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Motivation: Scheduling and coloring

* University examination timetabling
* Two courses linked by an edge if they have the
same students 1
* Meeting scheduling

* Two meetings are linked if they have same
member




Definitions

* Given a graph G and a positive integer k, a k-coloring is a function
K:V(G) — {1, ..., k} from the vertex set into the set of positive
integers less than or equal to k. If we think of the latter set as a set of
k “colors,” then K is an assignment of one color to each vertex.

* We say that K is a proper k-coloring of G if for every pair u, v of
adjacent vertices, K(u) # K(v) — that s, if adjacent vertices are
colored differently. If such a coloring exists for a graph G, we say that
G is k-colorable



Chromatic number

* Given a graph G, the chromatic number of G, denoted by y(G), is the
smallest integer k such that G is k-colorable

* Examples

2 ifniseven,
X(Cn) _{ 3 if nis odd,

2 ifn > 2,

X(P”)_{ 1 ifn=1,
X(Kn) =n,
X(E‘n) =1,
X (K n) = 2.

e (Ex5, S1.6.1, H) A graph G of order at least two is bipartite & it is 2-
colorable



Bounds on Chromatic number

(1.41, H) For any graph G of ordern, y(G) <n
* It is tight since y(K,,) = n
x(G)=ne 6 =K,



Greedy algorithm

* First label the vertices in some order—call them v, v, ..., v,

* Next, order the available colors (1,2, ..., 1) in some way
e Start coloring by assigning color 1 to vertex v,
* If v; and v, are adjacent, assign color 2 to vertex v,; otherwise, use color 1

* To color vertex v;, use the first available color that has not been used for any
of v;’s previously colored neighbors



Examples: Different orders result in different
number of colors




Bound of the greedy algorithm

(1.42, H) For any graph G, y(G) < A(G) + 1

* The equality is obtained for complete graphs and cycles with an odd
number of vertices



Brooks’s theorem

(1.43, H; 5.1.22, W, 5.2.4, D; Brooks 1941)
If G is a connected graph that is neither an odd cycle or a complete
graph, then y(G) < A(G)
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Chromatic number and clique number

* The cliqgue number w(G) of a graph is defined as the order of the
largest complete graph that is a subgraph of G

e Example: w(G,) = 3, w(G,) = 4

T X

(1.44, H) For any graph G, x(G) = w(G)




Chromatic number and independence
number

(1.45, H; Ex6 S1.6.2, H) For any graph G of order n,

(G)_)((G)<n+1—a((})



The Four Color Problem

* Q: Is it true that the countries on any given map can be colored with
four or fewer colors in such a way that adjacent countries are colored
differently?

* Theorem (Four Color Theorem) Every planar graph is 4-colorable

(Five Color Theorem) (1.47, H) Every planar graph is 5-
colorable

Theorem 1.35. If G is a planar graph, then G contains a vertex of degree at most
five. That is, §(G) < 5.



Chromatic Polynomials



Definition and examples

* |t is brought up by George David Birkhoff in 1912 in an attempt to prove
the four color theorem

* Define ¢ ?k) to be the number of different colorings of a graph G using at
most k colors

* Examples:

* How many different colorings of K, using 4 colors?
e 4 x3X%x2x%1
.k, (4) =24

* How many different colorings of K, using 6 colors?
e 6 X5%X4x%x3
* ck,(6) =360

* How many different colorings of K, using 2 colors?
0
* cx,(2)=0
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Examples

lfk=>n
ck, (k) =k(k—1)--(k—n+1)
elfk<n
CKn(k) =0
* G is k-colorable & y(G) <k = c (k) >0
* ¥(G) = min{k = 1:c;(k) > 0}



Chromatic recurrence G "/

*G—eandG/e ’

a
w z
xé U b&e”Y
X

FIGURE 1.98. Examples of the operations.

(1.48, H; 5.3.6, W) Let G be a graph and e be any edge of G.

cg(k) = cg_e(k) — CG/e (k)

Then



Use chromatic recurrence to compute c. (k)

* Example: Compute cp, (k) = k* — 3k® + 3k* — k
* Check: cp, (1) = 0,¢p,(2) = 2

red blue red Dblue blue red blue red
O 0 - ) C - 0 2

FIGURE 1.102. Two 2-colorings of P;



More examples

* Path P,,_; hasn — 1 edges (n vertices)
Cp,_, (k) = k(k—1)"""
* Any tree T on n vertices
cr(k) =k(k— 1)1
* Cycle C,,
e, (k) = (k = DM (—1)"(k — 1)
* Whennisodd, ¢c (2) =0,¢¢,(3) >0
* Whenniseven, ¢c (2) > 0



Properties of chromatic polynomials

(1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n

* c;(k) is a polynomial in k of degree n
* The leading coefficient of c; (k) is 1

* The constant term of ¢ (k) is 0

* If G has i components, then the coefficients of k°, okt lare0
* (7 is connected & the coefficient of k is nonzero

* The coefficients of c; (k) alternate in sign

 The coefficient of the k™1 term is —|E(G)]
* AgraphGisatree & cq(k) = k(k— 1)1

=3 1.10, 1.12, H) T is connected with n — 1 edges

e AgraphGiscomplete & c;(k) =k(k—1)--(k—n+1)



Proof Using Coloring



Example -- Instant Insanity
(1.2, L)

* Problem make a stack of these cubes so
that all four colors appear on each of the
four sides of the stack

* An edge indicates that the two adjacent
colors occur on opposite faces of the cube

* Problem necessary to find two subgraphs
S.t.
e are regular of degree 2
e four edges from each cube
* no edge in common
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Example -- Instant Insanity PY €877 4 7] &
(1.2, L)

* Problem necessary to find two subgraphs

S.t.
e are regular of degree 2

e four edges from each cube
* no edge in common

|11 1
=0 o¢é+—0

FRONT -> BACK LEFT -> RIGHT
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An example about sets (1E, L)

* Let A4, ..., A, be n distinct subsets of the n-set N: = {1, ..., n}. Show
that there is an element x € N such that thesets 4; \ {x},1 <i < n,
are all distinct

* Proof Consider a graph with vertices 44, ..., A4,,.
* An edge of color’ x between A; and A; iff A;AA; = {x}
* Then the problem is equivalent to find y s.t. no color y

* Notice that a cycle in this graph must have even length and each color
appears even times

 Then we can remove an edge if there is an edge with same color
* Thus the number of colors remain the same and no cycle exists
* By tree property, the number of edges isat mostn — 1
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