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Textbooks & References

* Textbook:
* Graph Theory, Reinhard Diestel

* References:
* Introduction to Graph Theory, by Douglas West
* Combinatorics and Graph Theory, by Harris, Hirst and Mossinghoff

e A Course in Combinatorics, J. H. Van Lint
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Previous courses

e Discrete Mathematics
» Basic concepts for graph theory

 Mathematical Foundations of Computer Science (CS 499)
* Basic notions and hand shaking lemma
e Graph isomorphism and graph score
* Applications of handshake lemma: Parity argument
* The number of spanning trees
* Isomorphism of trees
 Random graphs



Goal

* Knowledge of the basic problems for graph theory
* Bipartite graphs/Matching/Coloring/Flows/...

* Knowledge of the important counting related results on graphs
* Familiar with the common proof techniques
* Awareness of the popular applications of graphs in many fields



Grading policy

e Attendance and participance: 5%
* Assignments: 35%

* Midterm exam: 20%

* Project: 10%

* Final exam: 30%



Honor code

* Discussions are encouraged
* Independently write-up homework and project

 Same reports and homework will be reported



Teaching Assistant

* Yueran Yang (#71ii7R)
* Email: yangyr99@sjtu.edu.cn
e Senior undergraduate student majored in Mathematics
* Research on recommendation systems and bioinformatics

e Office hour: Friday 1-3 pm



Course Outline

* Basics
* Graphs, paths and cycles, connectivity, trees, bipartite graphs

* Matching, Covering and Packing
* Connectivity

* Planar Graphs

* Coloring

* Flows

* Ramsey theory



Introduction



Seven bridges of Kdnigsberg -LHF 1] il

* Leonhard Euler 1736: Is it possible to make a walk through
the city, returning to the starting point and crossing each bridge
exactly once?

Konigsberg




The friendship riddle

* Does every set of six people contain three mutual acquaintances or
three mutual strangers?

A Bryan
L] L]
Fred o Charlie
. . R(3,3)=6
Evelyn David R(3,4)=R(4,3)=9
R(3,5)=R(5,3)=14
https://plus.maths.org/content/friends-and-strangers R(3,6)=R(6,3)=18

Wikipedia
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Examples of general combinatorics problems
using graph theory

e Instant Insanity PU €& 5 4 A @
* make a stack of these cubes so that all four colors appear on each of the four
sides of the stack ~

AN

e A set problem

* Let A4, ..., A, be n distinct subsets of the n-set N: = {1, ..., n}. Show that
there is an element x € N such that the sets 4; \ {x},1 < i < n, areall

distinct
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Keller’s conjecture

* In 1930, Keller conjectured
that any tiling of n-
dimensional space by
translates of the unit cube
must contain a pair of cubes
that share a complete (n —
1)-dimensional face

e Corradi and Szabo transfer it into a
graph theory problem

* Constructing Keller graph

* The conjecture is solved by computer
search recently (June 2020)

Reference: https://mp.weixin.qgq.com/s/rTxWe6MzSHUWUGC3vTIDbJw



https://mp.weixin.qq.com/s/rTxW6MzSHuWUGC3vTIDbJw
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Scheduling and coloring

* University examination timetabling
* Two courses linked by an edge if they have the
same students
* Meeting scheduling

* Two meetings are linked if they have same
member
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Routes in road networks
Shortest path problem

e How can we find the shortest route from x
to y?

* If the vertices of the graph represent our
house and other places to visit, then we
may want to follow a route that visits every
vertex exactly once, so as to visit everyone
without overstaying our welcome

e Hamilton circuit




|Z| Leonardo da Vinci: DVODECEDRON
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Influence maximization

e Select the best seed set
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Gene structure

* Tree graph
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Molecular structure
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Graph neural network (GNN)

How Graph Convolutions work
CNN on image

/\ A=l | L 1 AT~ / Image
t :>>- #l ) - class label

|

Graph convolution

. Lo ‘ Chemical
NP property

Convolution “kernel” depends on Graph structure
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Example (cont):

Hidden Markov Model
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Basics



Graphs

We mainly focus on

* Definition A graph G is a pair (V, E) Simple graph:

No loops, no multi-edges

e I/: set of vertices
» F: set of edges
* ¢ € E corresponds to a pair of endpoints x,y € V

edge ends
a X, 2
b Y, W
c X, 2
d Z, W
€ <, W (i) graph (ii) graph with loop (iii) digraph (iv) multiple edges
f T,y
g 2w Figure 1.2
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Figure 1.1



Graphs: All about adjacency

e Same graph or not

(a) (b) (c)
* Two graphs G; = (V4,E;), G = (V,, E;) are isomorphic if there is a
bijection f:V; —» 1, s.t.

e =1a,b} € Ey & f(e):=1f(a), f(b)} € E;
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Example: Complete graphs

* There is an edge between every pair of vertices
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Example: Regular graphs

* Every vertex has the same degree
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Example: Bipartite graphs

* The vertex set can be partitioned into two sets X and Y such that
every edge in G has one end vertex in X and the otherinY

 Complete bipartite graphs




Example (1A, L): Peterson graph

* Show that the following two graphs are same/isomorphic

Figure 1.4



Example: Peterson graph (cont.)

* Show that the following two graphs are same/isomorphic

AN
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Subgraphs

* A subgraph of a graph G is a graph H such that
V(H) € V(G),E(H) € E(G)
and the ends of an edge e € E(H) are the same asits ends in G
* His aspanning subgraph whenV(H) =V (G)
* The subgraph of G induced by a subset S € V(&) is the subgraph whose
vertex set is S and whose edges are all the edges of ¢ with both endsin S

HEE

Suhgraph (in red) Induced Subgraph
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Paths (E%4%)

* A path is a nonempty graph P = (V, E) of the form
V= {x0, %1, e, X} E ={X0X1, X1X2, e, Xp—1 X}
where the x; are all distinct

e P¥: path of length k (the number of edges)
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Walk (Vi)

* A walk is a non-empty alternating sequence vye vie, ... €, Vg
* The vertices not necessarily distinct
* The length = the number of edges

(1.2.5, W) Every u-v walk contains a u-v path



Cycles (34)

* If P =xpx; ... X1 isa path and k = 3, then the graph C := P +
X, _1Xg is called a cycle

* C¥: cycle of length k (the number of edges/vertices)

1<

n=4 n=5 n=6

(1.2.15, W) Every closed odd walk contains an odd cycle



Neighbors and degree

* Two vertices a # b are called adjacent if they are joined by an edge

* N(x): set of all vertices adjacent to x
* neighbors of x

* Avertexisisolated vertex if it has no neighbors

* The number of edges incident with a vertex x is called the degree of x
* Aloop contributes 2 to the degree

* A graph is finite when both E(G) and V(G) are finite sets

graph with loop



Handshaking Theorem (Euler 1736)

* Theorem A finite graph G has an even number of vertices with odd

degree.
| &

(i) graph (ii) graph with loop (iii) digraph (iv) multiple edges

Z W

Figure 1.2
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Proof

A finite graph G has an even number of vertices with
odd degree.

The degree of x is the number of times it appears

| | edge ends
in the right column. Thus a T 2
C T, 2

xXeV(G) d Z, W

e Z, W

f T,y

g Z,W

Figure 1.1



Degree

* Minimal degree of G: 6(G) = min{d(v): v € V}
* Maximal degree of G: A(G) = min{d(v)' v EV}

* Average degree of G: d(G) = ZvEV d(v) = 2|E|

* All measures the density’ of a graph

- d(G) = 5(G)
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Degree (global to local)

(1.2.2, D) Every graph G with at least one edge has a
subgraph H with

5(H) > %d(H) > %d(G)

oo
OuRSe
© 9‘95

* Example: |G| = 7,d(G) = 16/7



Minimal degree guarantees long paths and
cycles

(1.3.1, D) Every graph G contains a path of length § (&)
and a cycle of length at least 6 (G) + 1, provided 6 (G) = 2.




Distance and diameter

* The distance d; (x,y) in G of two vertices x, y is the length of a
shortest x~7y path

* if no such path exists, we set d(x,y) := o

* The greatest distance between any two vertices in G is the diameter
of G



Example -- Erdds number

* A well-known graph
* vertices: mathematicians of the world
* Two vertices are adjacent if and only if they have
published a joint paper
* The distance in this graph from some mathematician to the
vertex Paul Erdds is known as his or her Erdés number
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