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Definitions

* A matching is a set of independent edges, in which no pair shares a
vertex

* The vertices incident to the edges of a matching M are M-saturated;
the others are M-unsaturated

e A perfect matching in a graph is a matching that saturates every
vertex

(3.1.2, W) The number of perfect matchings in K, ,, is n!

(3.1.3, W) The number of perfect matchings in K,,, is



=

Maximal/maximum matchings # K /5 K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P, P: N NN
G 40 41

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching



Symmetric difference of matchings

@

* The symmetric difference of M,M" is MAM' = (M — M) U (M' — M)
(3.1.9, W) Every component of the symmetric difference of

two matchings is a path or an even cycle
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Maximum matching and augmenting path

* Given a matching M, an M-alternating path is a path

that alternates between edges in M and edges not in

M I
* An M-alternating path whose endpoints are M- o 5 W Bk

unsaturated is an M-augmenting path

(3.1.10, W; 1.50, H; Berge 1957) A matching o
M in a graph G is a maximum matchingin G & G has  «, || ~
no M-augmenting path i
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Hall’'s theorem (TONCAS)

(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X & |[N(S)| = |S| forall S € X

1(3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G
is @ maximum matching in G < G has no M-augmenting path

* Exercise. Read the other two proofs in Diestel.

(3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching



General regular graph

(2.1.5, D) Every regular graph of positive even degree has a
2-factor
* A k-regular spanning subgraph is called a k-factor
* A perfect matching is a 1-factor



Application to SDR

* Given some family of sets X, a system of distinct representatives for
the sets in X is a ‘representative’ collection of distinct elements from

the sets of X S, = 12,81
o = {8},
Sy = {5, 7).
Sy = 12,4,8)
Sy = {2,4}.

The family X1 = {51,552, 53, 54} does have an SDR., namely {2,8,7,4}. The

family Xo = {S7. S5, S4, .55} does not have an SDR.

(1.52, H) Let 54, S5, ..., Si, be a collection of finite, nonempty
sets. This collection has SDR < for every t € |k], the union of any t of
these sets contains at least t elements



Konig Theorem
Augmenting Path Algorithm



Vertex cover

e Aset U € V is a (vertex) cover of E if every edge in G is incident with
avertexinU

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
* A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?



Konig-Egevary Theorem (Min-max theorem)

(3.1.16, W; 1.53, H; 2.1.1, D; K6nig 1931; Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges

"heorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G
is @ maximum matching in G & G has no M-augmenting path
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Augmenting path algorithm (3'2[;1'5\/\/)

X

* Input: ¢ = B(X,Y), amatching M in G
U = {M-unsaturated vertices in X } y

* |dea: Explore M-alternating paths from U
letting S € X and T € Y be the sets of vertices reached

e Initialization: S = U, T = @ and all vertices in S are unmarked

* Iteration:

* If S has no unmarked vertex, stop and report T U (X — S) as a minimum cover and M
as a maximum matching

* Otherwise, select an unmarked x € S to explore

* Consider each y € N(x) such thatxy ¢ M
* If y is unsaturated, terminate and report an M-augmenting path from U to y
* Otherwise, yw € M for some w
* includeyinT (reached from x) and include w in S (reached from y)
* After exploring all such edges incident to x, mark x and iterate.



Example

Red: A random matching
A A2 A3 A4 A5
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Theoretical guarantee for Augmenting path

gorithm

(3.2.2, W) Repeatedly applying the Augmenting Path
Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size



Weighted Bipartite Matching
Hungarian Algorithm



Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

* Bipartite graph
* W.l.o.g. Assume the graph is K, , withw; ; > 0 forall i,j € [n]

* Optimization:
maxz: ai,jWi,j

L,j .
s.t.a;; +--+a;, < 1lforanyi
aj+ -+ ay; < 1lforanyj

Cli,j (S {0,1}

score(H) = 1.6

* Integer programming
* General IP problems are NP-Complete
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(Weighted) cover

e A (weighted) cover is a choice of labels u4, ..., u, and vy, ..., v, such
thatu; +v; = w;j forall i,

* The cost c(u, v) of a cover (u,v) is 2; u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

e Optimization problem

mlnz U; +ZU]

S. tul+v] Zwl]foranylj
u;, v; = 0foranyi,j



Duality

(IP)

max z ai’j Wi,j

L,j
s.t.a;j; +--+a;, < 1lforanyi
aj+--+a,; <1foranyj
ai,j € {0,1}

>

(Linear programming)

max z al-,j Wi,j

L,j
s.t.a;j; +--+a;, < 1lforanyi
a;+--+a,; <1foranyj
Cli,j >0

(Dual)

i
s.t.u; +v; = w; jforany i, j
u;, vj = 0

minz U; +zvj
ﬁ J

* Weak duality theorem
* For each feasible solution a and (u, v)

l,j

J

i

thus max }; ja; jw; j; S min); u; + % v;
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Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

maxz ai’jWi,j = mlnz U; + z Uj
L,j i J
(3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M)
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.



Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph
of K, , having the edges x;y; such that u; + v; = w; ;
* So if (u, v) is optimal, then M consistes the edges in G, ,,



Hungarian algorithm

* Input: Weighted K, , = B(X,Y)

* Idea: Iteratively adjusting the cover (u, v) until the equality subgraph
Gy, » has a perfect matching

* Initialization: Let (u, v) be a cover, such as u; = maxw; ;, v; = 0
] )

(Dual)
minz u; + Z Vj
i J
s.t.u; + v; = w; j forany i, j
U, vj = 0




Hungarian algorithm (cont.)

* Iteration: Find a maximum matching M in G, ,,
* If M is a perfect matching, stop and report M as a maximum weight matching

* Otherwise, let Q be a vertex cover of size |M| in G, ,,

cletR=XNQ,T=YNAQ
e=min{ui+vj—wi'j:xiEX—R,ijY—T}

* Decrease u; by € forx; € X — R and increase v; by e fory; € T
* Form the new equality subgraph and repeat

U S R

X




Example

Companies
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Services

Defénse M"id Tuﬁ

Music Chef Clean
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Example 2
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Example 3
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Q)

Theoretical guarantee for Hungarian

gorithm

(3.2.11, W) The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover



Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

 So the solution is a minimum vertex cover



Stable Matchings



Stable matching

* A family (<,),ey of linear orderings <, on E(v) is a set of

preferences for G

* A matching M in G is stable if for any edge e € E \ M, there exists an
edge f € M such that e and f have a common vertex v withe <, [

* Unstable: There exists xy € E \ M but xy’,x'y € M with xy' <, xy

X'y <y xy

3.2.16. Example. Given men x, y, z, w, women a, b, ¢, d, and preferences histed
below, the matching {xa, yb, zd, wc} is a stable matching.

Men {x, y,z,w} Women {a, b, c,d}

x:a>b>c>d a:
b:y>w>x>1z

z:c>d>a>b c:
dix>y>z>w

yia>c>b>d

w:c>b>a>d

Z>X>y>Ww

Ww>x>y>72
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Gale-Shapley Proposal Algorithm

* Input: Preference rankings by each of n men and n women

* Idea: Produce a stable matching using proposals by maintaining
information about who has proposed to whom and who has rejected
whom

* Iteration: Each man proposes to the highest woman on his preference
list who has not previously rejected him

* |f each woman receives exactly one proposal, stop and use the resulting
matching

e Otherwise, every woman receiving more than one proposal rejects all of them
except the one that is highest on her preference list

* Every woman receiving a proposal says “maybe” to the most attractive
proposal received



Example

Proposors Acceptors

Round : 1

Proposal pool

© [] [ e
® OO
®
® ®
Preferences
O—-0 O—-0O
Acceptor Table Proposor Table
1 3 2 4 ©) 1 3 4
3 4 1 2 @ 1 2 3
4 2 3 1 ® 3 2 4
[4]|3 2 1 4 @ 3 1 4

32



Example (gif)

Proposors

Acceptors

Round : 1

1

Proposal pool
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Preferences
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Acceptor Table Proposor Table
1 3 2 4 M2 1 3 4
3 4 1 2 @4 1 2 3
4 2 3 1 @ 3 2 4
[4]|3 2 1 4 @lf2 3 1 4
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Theoretical guarantee for the Proposal
Algorithm

(3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm
produces a stable matching

* Who proposes matters (jobs/candidates)

* When the algorithm runs with women proposing, every woman is as
least as happy as when men do the proposing

* And every man is at least as unhappy

3.2.16. Example. Given men x, y, z, w, women a, b, ¢, d, and preferences histed
below, the matching {xa, yb, zd, wc} is a stable matching. &

Men {x, y,z,w} Women {a, b, c,d}
xia>b>c>d a:z>x>y>w
yia>c>b>d b:y>w>x>72
z:ic>d>a>b ciw>x>y>12
w:c>b>a>d dix>y>z>w



Matchings in general graphs



Perfect matchings

* K>, Cop, P>y, have perfect matchings

“orollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching

(1.58, H) If G is a graph of order 2n such that § (G) = n, then
(G has a perfect matching

orem (1.22, H, Dirac) Let G be a graph of ordern > 3. If §(G) = n/2,
then G is Hamiltonian
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Tutte’s Theorem (TONCAS)

* Let g(G) be the number of connected components with odd order

(1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching & q(G —
S)<|S|forallS SV
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Fig. 2.2.1. Tutte’s condition ¢(G — 5) < |S| for ¢ = 3, and the
contracted graph (G from Theorem 2.2.3.
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Petersen’s Theorem

(1.60, H; 2.2.2, D;3.3.8, W)
Every bridgeless, 3-regular graph contains a perfect matching



Find augmenting paths in general graphs

e Different from bipartite graphs

* Example: How to explore from M-unsaturated point u ;<__—:
&
i v da

* Flower/stem/blossom
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Edmonds’ blossom algorithm (3.3.17, W)

Input: A graph G, a matching M in G, an M-unsaturated vertex u

Idea: Explore M-alternating paths from u, recording for each vertex the vertex from
which it was reached, and contracting blossoms when found

* Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u
and the vertices reached along saturated edges

* Reaching an unsaturated vertex yields an augmentation.
Initialization: S = {u}and T =0

Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u

. Otgeygwise, select an unmarked v € S. To explore from v, successively consider each y € N(v) s.t.
y

e Ifyis unhsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting
u, }"pat

 Ify €5, then a blossom has been found. Sus§)end the exploration of v and contract the blossom, replacing its
vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.

* Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
» After exploring all such neighbors of v, mark v and iterate



Illustration
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Example
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Example 2

.

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching
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Example 2 (cont.)

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching
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