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Unsupervised Learning



Machine learning categories

* No labeled data

e Supervised learning
* Use labeled data to predict on unseen points

* Semi-supervised learning
* Use labeled data and unlabeled data to predict on unlabeled/unseen points

* Reinforcement learning
* Sequential prediction and receiving feedbacks



Course outline

e Basics

e Supervised learning
Linear Regression
Logistic regression

SVM and Kernel methods
Decision Tree

* Deep learning
* Neural Networks
* Backpropagation
e Convolutional Neural Network
e Recurrent Neural Network

* Unsupervised learning
* K-means, PCA, EM, GMM

* Reinforcement learning
* Multi-armed bandits
* MIDP
* Bellman equations
* Q-learning

 Learning theory

* PAC, VC-dimension, bias-variance
decomposition



Unsupervised learning example




How Unsupervised Machine Learning Works

STEPI STEP 2

Provide the machine learning algorithm uncategorized, Observe and learn from the
unlabeled input data to see what patterns it finds patterns the machine identifies
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TYPES OF PROBLEMS TO WHICH IT’S SUITED

ANOMALY DETECTION

Identifying abnormalities in data

CLUSTERING

Identifying similarities in groups
For Example: Are there patterns in
the data to indicate certain patients
will respond better to this treatment

than others?

For Example: |s a hacker intruding in
our network?




Supervised Learning
Input data is labelled
Uses training dataset

Used for prediction

Classification and regression

Unsupervised Learning
Input data is unlabeled
Uses just input dataset

Used for analysis

Clustering, density estimation and

dimensionality reduction




Unlabeled data set
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Clustering



Clustering

* Unsupervised learning
* Requires data, but no labels

* Detect patterns e.g. in
* Group emails or search results
* Customer shopping patterns
* Regions of images

e Useful when don’t know what you’re looking for

e But: can get gibberish



Clustering (cont.)

e Goal: Automatically segment data into groups of similar points
e Question: When and why would we want to do this?

* Useful for:
e Automatically organizing data
* Understanding hidden structure in some data
* Representing high-dimensional data in a low-dimensional space

 Examples: Cluster
e customers according to purchase histories
genes according to expression profile
search results according to topic
Facebook users according to interests
* a museum catalog according to image similarity



Intultion

* Basic idea: group together similar instances
* Example: 2D point patterns
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Intuition (cont.)

* Basic idea: group together similar instances
* Example: 2D point patterns
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Intuition (cont.)

* Basic idea: group together similar instances
* Example: 2D point patterns
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* What could “similar” mean?

* — One option: small Euclidean distance (squared)

e — Clustering results are crucially dependent on the measure of
similarity (or distance) between “points” to be clustered



Set-up
* Given the data: D = {xq,....xn}

* Each data point x is d-dimensional:
X; = (Xi1, ) Xiq)
e Define a distance function between data:
d(Xn, Xm).

* Goal: segment the data into K groups



Clustering algorithms

* Partition algorithms (flat clustering) W T
* K-means 5 ¥ 5 %
* Mixture of Gaussian TN 8 &) o
* Spectral Clustering a 4 é" ¥

* Hierarchical algorithms l
 Bottom up-agglomerative l 1";1 —

* Top down-divisive a)
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Example

* Image segmentation

e Goal: Break up the image into meaningful or perceptually similar
regions
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Example 2

* Gene expression data clustering
* Activity level of genes across time
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K-Means



K-Means

* An iterative clustering algorithm

* |nitialize: Pick K random points as
cluster centers

e Alternate:

* Assign data points to closest cluster
center

* Change the cluster center to the
average of its assigned points

e Stop: when no points’ assignments
change

21



K-Means (cont.)

* An iterative clustering algorithm

* |nitialize: Pick K random points as
cluster centers

e Alternate:

* Assign data points to closest cluster
center

* Change the cluster center to the
average of its assigned points

e Stop: when no points’ assignments
change

22



K-Means (cont.)

* An iterative clustering algorithm

* |nitialize: Pick K random points as
cluster centers

e Alternate:

* Assign data points to closest cluster
center

* Change the cluster center to the
average of its assigned points

e Stop: when no points’ assignments
change
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Example

* Pick K random points as
cluster centers (means)

e Shown here for K = 2
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Example (cont.)

* |terative step 1

* Assign data points to closest
cluster center
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Example (cont.)

* |terative step 2

* Change the cluster center to
the average of the assigned
points

o |
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Example (cont.)

* Repeat until convergence

e Convergence means that the
differences of the center
positions in two continuous

loops is smaller than a
threshold

o |

27



Example (cont.)

* Repeat until convergence

e Convergence means that the
differences of the center
positions in two continuous

loops is smaller than a
threshold

o |
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Example (cont.)

* Repeat until convergence

e Convergence means that the
differences of the center
positions in two continuous

loops is smaller than a
threshold
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Example 2
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Example 2 (cont.)

. " ® no (]
L ] ﬁ.. '..... L ] . . . .
oo L ]
.
.
™
b ®
..l..l ® o . ]
Vc...o L ¢ . B
L] [ ]
AT Y e ol
% oo o “~ » o %o 0
. ﬁo oo }0 ]
® »n .” L] L] ‘.‘* ..”.‘“.
[ ] ‘. '.. ] .l.. ﬁ. l.ll.
o’on o, ("
s . . L] ] ® L ]
. [ ] Ol ™
T T T T T T
0t 80 90 o 20 0o

1.0

0.8

0.6

04

0.2

0.0

31



Example 2 (cont.)
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Example 2 (cont.)
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Example 2 (cont.)
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Example 2 (cont.)
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Remained Questions in K-Means



Remained questions in K-means

* Although the workflow of K-means is straight forward, there are some
important questions that need to be discussed

* How to choose the hyper-parameter K?
* How to initialize?



How to choose K?

* K is the most important hyper-parameter in K-means which strongly

affects its performance. In some situation, it’s not an easy task to find

the proper K

 The solution includes:
* The elbow method
 The silhouette method

38



The elbow method

* Calculate the Within-Cluster-Sum of Squared Errors (WSS) for
different values of K, and choose the K for which WSS stops
dropping significantly. In the plot of WSS-versus-k, this is visible as an
elbow

80000

* Example: K = 3 60000 -

W55

40000 1

20000 1
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The silhouette method

* The problem of the elbow method is that in many situations the most
suitable K cannot be unambiguously identified. So we need the
silhouette method

* The silhouette value measures how similar a point is to its own cluster
(cohesion) compared to other clusters (separation). The range of the
silhouette value is between +1 and -1. A high value is desirable and
indicates that the point is placed in the correct cluster



The silhouette method (cont.)

* For each data pointi € Cy, let a(i) be its mean distance to all other
points in the same cluster

1 -
a) = ey ), A

JECK,1#]

* And let b(i) be the smallest mean distance to other clusters

£k

~ .1 .
b(i) = mlnmz d(i,j)

JEC]



The silhouette method (cont.)

* The silhouette value of i € C(j, is defined as:
( b(i) — a(i)

s(i) = { max{a(i), b()}’
LO» Lf |Ck| =1

if |G| > 1

* The silhouette score is the average of s(i)
among all data

 Choose the k with the maximal silhouette
score

Silhouette Score
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How to initialize center positions?

* The positions of the centers in the stage of initialization are also very
important in K-means algorithms. In some situations it can produce
totally different clustering results

* Example:
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How to initialize center positions? (cont.)

* The positions of the centers in the stage of initialization are also very
important in K-means algorithms. In some situations it can produce
totally different clustering results

* Example:



A possible solution

* Pick one point at random, then K — 1
other points, each as far away as possible
from the previous points

* OK, as long as there are no outliers (points
that are far from any reasonable cluster)




K-means++

1.

3.

4.

The first centroid is chosen uniformly at random from the data
points that we want to cluster. This is similar to what we do in K-
Means, but instead of randomly picking all the centroids, we just
pick one centroid here

Next, we compute the distance d,. is the nearest distance from data
point x to the centroids that have already been chosen

Then, choose the new cluster center from the data points with the
probability of x being proportional to d?

We then repeat steps 2 and 3 until K clusters have been chosen



Example

e Suppose we have the following points and we want to make 3 clusters
here:
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Example (cont.)

* First step is to randomly pick a data point as a cluster centroid:
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Example (cont.)

* Calculate the distance d, of each data point with this centroid:

0-
NN
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Example (cont.)

* The next centroid will be sampled with the probability proportional to

d;
e Say the sampled is the red one
@
® 0
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Example (cont.)

* To select the last centroid, compute d,., which is the distance to its
closest centroid

26
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Example (cont.)

* Sample the one with the probability proportional to d2
 Say, the blue one

52



Properties of K-Means



How to measure the performance

e K-means can be evaluated by the sum of
distance from points to corresponding \
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centers, or the WSS
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* The loss will approach zero when increase K



Properties of the K-means algorithm

* Guaranteed to converge in a finite number of iterations

* Running time per iteration:
1. Assign data points to closest cluster center
O(KN) time
2. Change the cluster center to the average of its assigned points
O(N)



Distance

* Distance is of crucial importance in K-means. So what kind of
properties should the distance measure have?

* Symmetric
* D(A,B) = D(B,A)

* Positivity, and self-similarity
* D(A,B) = 0,and D(4,B) = 0iffA =B

* Triangle inequality
* D(A,B) + D(B,C) =D(4,0)

56



Convergence of K-means

Objective
minmin £, Ve lx — pl?

1. Fixu, Optimize C:

Step 1 of kmeans

mmz Z lx — p;|? = mmZ:chrt “xll

i=1 XEC;
2. Fix C, optimize u:

min B, Sec x — il

— Take partial derivative of i; and set to zero, we have

Not guaranteed to
converge to optimal

Hi = |C | Step 2 of kmeans

XEC;

Kmeans takes an alternating optimization approach, each step is guaranteed to
decrease the objective — thus guaranteed to converge
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Application: Segmentation

* Goal of segmentation is to partition an image into regions each of

which has reasonably homogenous visual appearance

* Cluster the colors A

4% 8% 17%
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Agglomerative Clustering



Agglomerative clustering

* Agglomerative clustering:
* First merge very similar instances
* Incrementally build larger clusters out of smaller clusters

* Algorithm:
* Maintain a set of clusters .
* Initially, each instance in its own cluster
* Repeat:

e Pick the two closest clusters °
* Merge them into a new cluster o

* Stop when there’s only one cluster left .



Agglomerative clustering

* Produces not one clustering, but a family of clusterings represented
by a dendrogram
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Example

* Different heights give different clustering

Cluster Dendrogram

Rl



Closeness

* How should we define “closest” for clusters
with multiple elements?

* Many options:
 Closest pair (single-link clustering)
* Farthest pair (complete-link clustering)
* Average of all pairs

* Different choices create different clustering
behaviors



Closeness example

Closest pair
(single-link clustering)

Farthest pair
(complete-link clustering)

64



Closeness example 2

Average

Farthest

Nearest




The BFR Algorithm

Extension of K-Means to large data



Gaussian or
"normal”
distribution

fo(x)

BFR algorithm

° BFR [Brad|ey_Fayyad_Reina] iS a 00135 :.135915.34135.3413i.1359: 00135

-50 -23 -g 0 & éc 33

variant of k-means designed to :
handle very large (disk-resident) data sets

.0214

* Assumes that clusters are normally distributed around a
centroid in a Euclidean space

e Standard deviations in different dimensions may vary

* Clusters are axis-aligned ellipses

* Goal is to find cluster centroids; point assignment can b

done in a second pass through the data.
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BFR overview

* Efficient way to summarize clusters:
 Want memory required O(clusters) and not O(data)

* |dea: Rather than keeping points, BFR keeps summary statistics of
groups of points
* 3 sets: Cluster summaries, Outliers, Points to be clustered

* Overview of the algorithm:
1. Initialize K clusters/centroids

2. Load in a bag points from disk

3. Assign new points to one of the K original clusters, if they are within some
distance threshold of the cluster

4. Cluster the remaining points, and create new clusters
5. Try to merge new clusters from step 4 with any of the existing clusters
6. Repeat steps 2-5 until all points are examined



BFR algorithm

* Points are read from disk one main-memory-full at a time

* Most points from previous memory loads are summarized by simple
statistics

* Step 1) From the initial load we select the initial k centroids by some
sensible approach, which can be
* Take k random points
* Take a small random sample and cluster optimally

* Take a sample; pick a random point, and then k=1 more points, each as far
from the previously selected points as possible



Three classes of points

3 sets of points which we keep track of:

 Discard set (DS):
* Points close enough to a centroid to be summarized

e Compression set (CS):

* Groups of points that are close together but not close to any existing centroid
* These points are summarized, but not assigned to a cluster

e Retained set (RS):
* |solated points waiting to be assigned to a compression set

70



BFR: “Galaxies” picture

o Points in

° < the RS

Compressed sets.
@ ‘\Their points are in \*®

the CS.

A cluster. Its points

. The centroid
are in the DS.

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points -



Summarizing sets of points

For each cluster, the discard set (DS) is summarized by:

 The number of points, N

* The vector SUM, whose it" component is the sum of the coordinates
of the points in the /™" dimension

* The vector SUMSQ: it" component = sum of squares of coordinates in

ith dimension
A cluster. @

Allits points are in the DS. | € centroid

72



Summarizing points: Comments

* 2d + 1 values represent any size cluster
 d = number of dimensions

* Average in each dimension (the centroid) can be calculated as
SUM./ N
e SUM. = it component of SUM

* VVariance of a cluster’s discard set in dimension i is:
(SUMSQ; / N) = (SUM. / N)?
* And standard deviation is the square root of that

* Next step: Actual clustering

Note: Dropping the “axis-aligned” clusters assumption would require
storing full covariance matrix to summarize the cluster. So, instead of
SUMSAQ being a d-dim vector, it would be a d x d matrix, which is too big!

73



The “Memory-Load” of points

Steps 2-5) Processing “Memory-Load” of points:

 Step 3) Find those points that are “sufficiently close” to a cluster
centroid and add those points to that cluster and the DS

* These points are so close to the centroid that they can be summarized and
then discarded

* Step 4) Use any in-memory clustering algorithm to cluster the
remaining points and the old RS

 Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points
74



The “Memory-Load” of points

Steps 2-5) Processing “Memory-Load” of points:

e Step 5) Adjust statistics of the clusters to account for the new
points
e Add /s, S, S

* Consider merging compressed sets in the

* |f this is the last round, merge all compressed sets in the CS and all
points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster
Retained set (RS): Isolated points 75



BFR: “Galaxies” picture

o Points in

° < the RS

Compressed sets.
@ ‘\Their points are in \*®

the CS.

A cluster. Its points

. The centroid
are in the DS.

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarized, but not assigned to a cluster
Retained set (RS): Isolated points 76



A few details ...

* Q1) How do we decide if a point is “close enough” to a cluster that we
will add the point to that cluster?

* 02) How do we decide whether two compressed sets (CS) deserve to
be combined into one?



How close is close enough?

* Q1) We need a way to decide whether to put a new point into a
cluster (and discard)

* BFR suggests two ways:
* The is less than a threshold
* High likelihood of the point belonging to currently nearest centroid

Gaussian or
"normal”
distribution

fo(x)

0214 1 | |
.0q135 1.1359 | .3413 | .3413 1.1359, .1?9'135
-3lcr -2|0 -IIJ 0 IIJ' 2|cr SIG
X
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Mahalanobis distance

* Normalized Euclidean distance from centroid

* For point (x,, ..., x;) and centroid (c,, ..., c,)
1. Normalize in each dimension: y; = (x. - ¢;) / o;
2. Take sum of the squares of the y;
3. Take the square root

d(x,c) =

Xi — Cj
Oj

o; ... standard deviation of points in
the cluster in the it dimension

Vl

d 2
=1
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Mahalanobis distance (cont.)

* If clusters are normally distributed in d dimensions, then after
transformation, one standard deviation = Vd
« i.e., 68% of the points of the cluster will have a Mahalanobis distance < vd

* Accept a point for a cluster if its M.D. is < some threshold,
e.g. 2 standard deviations

Gaussian or
"normal”
distribution

-3lcr -2|0 -a 0 clr ZICF SIO'
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Picture: Equal M.D. regions

* Euclidean vs. Mahalanobis distance

Contours of equj,distz}nt oints from the origin

Uniformly distributed points, Normally distributed points, Normally distributed points,
Euclidean distance Euclidean distance Mahalanobis distance



Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

 Compute the variance of the combined subcluster
, , and allow us to make that calculation quickly @

e Combine if the combined variance is below

some threshold @

* Many alternatives: Treat dimensions differently, consider density



The CURE Algorithm

Extension of k-means to clusters of arbitrary shapes



The CURE algorithm

* Problem with BFR/k-means:

e Assumes clusters are normally
distributed in each dimension = ‘

 And axes are fixed — ellipses at
an angle are not OK

* CURE (Clustering Using REpresentatives):
e Assumes a Euclidean distance
* Allows clusters to assume any shape
* Uses a collection of representative points to represent ,”,, |

C USte I'S N R Ba e L
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Example: Stanford salaries

age ——
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Starting CURE

2 Pass algorithm. Pass 1.

 0) Pick a random sample of points that fit in main memory

* 1) Initial clusters:
* Cluster these points hierarchically — group nearest points/clusters

* 2) Pick representative points:
* For each cluster, pick a sample of points, as dispersed as possible

* From the sample, pick representatives by moving them (say) 20% toward the
centroid of the cluster
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Example: Initial clusters




Example: Pick dispersed points

Pick (say) 4
remote points
for each
cluster.
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Example: Pick dispersed points

Move points
(say) 20%
toward the
centroid.
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Finishing CURE
Pass 2. O O

* Now, rescan the whole dataset and O )
visit each point p in the data set

* Place it in the “closest cluster”

* Normal definition of “closest”:
Find the closest representative to p and assign it to representative’s cluster



Why the 20% move inward?

Intuition:
* A large, dispersed cluster will have large moves from its boundary
* A small, dense cluster will have little move
* Favors a small, dense cluster that is near a larger dispersed cluster



