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Trees

• A tree is a connected graph 𝑇 with no cycles
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Properties

• Recall that a graph is bipartite ⟺ it has no odd cycle

• (Ex 3, S1.3.1, H) A tree of order 𝑛 ≥ 2 is a bipartite graph

• Recall that an edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺

• ⇒ Every edge in a tree is a bridge

• 𝑇 is a tree ⟺𝑇 is minimally connected, i.e. 𝑇 is connected but 𝑇 − 𝑒
is disconnected for every edge 𝑒 ∈ 𝑇
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Equivalent definitions (Theorem 1.5.1, D)

• 𝑇 is a tree of order 𝑛
⇔ Any two vertices of 𝑇 are linked by a unique path in 𝑇
⇔𝑇 is minimally connected
• i.e. 𝑇 is connected but 𝑇 − 𝑒 is disconnected for every edge 𝑒 ∈ 𝑇

⇔𝑇 is maximally acyclic
• i.e. 𝑇 contains no cycle but 𝑇 + 𝑥𝑦 does for any non-adjacent vertices 𝑥, 𝑦 ∈
𝑇

⇔ (Theorem 1.10, 1.12, H) 𝑇 is connected with 𝑛 − 1 edges

⇔ (Theorem 1.13, H) 𝑇 is acyclic with 𝑛 − 1 edges
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Leaves of tree

• A vertex of degree 1 in a tree is called a leaf

• Theorem (1.14, H; Ex9, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then 
𝑇 has at least two leaves

• (Ex3, S1.3.2, H) Let 𝑇 be a tree with max degree ∆. Then 𝑇 has at least 
∆ leaves

• (Ex10, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then the number of 
leaves is

2 + 

𝑣:𝑑(𝑣)≥3

𝑑 𝑣 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
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The center of a tree

• Theorem (1.15, H) In any tree, the center is either a single vertex or a 
pair of adjacent vertices
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Tree as subgraphs

• Theorem (1.16, H) Let 𝑇 be a tree of order 𝑘 + 1 with 𝑘 edges. Let 𝐺
be a graph with 𝛿(𝐺) ≥ 𝑘. Then 𝐺 contains 𝑇 as a subgraph
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Spanning tree

• Given a graph 𝐺 and a subgraph 𝑇, 𝑇 is a spanning tree of 𝐺 if 𝑇 is a 
tree that contains every vertex of 𝐺

• Example: A telecommunications company tries to lay cable in a new 
neighbourhood

• Proposition (2.1.5c, W) Every connected graph contains a spanning 
tree
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Minimal spanning tree - Kruskal’s Algorithm 

• Given: A connected, weighted graph 𝐺

1. Find an edge of minimum weight and mark it. 

2. Among all of the unmarked edges that do not form a cycle with any 
of the marked edges, choose an edge of minimum weight and mark 
it

3. If the set of marked edges forms a spanning tree of 𝐺, then stop. If 
not, repeat step 2 
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Example
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Theoretical guarantee of Kruskal’s algorithm 

• Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of 
minimum total weight
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Prim’s Algorithm 

• Given: A connected, weighted graph 𝐺. 

1. Choose a vertex 𝑣, and mark it. 

2. From among all edges that have one marked end vertex and one 
unmarked end vertex, choose an edge 𝑒 of minimum weight. Mark 
the edge 𝑒, and also mark its unmarked end vertex. 

3. If every vertex of 𝐺 is marked, then the set of marked edges forms a 
minimum weight spanning tree. If not, repeat step 2
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Cayley’s tree formula

• Theorem (1.18, H). There are 𝑛𝑛−2

distinct labeled trees of order 𝑛
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Example
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Trees with fixed degrees

• Corollary (2.2.4, W) Given positive integers 𝑑1, … , 𝑑𝑛 summing to 

2𝑛 − 2, there are exactly 
𝑛−2 !

ς 𝑑𝑖−1 !
trees with vertex set 𝑛 such that 

vertex 𝑖 has degree 𝑑𝑖 for each 𝑖

• Example (2.2.5, W) Consider trees with vertices 7 that have degrees 
3,1,2,1,3,1,1
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Matrix tree theorem - cofactor

• For an 𝑛 × 𝑛 matrix 𝐴, the 𝑖, 𝑗 cofactor of 
𝐴 is defined to be

−1 𝑖+𝑗 det 𝑀𝑖𝑗

where 𝑀𝑖𝑗 represents the 𝑛 − 1 ×
𝑛 − 1 matrix formed by deleting row 𝑖

and column 𝑗 from 𝐴
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Matrix tree theorem

• Theorem (1.19, H; 2.2.12, W; Kirchhoff) If 𝐺 is a connected labeled 
graph with adjacency matrix 𝐴 and degree matrix 𝐷, then the number 
of unique spanning trees of 𝐺 is equal to the value of any cofactor of 
the matrix 𝐷 − 𝐴

• If the row sums and column sums of a matrix are all 0, then the 
cofactors all have the same value

• Exercise Read the proof part

• Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove 
Cayley’s theorem
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Example
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Wiener index

• In a communication network, large diameter may be acceptable if 
most pairs can communicate via short paths. This leads us to study 
the average distance instead of the maximum

• Wiener index 𝐷 𝐺 = σ𝑢,𝑣∈𝑉(𝐺)𝑑𝐺(𝑢, 𝑣)

• Theorem (2.1.14, W) Among trees with 𝑛 vertices, the Wiener index 
𝐷(𝑇) is minimized by stars and maximized by paths, both uniquely

• Over all connected 𝑛-vertex graphs, 𝐷 𝐺 is minimized by 𝐾𝑛 and 
maximized by paths 
• (Corollary 2.1.16, W) If 𝐺 is a connected 𝑛-vertex graph, then 𝐷(𝐺) ≤
𝐷(𝑃𝑛−1)
• (Lemma 2.1.15, W) If 𝐻 is a subgraph of 𝐺, then 𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣)

19



Prefix coding

• A binary tree is a rooted plane tree where each vertex has at most 
two children

• Given large computer files and limited storage, we want to encode 
characters as binary lists to minimize total length

• Prefix coding: no code word is an initial portion of another

• Example: 11001111011
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Huffman coding

• Input: Weights (frequencies or probabilities) 𝑝1, … , 𝑝𝑛
• Output: Prefix-free code (equivalently, a binary tree)

• Idea: Infrequent items should have longer codes; put infrequent items 
deeper by combining them into parent nodes.

• Recursion: replace the two least likely items with probabilities 𝑝, 𝑝′
with a single item of weight 𝑝 + 𝑝′
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Example (2.3.14, W)
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a 5

b 1

c 1

d 7

e 8

f 2

g 3

h 6

a 5 100

b 1 00000

c 1 00001

d 7 01

e 8 11

f 2 0001

g 3 001

h 6 101
The average length is 

5×3+5+5+7×2+⋯

33
=

30

11
< 3



Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution 𝑝𝑖 on 𝑛 items, 
Huffman’s Algorithm produces the prefix-free code with minimum 
expected length
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Huffman coding and entropy

• The entropy of a discrete probability distribution 𝑝𝑖 is that

𝐻 𝑝 = −

𝑖

𝑝𝑖 log2 𝑝𝑖

• 𝐻(𝑝) ≤ average length of Huffman coding ≤ 𝐻(𝑝) + 1

• When each 𝑝𝑖 is a power of ½, average length of Huffman coding is 
𝐻(𝑝)
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