
Lecture 11: Dimensionality 
Reduction

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/VE445/index.html


Outline

• Motivation

• PCA

• SVD

• Autoencoder

• Feature selection

2



Motivation

• Suppose we want to predict the health condition of some students, 
and the features for the students includes:
• Weight in kilogram

• Height in inch

• Height in cm

• Hours of sports per day

• Favorite color

• Scores in math

• Some features are irrelevant, e.g. favorite color and scores in math

• Some features are redundant, e.g. height in inch and cm
3



High dimensional data

• In the era of big data, the dimensionality increases dramatically
• E.g. there are many features for the electroencephalogram data

• It becomes very important to reduce the dimensionality, or select the 
most important features, or find the most representative features 4



Example – MNIST dataset

5



Principal Components Analysis
PCA

7



Principal components analysis (PCA)

• Principal components analysis (PCA) is a technique that can be used 
to simplify a dataset

• It is usually a linear transformation that chooses a new coordinate 
system for the data set such that
• greatest variance by any projection of the dataset comes to lie on the first axis 

(then called the first principal component)

• the second greatest variance on the second axis, and so on

• PCA can be used for reducing dimensionality by eliminating the later 
principal components

8



Example

• Consider the following 3D points

• If each component is stored in a byte, we need 18 = 3 × 6 bytes

9

1

2

3

2

4

6

4

8

12

3

6

9

5

10

15

6

12

18



Example (cont.)

• Looking closer, we can see that all the points are related geometrically
• they are all in the same direction, scaled by a factor:

10

1

2

3

2

4

6

4

8

12

3

6

9

5

10

15

6

12

18

1

2

3

= 1 ×

1

2

3

= 4 ×

1

2

3

= 5 ×

1

2

3

= 2 ×

1

2

3

= 3 ×

1

2

3

= 6 ×



Example (cont.)

• They can be stored using only 9 bytes (50% savings!): 
• Store one direction (3 bytes) + the multiplying constants (6 bytes)

11

1

2

3

2

4

6

4

8

12

3

6

9

5

10

15

6

12

18

1

2

3

= 1 ×

1

2

3

= 4 ×

1

2

3

= 5 ×

1

2

3

= 2 ×

1

2

3

= 3 ×

1

2

3

= 6 ×



Geometrical interpretation

• View points in 3D space

• In this example, all the points happen to lie on one line
• a 1D subspace of the original 3D space

12



Geometrical interpretation

• Consider a new coordinate system where the first axis is along the 
direction of the line

• In the new coordinate system, every point has only one non-zero 
coordinate
• we only need to store the direction of the line (a 3 bytes point) and the 

nonzero coordinates for each point (6 bytes) 13



Back to PCA

• Given a set of points, how can we know if they can be compressed 
similarly to the previous example?
• We can look into the correlation between the points by the tool of PCA

14



From example to theory

• In previous example, PCA rebuilds the coordination system for the 
data by selecting 
• the direction with largest variance as the first new base direction

• the direction with the second largest variance as the second new base 
direction

• and so on

• Then how can we find the direction with largest variance?
• By the eigenvector for the covariance matrix of the data

15



Review – Variance

• Variance is the expectation of the squared deviation of a random 
variable from its mean
• Informally, it measures how far a set of (random) numbers are spread out 

from their average value

16



Review – Covariance 

• Covariance is a measure of the joint variability of two random 
variables
• If the greater values of one variable mainly correspond with the greater 

values of the other variable, and the same holds for the lesser values, (i.e., 
the variables tend to show similar behavior), the covariance is positive
• E.g. as the number of hours studied increases, the marks in that subject increase

• In the opposite case, when the greater values of one variable mainly 
correspond to the lesser values of the other, (i.e., the variables tend to show 
opposite behavior), the covariance is negative

• The sign of the covariance therefore shows the tendency in the linear
relationship between the variables

• The magnitude of the covariance is not easy to interpret because it is not 
normalized and hence depends on the magnitudes of the variables. The 
normalized version of the covariance, the correlation coefficient, however, 
shows by its magnitude the strength of the linear relation 17



Review – Covariance (cont.)

• Sample covariance

18

covariance 𝑋, 𝑌 =
σ𝑖=1
𝑁 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

𝑁 − 1



PCA

• PCA tries to identify the subspace in which the data approximately 
lies in

• PCA uses an orthogonal transformation on the coordinate system to 
convert a set of observations of possibly correlated variables into a 
set of values of linearly uncorrelated variables called principal 
components
• The number of principal components is less than or equal to min 𝑑,𝑁

19



Covariance matrix

• Suppose there are 3 dimensions, denoted as 𝑋, 𝑌, 𝑍. The covariance 
matrix is

• Note the diagonal is the covariance of each dimension with respect to 
itself, which is just the variance of each random variable

• Also 𝐶𝑂𝑉(𝑋, 𝑌) = 𝐶𝑂𝑉(𝑌, 𝑋)
• hence matrix is symmetric about the diagonal

• 𝑑-dimensional data will result in a 𝑑 × 𝑑 covariance matrix
20

𝐶𝑂𝑉 =

𝐶𝑂𝑉(𝑋, 𝑋) 𝐶𝑂𝑉(𝑋, 𝑌) 𝐶𝑂𝑉(𝑋, 𝑍)
𝐶𝑂𝑉(𝑌, 𝑋) 𝐶𝑂𝑉(𝑌, 𝑌) 𝐶𝑂𝑉(𝑌, 𝑍)
𝐶𝑂𝑉(𝑍, 𝑋) 𝐶𝑂𝑉(𝑍, 𝑌) 𝐶𝑂𝑉(𝑍, 𝑍)



Covariance in the covariance matrix

• Diagonal, or the variance, measures the deviation from the mean for 
data points in one dimension

• Covariance measures how one dimension random variable varies w.r.t.
another, or if there is some linear relationship among them

21



Data processing

• Given the dataset 𝐷 = 𝑥(𝑖)
𝑖=1

𝑁

• Let ҧ𝑥 =
1

𝑁
σ𝑖=1
𝑁 𝑥(𝑖)

𝑋 =

𝑥(1) − ҧ𝑥
⊤

𝑥(2) − ҧ𝑥
⊤

⋮

𝑥(𝑁) − ҧ𝑥
⊤

∈ ℝ𝑁×𝑑

• Move the center of the data set to 0

22



Data processing (cont.)

• 𝑄 = 𝑋⊤𝑋 = 𝑥(1) − ҧ𝑥 𝑥(2) − ҧ𝑥 ⋯ 𝑥(𝑁) − ҧ𝑥

𝑥(1) − ҧ𝑥
⊤

𝑥(2) − ҧ𝑥
⊤

⋮

𝑥(𝑁) − ҧ𝑥
⊤

• 𝑄 is square with 𝑑 dimension

• 𝑄 is symmetric

• 𝑄 is the covariance matrix [aka scatter matrix]

• 𝑄 can be very large (in vision, 𝑑 is often the number of pixels in an image!)
• For a 256 × 256 image, 𝑑 = 65536!!

• Don’t want to explicitly compute 𝑄

23



PCA

• By finding the eigenvalues and eigenvectors of the covariance matrix, 
we find that the eigenvectors with the largest eigenvalues correspond 
to the dimensions that have the strongest variation in the dataset

• This is the principal component

• Application:
• face recognition, image compression

• finding patterns in data of high dimension

24



PCA theorem

• Theorem: 

• Each 𝑥(𝑖) can be written as: 𝑥(𝑖) = ҧ𝑥 + σ𝑗=1
𝑑 𝑔𝑖𝑗𝑒𝑗

where 𝑒𝑗 are the 𝑑 eigenvectors of 𝑄 with non-zero eigenvalues

• Notes:
1. The eigenvectors 𝑒1𝑒2⋯𝑒𝑑 span an eigenspace
2. 𝑒1𝑒2⋯𝑒𝑑 are 𝑑 × 1 orthonormal vectors (directions in 𝑑-Dimensional 

space)
3. The scalars 𝑔𝑖𝑗 are the coordinates of 𝑥(𝑖) in the space

𝑔𝑖𝑗 = 𝑥(𝑖) − ҧ𝑥, 𝑒𝑗

25



Using PCA to compress data

• Expressing 𝑥 in terms of 𝑒1𝑒2⋯𝑒𝑑 doesn’t change the size of the data

• However, if the points are highly correlated, many of the new 
coordinates of 𝑥 will become zero or close to zero

• Sort the eigenvectors 𝑒𝑖 according to their eigenvalue
𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑

• Assume 𝜆𝑗 ≈ 0 if 𝑗 > 𝑘. Then

𝑥(𝑖) ≈ ҧ𝑥 +෍

𝑗=1

𝑘

𝑔𝑖𝑗𝑒𝑗

26



Example – STEP 1

27

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

mean

this becomes the
new origin of the
data from now on



Example – STEP 2

• Calculate the covariance matrix

Cov =
0.616555556 0.615444444
0.615444444 0.716555556

• since cov(𝑋, 𝑌) is positive, it is expect that 𝑥 and 𝑦 increase together

28



Example – STEP 3

• Calculate the eigenvectors and eigenvalues of the covariance matrix

• eigenvalues =
0.0490833989
1.28402771

• eigenvectors =
−0.735178656 −0.677873399
0.677873399 −0.735178656

29



Example – STEP 3 (cont.)

• Eigenvectors are plotted as diagonal 
dotted lines on the plot

• Note they are perpendicular to each other

• Note one of the eigenvectors goes through 
the middle of the points, like drawing a 
line of best fit

• The second eigenvector gives us the other, 
less important, pattern in the data, that all 
the points follow the main line, but are off 
to the side of the main line by some 
amount

30



Example – STEP 4

• Feature vector = 𝑒1 𝑒2 ⋯ 𝑒𝑑

• We can either form a feature vector with both of the eigenvectors:
−0.735178656 −0.677873399
0.677873399 −0.735178656

• or, we can choose to delete the smaller, less significant component:
−0.677873399
−0.735178656

31



Example – STEP 5

• Deriving new data coordinates

• RowZeroMeanData is the mean-adjusted data, i.e. the data items are 
in each row, with each column representing a separate dimension

• RowFeatureVector is the matrix with the eigenvectors in the columns 
transposed so that the eigenvectors are now in the rows, with the 
most significant eigenvector at the top

• Note: We rotate the coordinate axes so high-variance axis comes first

32

FinalData = RowZeroMeanData x RowFeatureVector

FinalData𝑁×𝑑 = 
𝑔 𝑥(1)

⊤

⋮

𝑔 𝑥(𝑁)
⊤

𝑁×𝑑

𝑒1
⊤

⋮
𝑒𝑑
⊤

𝑑×𝑑



Example – STEP 5 (cont.)

• The plot of the PCA results using both the two eigenvector

33



Example – Final approximation

34

2D point cloud
Approximation using one 
eigenvector basis



Example – Final approximation

FinalData𝑁×𝑑 =
𝑔 𝑥(1)

⊤

⋮

𝑔 𝑥(𝑁)
⊤

𝑁×𝑑

𝑒1
⊤

⋮
𝑒𝑑
⊤

𝑑×𝑑

≈

𝑔 𝑥(1)
1

… 𝑔 𝑥(1)
𝑘

… 𝑔 𝑥(1)
𝑑

⋮

𝑔 𝑥(𝑁)
1

… 𝑔 𝑥(𝑁)
𝑘

… 𝑔 𝑥(𝑁)
𝑑 𝑁×𝑑

𝑒1
⊤

⋮
𝑒𝑘
⊤

⋮
𝑒𝑑
⊤

𝑑×𝑑

35

Zero!!



Revisit the eigenvectors in PCA

• It is critical to notice that the direction of maximum variance in the 
input space happens to be same as the principal eigenvector of the 
covariance matrix

• Why?

36



Revisit the eigenvectors in PCA (cont.)

• The projection of each point 𝑥 to a direction 𝑢 (with 𝑢 = 1) is
𝑥⊤𝑢

• The variance of the projection is

෍

𝑖=1

𝑁

𝑥(𝑖) − ҧ𝑥
⊤
𝑢

2

= 𝑢⊤𝑄𝑢

which is maximized when 𝑢 is the eigenvector with the largest eigenvalue

• 𝑄 = σ𝑗=1
𝑑 𝜆𝑗𝑒𝑗𝑒𝑗

⊤ = 𝐸Λ𝐸⊤ with Λ =
𝜆1 ⋯
⋮ ⋱ ⋮

⋯ 𝜆𝑑

37



Review – Total/Explained variance

• 𝑅2 =
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

• Total variance:

• Explained variance:

• Or, it can be computed as:

where

38



Total variance and PCA

• Note that 𝐼 = 𝑒1𝑒1
⊤ +⋯+ 𝑒𝑑𝑒𝑑

⊤

• Total variance is 

• σ𝑖=1
𝑁 𝑥(𝑖) − ҧ𝑥

⊤
𝑥(𝑖) − ҧ𝑥

• = σ𝑖=1
𝑁 𝑥(𝑖) − ҧ𝑥

⊤
𝑒1𝑒1

⊤ +⋯+ 𝑒𝑑𝑒𝑑
⊤ 𝑥(𝑖) − ҧ𝑥

• = σ𝑗=1
𝑑 𝑒𝑗

⊤𝑄 𝑒𝑗 = 𝜆1 +⋯+ 𝜆𝑑

39



Total variance and PCA (cont.)
• Approximation of each 𝑥(𝑖) − ҧ𝑥 ≈ σ𝑗=1

𝑘 𝑔𝑖𝑗𝑒𝑗 =: ෤𝑥
(𝑖) − ҧ𝑥

• Then the explained variance is

• σ𝑖=1
𝑁 ෤𝑥(𝑖) − ҧ𝑥

⊤
෤𝑥(𝑖) − ҧ𝑥

• = σ𝑖=1
𝑁 ෤𝑥(𝑖) − ҧ𝑥

⊤
𝑒1𝑒1

⊤ +⋯+ 𝑒𝑑𝑒𝑑
⊤ ෤𝑥(𝑖) − ҧ𝑥

• = σ𝑗=1
𝑑 𝑒𝑗

⊤ ෨𝑄𝑒𝑗 = 𝜆1 +⋯+ 𝜆𝑘

• where ෨𝑄 = σ𝑖=1
𝑁 ෤𝑥(𝑖) − ҧ𝑥 ෤𝑥(𝑖) − ҧ𝑥

⊤
= 𝐸 ෨Λ𝐸⊤ with

• ෨Λ =

𝜆1
⋱

𝜆𝑘
0

0 40



Eigenvalues and Eigenvectors

41



Properties

• Scalar 𝜆 and vector 𝑣 are eigenvalues and eigenvectors of 𝐴
𝐴𝑣 = 𝜆𝑣

• Visually, 𝐴𝑣 lies along the same line as the eigenvector of 𝑣

42



Example

43



How to solve eigenvalues and eigenvectors?

• If 𝐴 − 𝜆𝐼 𝑥 = 0 has a nonzero solution for 𝜆, then 𝐴 − 𝜆𝐼 is not 
invertible. Then the determinant of 𝐴 − 𝜆𝐼 must be zero

• 𝜆 is an eigenvalue of 𝐴 if and only if 𝐴 − 𝜆𝐼 is singular:
det 𝐴 − 𝜆𝐼 = 0

44



Example

• Find the eigenvalues and eigenvectors of 𝐴 =
1 2
2 4

• Need to solve det 𝐴 − 𝜆𝐼 = 0

• 𝐴 − 𝜆𝐼 =
1 − 𝜆 2
2 4 − 𝜆

• det 𝐴 − 𝜆𝐼 = 1 − 𝜆 4 − 𝜆 − 2 × 2 = 𝜆2 − 5𝜆

• det 𝐴 − 𝜆𝐼 = 0 would imply 𝜆 = 0 and 𝜆 = 5

45



Example (cont.)

• Then solve 𝐴 − 𝜆𝐼 𝑥 = 0 to get the eigenvectors for each of the 
eigenvalues

• 𝐴𝑥 = 0 has a nonzero solution of 
2
−1

, or 
2/ 5

−1/ 5

• 𝐴 − 5𝐼 𝑥 = 0 has a nonzero solution of 
1
2

, or 
1/ 5

2/ 5

• Note: Eigenvectors for different eigenvalues are orthogonal

46



Singular Value Decomposition
SVD

47



SVD

• Singular Value Decomposition (SVD) is a factorization method of 
matrix. It states that any 𝑚 × 𝑛 matrix 𝐴 can be written as the 
product of 3 matrices:

• Where:
• U is 𝑚 ×𝑚 and its columns are orthonormal eigenvectors of 𝐴𝐴⊤

• V is 𝑛 × 𝑛 and its columns are orthonormal eigenvectors of 𝐴⊤𝐴

• S is 𝑚 × 𝑛 is a diagonal matrix with 𝑟 elements equal to the root of the 
positive eigenvalues of 𝐴𝐴⊤ or 𝐴⊤𝐴 (both matrices have the same positive 
eigenvalues anyway)

48



In full matrix form

49



Example

• Let’s assume：

• We can have:

50



Example (cont.)

• Compute U and V respectively:

51



Example (cont.)

• Finally, we have:

52



Visualization

• The eigenvector 𝑣𝑗 of 𝑉 is transformed into 𝐴𝑣𝑗 = 𝜎𝑗𝑢𝑗

53



Insight

54



SVD and PCA

• 𝑋 = 𝑈𝑆𝑁×𝑑𝑉
⊤

• 𝑄 = 𝑋⊤𝑋 = 𝑉 𝑆⊤ 𝑑×𝑁𝑈
⊤ ∙ 𝑈𝑆𝑁×𝑑𝑉

⊤ = 𝑉 𝑆⊤𝑆 𝑑×𝑑𝑉
⊤

• This explains why singular value 𝜎𝑗 is the square root of the 
eigenvalue 𝜆𝑗 of 𝑄

• 𝜆𝑗 = 𝜎𝑗
2

• Also 𝑉 contains eigenvectors of 𝑋⊤𝑋

• Similarly, 𝑋𝑋⊤ = 𝑈𝑆𝑁×𝑑𝑉
⊤ ∙ 𝑉 𝑆⊤ 𝑑×𝑁𝑈

⊤ = 𝑈 𝑆𝑆⊤ 𝑁×𝑁𝑈
⊤

55

𝑆⊤𝑆 𝑑×𝑑 =
𝜎1
2 ⋯
⋮ ⋱ ⋮

⋯ 𝜎𝑑
2

𝑆𝑆⊤ 𝑁×𝑁 =

𝜎1
2 ⋯
⋮ ⋱ ⋮

⋯
𝜎𝑑
2

⋱
0



Application

• Matrix factorization in recommendation system

• Suppose in the database of Taobao, there are 𝑚 users and 𝑛 items, 
and an 𝑚 × 𝑛 binary matrix 𝐴
• Each entry indicates whether a user has bought an item or not
• As each user only buys very few items among all items, the matrix is very 

sparse

• As the manager of Taobao, how can you predict the likelihood that a 
user will buy a given item?

• SVD could help

56



Autoencoder
https://www.edureka.co/blog/autoencoders-tutorial/

57

https://www.edureka.co/blog/autoencoders-tutorial/


Autoencoder

• An autoencoder neural network is an unsupervised Machine 
learning model that applies backpropagation, setting the target 
values to be equal to the inputs

• Autoencoders are used to reduce the size of inputs into a smaller 
representation

• If anyone needs the original data, they can reconstruct it from the 
compressed data

58

https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/what-is-machine-learning/


Example visited

59



Benefits of Autoencoder over PCA

• An autoencoder can learn non-linear transformations with 
a non-linear activation function and multiple layers

• doesn’t have to learn dense layers. Can use 
convolutional/recurrent layers to learn for video, image and 
series data

• more efficient to learn several layers at the same time with 
an autoencoder rather than learn one huge transformation 
with PCA

• Each layer is a representation

• can make use of pre-trained layers from another model to 
apply transfer learning to enhance the encoder/decoder

60



Architecture of Autoencoders

• Encoder: This part of the network compresses the input into a latent space representation. The 
encoder layer encodes the input image as a compressed representation in a reduced dimension

• E.g. The compressed image is the distorted version of the original image

• Code: This part of the network represents the compressed input which is fed to the decoder

• Decoder: This layer decodes the encoded image back to the original dimension. The decoded 
image is a lossy reconstruction of the original image and it is reconstructed from the latent 
space representation

61



Training the Autoencoder

• Let 𝑓 be the function of the encoder
𝑓 𝑖𝑛𝑝𝑢𝑡 = 𝑐𝑜𝑑𝑒

• Let 𝑔 be the function of the decoder
𝑔 𝑐𝑜𝑑𝑒 = 𝑜𝑢𝑡𝑝𝑢𝑡

• Autoencoder is trying approximate the input using the output, or 
trying to find 𝑓 and 𝑔 that minimize the following loss:

• The above loss can be minimized using backpropagation 

62

𝐽 = ෍(𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑖𝑛𝑝𝑢𝑡)2



Hyperparameters

• Code size: It represents the number of nodes in the middle layer. 
Smaller size results in more compression

• Number of layers: The autoencoder can consist of as many layers as 
we want

• Number of nodes per layer: The number of nodes per layer decreases 
with each subsequent layer of the encoder, and increases back in the 
decoder
• The decoder is symmetric to the encoder in terms of the layer structure (if 

possible)

• Loss function: We either use mean squared error or binary cross-
entropy
• If the input values are in the range [0, 1] then we typically use cross-entropy, 

otherwise, we use the mean squared error 63



Application – Image coloring

• Autoencoders are used for converting any black and white picture 
into a colored image. Depending on what is in the picture, it is 
possible to tell what the color should be

64



Application – Feature variation

• It extracts only the required features of an image and generates the 
output by removing any noise or unnecessary interruption

65



Application – Dimensionality reduction

• The reconstructed image is the same as our input but with reduced 
dimensions. It helps in providing the similar image with a reduced 
pixel value

66



Application – Denoising image

• The input seen by the autoencoder is not the raw input but a 
stochastically corrupted version. A denoising autoencoder is thus 
trained to reconstruct the original input from the noisy version

67



Application – Watermark removal

• It can also be used for removing watermarks from images or removing 
any object while filming a video or a movie

68



Challenges

• Gaps in the latent space
or discrete latent space

• Separability in the latent space

69



Challenges (cont.)

• The latent space may contain 
gaps 

• There is no clue what the data 
points in these gaps might look 
like

• Similar with the problem of 
lacking data in supervised 
learning, as our model hasn’t 
seen these cases

70



Challenges (cont.)

• The inability to study a 
continuous latent space

• E.g. We do not have a statistical 
model that has been trained for 
arbitrary input (and would not 
even if we closed all gaps in the 
latent space)

• A possible solution: generative 
models

71



Challenges (cont.)

• Separability of the spaces

• Some numbers are well 
separated but there are some 
overlapping regions with multiple 
possible labels, making it difficult 
to assign a unique feature to the 
data points

72



Feature Selection

73



Feature selection

• The most important problem with PCA and Autoencoder is that the 
new feature is some combination of existing features, which might be 
hard to interpret

• In the example of predicting the health condition of some students, 
we have the following feature:
• Weight in kilogram
• Height in inch
• Height in cm
• Hours of sport per day
• Favorite color
• Scores in math

74



Feature selection (cont.)

• In the example
• The new feature produced by PCA could be some thing like 0.3 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 +
0.62 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡

• The new feature produced by Autoencoder could be some thing like 
(0.1 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑤𝑒𝑖𝑔ℎ𝑡/ℎ𝑒𝑖𝑔ℎ𝑡)2

• All of these new features are hard to interpret

• We can select a subset of feature, instead of transform the original 
features into a smaller set

75



Feature selection (cont.)

• Feature Selection is a process to choose an optimal subset of features
according to some criterion

• Why we need FS:
1. to improve performance (in terms of speed, predictive power, simplicity of

the model)

2. to visualize the data for model selection

3. To reduce dimensionality and remove noise

4. Easy to understand

76



Feature types

• Relevant features - those that we need to perform well 

• Irrelevant features - those that are simply unnecessary 

• Redundant features - those that become irrelevant in the presence of 
others

• Feature selection works by finding the relevant feature and 
eliminating the irrelevant feature and redundant feature

77



Feature selection algorithms

• Can be classified into 3 main categories: 

• Filters

• Wrappers

• Embedded methods

78



Filter

• selects a subset of variables independently of the model that shall 
use them

• It is a one-shot process (not iterative)

• It provides a set of “the most important” variables as the resulting 
subset independently of the employed model

79



Example – mRMR

• Minimum-redundancy-maximum-relevance (mRMR) algorithms tries 
to find a subset of features with the maximum relevance to the label 
while minimize the redundancy within the features

• The relevance of a feature set S for the class c is defined by the 
average value of all mutual information values between the individual 
feature 𝑓𝑖 and the class 𝑐 as follows

80



Mutual information

• Mutual information is the KL-divergence between probability 
distribution of 𝑝(𝑥, 𝑦) and 𝑝 𝑥 𝑝 𝑦
• The latter is the probability density at 𝑥 and 𝑦, if they are independent

• 𝐼 𝑋; 𝑌 = σ𝑥σ𝑦 𝑝(𝑥, 𝑦) log
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)

• = σ𝑥σ𝑦 𝑝 𝑥 𝑦 𝑝(𝑦) log
𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝 𝑥 𝑝(𝑦)

• = σ𝑦 𝑝 𝑦 σ𝑥 𝑝 𝑥 𝑦 log 𝑝 𝑥 𝑦 − σ𝑥 σ𝑦 𝑝 𝑥 𝑦 𝑝 𝑦 log 𝑝 𝑥

• = −𝐻 𝑋 𝑌 + 𝐻(𝑋)

• which is just the information gain

81



Example – mRMR (cont.)

• The redundancy of all features in the set S is the average value of all 
mutual information values between the feature 𝑓𝑖 and the feature 𝑓𝑗

• The mRMR criterion is a combination of two measures given above 
and is defined as follows:

82



Example – Relief 

• Relief feature scoring is based on the identification of feature value 
differences between nearest neighbor instance pairs
• If a feature value difference is observed in a neighboring instance pair with 

the same class (a 'hit'), the feature score decreases

• If a feature value difference is observed in a neighboring instance pair with 
different class (a 'miss'), the feature score increases

83



Example – Relief (cont.)

• The general workflow of Relief algorithm

• For each feature 𝑓𝑖, initialize its score 𝑤𝑖 to be 0

• For each feature 𝑓𝑖
• For each sample 𝑠𝑗, find its nearest hit ℎ and nearest miss 𝑚

• if 𝑠𝑗 and ℎ have different value at 𝑓𝑖, 𝑤𝑖 decrease by 1

• if 𝑠𝑗 and 𝑚 have different value at 𝑓𝑖, 𝑤𝑖 increase by 1

• Return the top 𝑘 features with highest score

84



Wrapper

• Wrapper: selects a subset of variables taking into account the model 
that will use them

85



Wrapper

• Wrapper: selects a subset of variables taking into account the model 
that will use them

• It is an iterative process

• In each iteration, several subsets of input variables is generated and tested on 
the particular model type

• According to the success of the model for individual feature subsets, it is 
chosen which subsets will be tested in the next iteration

• Feature selection is here part of the model training; we need separate testing 
data to evaluate the final model error

86



Example – SFS 

• Sequential Forward Selection (SFS) is a greedy search algorithm that 
attempts to find the “optimal” feature subset by iteratively selecting 
features based on the classifier performance
• Start with an empty set S, represent all features as set F

• Select the feature f from F, which can help the model achieve the highest 
score on S+f

• S = S+f, F = F-f

• Repeat the steps until there are k features in S

87



Embedded

• The embedded algorithm integrates the feature selection process into 
the learning tasks

• A famous example is the L1-regularization, or LASSO algorithm

• The feature selection process is embedded in the learning process

88


