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Motivation: Scheduling and coloring

• University examination timetabling
• Two courses linked by an edge if they have the 

same students

• Meeting scheduling
• Two meetings are linked if they have same 

member
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Definitions

• Given a graph 𝐺 and a positive integer 𝑘, a 𝑘-coloring is a function 
𝐾:𝑉(𝐺) ⟶ 1,… , 𝑘 from the vertex set into the set of positive 
integers less than or equal to 𝑘. If we think of the latter set as a set of 
𝑘 “colors,” then 𝐾 is an assignment of one color to each vertex. 

• We say that 𝐾 is a proper 𝑘-coloring of 𝐺 if for every pair 𝑢, 𝑣 of 
adjacent vertices, 𝐾(𝑢) ≠ 𝐾(𝑣) — that is, if adjacent vertices are 
colored differently. If such a coloring exists for a graph 𝐺, we say that 
𝐺 is 𝑘-colorable
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Chromatic number

• Given a graph 𝐺, the chromatic number of 𝐺, denoted by 𝜒(𝐺), is the 
smallest integer 𝑘 such that 𝐺 is 𝑘-colorable

• Examples

• (Ex5, S1.6.1, H) A graph 𝐺 of order at least two is bipartite ⟺ it is 2-
colorable
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Bounds on Chromatic number

• Theorem (1.41, H) For any graph 𝐺 of order 𝑛, 𝜒(𝐺) ≤ 𝑛

• It is tight since 𝜒 𝐾𝑛 = 𝑛

• 𝜒 𝐺 = 𝑛⟺𝐺 = 𝐾𝑛
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Greedy algorithm

• First label the vertices in some order—call them 𝑣1, 𝑣2, … , 𝑣𝑛
• Next, order the available colors (1,2, … , 𝑛) in some way

• Start coloring by assigning color 1 to vertex 𝑣1
• If 𝑣1 and 𝑣2 are adjacent, assign color 2 to vertex 𝑣2; otherwise, use color 1

• To color vertex 𝑣𝑖, use the first available color that has not been used for any 
of 𝑣𝑖’s previously colored neighbors
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Examples: Different orders result in different 
number of colors
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Bound of the greedy algorithm

• Theorem (1.42, H) For any graph G, 𝜒 𝐺 ≤ ∆ 𝐺 + 1

• The equality is obtained for complete graphs and cycles with an odd 
number of vertices
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Brooks’s theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) 
If G is a connected graph that is neither an odd cycle or a complete 
graph, then 𝜒 𝐺 ≤ ∆ 𝐺
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Chromatic number and clique number

• The clique number 𝜔(𝐺) of a graph is defined as the order of the 
largest complete graph that is a subgraph of 𝐺

• Example: 𝜔 𝐺1 = 3,𝜔 𝐺2 = 4

• Theorem (1.44, H) For any graph 𝐺, 𝜒 𝐺 ≥ 𝜔(𝐺)
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Chromatic number and independence 
number
• Theorem (1.45, H; Ex6, S1.6.2, H) For any graph 𝐺 of order 𝑛, 

𝑛

𝛼(𝐺)
≤ 𝜒 𝐺 ≤ 𝑛 + 1 − 𝛼(𝐺)
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The Four Color Problem

• Q: Is it true that the countries on any given map can be colored with 
four or fewer colors in such a way that adjacent countries are colored 
differently? 

• Theorem (Four Color Theorem) Every planar graph is 4-colorable

• Theorem (Five Color Theorem) (1.47, H) Every planar graph is 5-
colorable
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Chromatic Polynomials
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Definition and examples

• It is brought up by George David Birkhoff in 1912 in an attempt to prove 
the four color theorem

• Define 𝑐𝐺(𝑘) to be the number of different colorings of a graph 𝐺 using at 
most 𝑘 colors

• Examples:
• How many different colorings of 𝐾4 using 4 colors?

• 4 × 3 × 2 × 1

• 𝑐𝐾4 4 = 24

• How many different colorings of 𝐾4 using 6 colors?
• 6 × 5 × 4 × 3

• 𝑐𝐾4 6 = 360

• How many different colorings of 𝐾4 using 2 colors?
• 0

• 𝑐𝐾4 2 = 0
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Examples

• If 𝑘 ≥ 𝑛
𝑐𝐾𝑛 𝑘 = 𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)

• If 𝑘 < 𝑛
𝑐𝐾𝑛 𝑘 = 0

• 𝐺 is 𝑘-colorable ⟺ 𝜒 𝐺 ≤ 𝑘 ⟺ 𝑐𝐺 𝑘 > 0

• 𝜒 𝐺 = min 𝑘 ≥ 1: 𝑐𝐺 𝑘 > 0
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Chromatic recurrence

• 𝐺 − 𝑒 and 𝐺/𝑒

• Theorem (1.48, H; 5.3.6, W) Let 𝐺 be a graph and 𝑒 be any edge of 𝐺. 
Then

𝑐𝐺 𝑘 = 𝑐𝐺−𝑒 𝑘 − 𝑐𝐺/𝑒 𝑘
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Use chromatic recurrence to compute 𝑐𝐺 𝑘

• Example: Compute 𝑐𝑃3 𝑘 = 𝑘4 − 3𝑘3 + 3𝑘2 − 𝑘

• Check: 𝑐𝑃3 1 = 0, 𝑐𝑃3 2 = 2
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More examples

• Path 𝑃𝑛−1 has 𝑛 − 1 edges (𝑛 vertices)
𝑐𝑃𝑛−1 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Any tree 𝑇 on 𝑛 vertices
𝑐𝑇 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Cycle 𝐶𝑛
𝑐𝐶𝑛 𝑘 = (𝑘 − 1)𝑛+ −1 𝑛(𝑘 − 1)

• When 𝑛 is odd, 𝑐𝐶𝑛 2 = 0, 𝑐𝐶𝑛 3 > 0

• When 𝑛 is even, 𝑐𝐶𝑛 2 > 0
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Properties of chromatic polynomials

• Theorem (1.49, H; Ex 3, S1.6.4, H) Let 𝐺 be a graph of order 𝑛
• 𝑐𝐺 𝑘 is a polynomial in 𝑘 of degree 𝑛

• The leading coefficient of 𝑐𝐺 𝑘 is 1

• The constant term of 𝑐𝐺 𝑘 is 0
• If 𝐺 has 𝑖 components, then the coefficients of 𝑘0, … , 𝑘𝑖−1 are 0

• 𝐺 is connected ⟺ the coefficient of 𝑘 is nonzero

• The coefficients of 𝑐𝐺 𝑘 alternate in sign

• The coefficient of the 𝑘𝑛−1 term is − 𝐸(𝐺)
• A graph 𝐺 is a tree ⟺𝑐𝐺 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• A graph 𝐺 is complete ⟺𝑐𝐺 𝑘 = 𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)
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Proof Using Coloring
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Example -- Instant Insanity 四色方柱问题
(1.2, L)

• Problem make a stack of these cubes so 
that all four colors appear on each of the 
four sides of the stack

• An edge indicates that the two adjacent 
colors occur on opposite faces of the cube

• Problem necessary to find two subgraphs 
s.t.
• are regular of degree 2

• four edges from each cube

• no edge in common
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An example about sets (1E, L)

• Let 𝐴1, … , 𝐴𝑛 be 𝑛 distinct subsets of the 𝑛-set 𝑁:= {1, … , 𝑛}. Show 
that there is an element 𝑥 ∈ 𝑁 such that the sets 𝐴𝑖 ∖ {𝑥}, 1 ≤ 𝑖 ≤ 𝑛, 
are all distinct

• Proof Consider a graph with vertices 𝐴1, … , 𝐴𝑛.
• An edge of `color’ 𝑥 between 𝐴𝑖 and 𝐴𝑗 iff 𝐴𝑖∆𝐴𝑗 = 𝑥

• Then the problem is equivalent to find 𝑦 s.t. no color 𝑦

• Notice that a cycle in this graph must have even length and each color 
appears even times

• Then we can remove an edge if there is an edge with same color

• Thus the number of colors remain the same and no cycle exists

• By tree property, the number of edges is at most 𝑛 − 1
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