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Eulerian circuit

• A closed walk through a graph using every edge once is called an 
Eulerian circuit

• A graph that has such a walk is called an Eulerian graph

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 
nontrivial component and its vertices all have even degree

• (possibly with multiple edges)

• Proof “⟹” That 𝐺 must be connected is obvious.
Since the path enters a vertex through some edge and 

leaves by another edge, it is clear that all degrees must be even
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Key lemma

• Lemma (1.2.25, W) If every vertex of a graph 𝐺 has degree at least 2, 
then 𝐺 contains a cycle.
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Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex 𝑟 and start with the trivial partial circuit (𝑟)

2. Given a partial circuit (𝑥0, 𝑒1, 𝑥1, … , 𝑥𝑡−1, 𝑒𝑡 , 𝑥𝑡 = 𝑥0) that traverses not 
all edges of 𝐺, remove these edges from 𝐺

3. Let 𝑖 be the least integer for which 𝑥𝑖 is incident with one of the 
remaining edges

4. Form a greedy partial circuit among the remaining edges of the form 
(𝑥𝑖 = 𝑦0, 𝑒1

′ , 𝑦1, … , 𝑦𝑠−1, 𝑒𝑠
′ , 𝑦𝑠 = 𝑥𝑖)

5. Expand the original circuit by setting
(𝑥0, 𝑒1, … , 𝑒𝑖 , 𝑥𝑖 = 𝑦0, 𝑒1

′ , 𝑦1, … , 𝑦𝑠−1, 𝑒𝑠
′ , 𝑦𝑠 = 𝑥𝑖 , 𝑒𝑖+1, … , 𝑒𝑡 , 𝑥𝑡 = 𝑥0)

6. Repeat step 2-5
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Example

1. Start with the trivial circuit (1)

2. Greedy algorithm yields the partial circuit
(1,2,4,3,1)

3. Remove these edges

4. The first vertex incident with remaining edges is 2

5. Greedy algorithms yields (2,5,8,2)

6. Expanding (1,2,5,8,2,4,3,1)

7. Remove these edges
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Example (cont.)

6.   Expanding (1,2,5,8,2,4,3,1)

7.   Remove these edges

8. First vertex incident with remaining edges is 4

9. Greedy algorithm yields 4,6,7,4,9,6,10,4

10. Expanding 1,2,5,8,2,4,6,7,4,9,6,10,4,3,1

11. Remove these edges

12. First vertex incident with remaining edges is 7

13. Greedy algorithm yields 7,9,11,7

14. Expanding 1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1
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Eulerian circuit

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 
nontrivial component and its vertices all have even degree
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Fleury’s Algorithm for Identifying Eulerian 
Circuits
• (Ex3, S1.4.2, H)

• Given: An Eulerian graph G, with all of its edges unmarked

1. Choose a vertex v, and call it the “lead vertex”

2. If all edges of G have been marked, then stop. Otherwise continue 
to step 3

3. Among all edges incident with the lead vertex, choose, if possible, 
one that is not a bridge of the subgraph formed by the unmarked 
edges. If this is not possible, choose any edge incident with the lead. 
Mark this edge and let its other end vertex be the new lead vertex

4. Go to step 2
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Example
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Other properties

• Proposition (1.2.27, W) Every even graph decomposes into cycles

• The necessary and sufficient condition for a directed Eulerian circuit is 
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’
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TONCAS

• TONCAS: The obvious necessary condition is also sufficient

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 
nontrivial component and its vertices all have even degree

• Proposition (1.3.28, W) The nonnegative integers 𝑑1, … , 𝑑𝑛 are the 
vertex degrees of some graph ⟺σ𝑖=1

𝑛 𝑑𝑖 is even

• (Possibly with loops)

• Otherwise (2,0,0) is not realizable
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Hamiltonian path/circuits

• A path 𝑃 is Hamiltonian if 𝑉 𝑃 = 𝑉(𝐺)
• Any graph contains a Hamiltonian path is called traceable

• A cycle 𝐶 is called Hamiltonian if it spans all vertices of 𝐺
• A graph is called Hamiltonian if it contains a Hamiltonian circuit

• In the mid-19th century, Sir William Rowan Hamilton tried to 
popularize the exercise of finding such a closed path in the graph of 
the dodecahedron
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Degree parity is not a criterion

• Hamiltonian graphs
• all even degrees 𝐶10
• all odd degrees 𝐾10
• a mixture 𝐺1

• non-Hamiltonian graphs
• all even 𝐺2
• all odd 𝐾5,7
• mixed 𝑃9
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Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

• Determining whether such paths and cycles exist in graphs is 
the Hamiltonian path problem, which is NP-complete
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P, NP, NPC, NP-hard

• P The general class of questions for which 
some algorithm can provide an answer in 
polynomial time

• NP  The class of questions for which an answer 
can be verified in polynomial time

• NP-Complete
1. c is in NP
2. Every problem in NP is reducible to c in 

polynomial time

• NP-hard
• c is in NP
• Every problem in NP is reducible to c in polynomial 
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Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let 𝐺 be a graph of order 𝑛 ≥ 3. If 𝛿(𝐺) ≥ 𝑛/2, 
then 𝐺 is Hamiltonian

• The bound is tight
(Ex12b, S1.4.3, H) 𝐺 = 𝐾𝑟,𝑟+1 is not Hamiltonian

• The condition is not necessary
• 𝐶𝑛 is Hamiltonian but with small minimum (and even maximum) degree
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Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let 𝐺 be a graph of 
order 𝑛 ≥ 3. If deg 𝑥 + deg(𝑦) ≥ 𝑛 for all pairs of nonadjacent 
vertices 𝑥, 𝑦, then 𝐺 is Hamiltonian
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Independence number & Hamiltonian

• A set of vertices in a graph is called independent if 
they are pairwise nonadjacent

• The independence number of a graph 𝐺, denoted as 
𝛼(𝐺), is the largest size of an independent set

• Example: 𝛼 𝐺1 = 2, 𝛼 𝐺2 = 3

• Theorem (1.24, H) Let 𝐺 be a connected graph of 
order 𝑛 ≥ 3. If 𝜅(𝐺) ≥ 𝛼(𝐺), then 𝐺 is Hamiltonian

• The result is tight: 𝜅(𝐺) ≥ 𝛼(𝐺)−1 is not enough
• 𝐾𝑟,𝑟+1: 𝜅 = r, 𝛼 = 𝑟 + 1

• Peterson graph: 𝜅 = 3, 𝛼 = 4 (Ex4, S1.4.3, H)

18



Pattern-free & Hamiltonian

• 𝐺 is 𝐻-free if 𝐺 doesn’t contain a copy of 𝐻 as induced subgraph

• Theorem (1.25, H) If 𝐺 is 2-connected and 𝐾1,3, 𝑍1 -free, then 𝐺 is 
Hamiltonian

• The condition 2-connectivity is necessary

• (Ex2, S1.4.3, H) If 𝐺 is Hamiltonian, then 𝐺 is 2-connected
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