W) If G is 2-connected, then the graph G' obtained by subdividing an edge of G is 2-connected

Ear decomposition

- An ear of a graph G is a maximal path whose internal vertices have degree 2 in G
- An ear decomposition of G is a decomposition P_0, \ldots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an ear of $P_0 \cup \cdots \cup P_i$



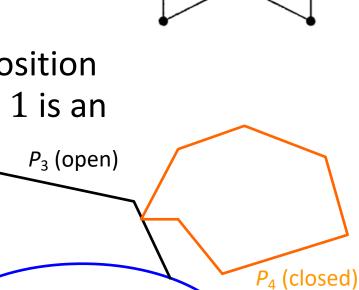
• Theorem (4.2.8, W)

A graph is 2-connected \Leftrightarrow it has an ear decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in some ear decomposition

Closed-ear

- A closed ear of a graph G is a cycle C such that all vertices of C except one have degree 2 in G
- A closed-ear decomposition of G is a decomposition $P_0, ..., P_k$ such that P_0 is a cycle and P_i for $i \ge 1$ is an (open) ear or a closed ear in $P_0 \cup \cdots \cup P_i$ P_2 (open)

 P_2 (closed)



 P_0

P₁ (open

Closed-ear decomposition

• Theorem (4.2.10, W)

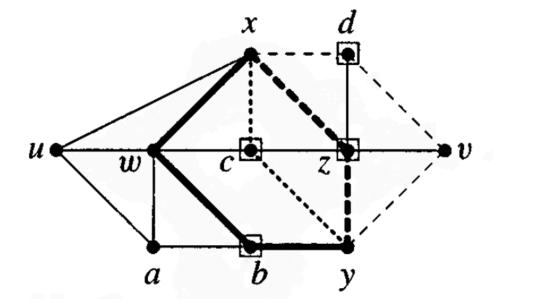
A graph is 2-edge-connected \Leftrightarrow it has a closed-ear decomposition. Every cycle in a 2-edge-connected graph is the initial cycle in some such decomposition k-Connected and k-Edge-Connected graphs

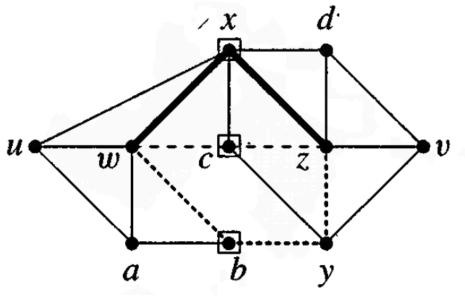
x,*y*-cut

- Given $x, y \in V(G)$, a set $S \subseteq V(G) \{x, y\}$ is an x, y-separator or x, y-cut if G S has no x, y-path
 - Let $\kappa(x, y)$ be the minimum size of an x, y-cut
 - Let $\lambda(x, y)$ be the maximum size of a set of pairwise internally disjoint x, y-paths
 - $\kappa(x, y) \ge \lambda(x, y)$
- For $X, Y \subseteq V(G)$, an X, Y-path is a path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$

Example (4.2.16, W)

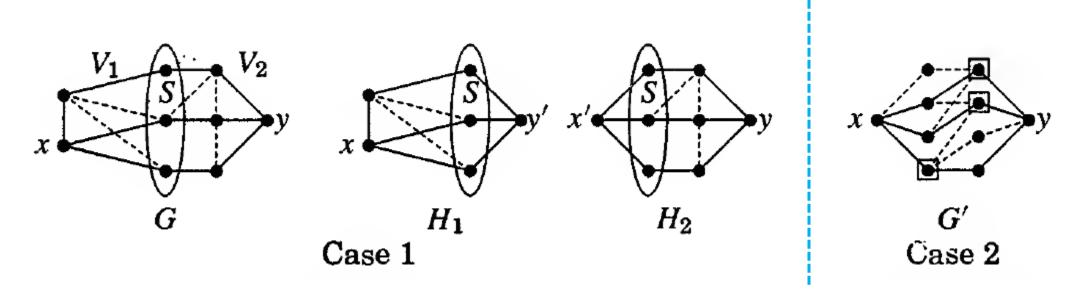
- $S = \{b, c, z, d\}$
- $\kappa(x, y) = \lambda(x, y) = 4$
- $\kappa(w, z) = \lambda(w, z) = 3$





Menger's Theorem

• Theorem (4.2.17, W; Menger, 1927) If x, y are vertices of a graph Gand $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$



Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

Edge version

• Theorem (4.2.19, W) If x and y are distinct vertices of a graph or digraph G, then the minimum size $\kappa'(x, y)$ of an x, y-disconnecting set of edges equals the maximum number $\lambda'(x, y)$ of pairwise edge-disjoint x, y-paths

Back to connectivity

• Theorem (4.2.21, W) $\kappa(G) = \min_{x,y \in V(G)} \lambda(x,y), \qquad \lambda(G) = \min_{x,y \in V(G)} \lambda'(x,y)$

Application of Menger's Theorem

CSDR

Let A = A₁, ..., A_m and B = B₁, ..., B_m be two family of sets. A common system of distinct representatives (CSDR) is a set of m elements that is both an system of distinct representatives (SDR) for A and an SDR for B

Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

S₁ = {2,8},
S₂ = {8},
S₃ = {5,7},
S₄ = {2,4,8},
S₅ = {2,4}.

The family X₁ = {S₁, S₂, S₃, S₄} does have an SDR, namely {2,8,7,4}. The family X₂ = {S₁, S₂, S₄, S₅} does not have an SDR.
Theorem(1.52, H) Let S₁, S₂, ..., S_k be a collection of finite, nonempty sets. This collection has SDR ⇔ for every t ∈ [k], the union of any t of these sets contains at least t elements

Equivalent condition for CSDR

• Theorem (4.2.25, W; Ford-Fulkerson 1958) Families $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_m\}$ have a common system of distinct representatives (CSDR) \Leftrightarrow

$$\left| \left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) \right| \ge |I| + |J| - m$$

for every pair $I, J \subseteq [m]$