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Outline

• Generative models

• GMM

• EM
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Generative Models (review)
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Discriminative / Generative Models

• Discriminative models
• Modeling the dependence of unobserved variables on observed ones

• also called conditional models

• Deterministic:

• Probabilistic:

• Generative models
• Modeling the joint probabilistic distribution of data

• Given some hidden parameters or variables

• Then do the conditional inference
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Discriminative Models

• Discriminative models
• Modeling the dependence of unobserved variables on observed ones
• also called conditional models
• Deterministic:

• Linear regression

• Probabilistic:
• Logistic regression

• Directly model the dependence for label prediction
• Easy to define dependence on specific features and models
• Practically yielding higher prediction performance
• E.g. linear regression, logistic regression, k nearest neighbor, SVMs, (multi-

layer) perceptrons, decision trees, random forest
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Generative Models

• Generative models
• Modeling the joint probabilistic distribution of data
• Given some hidden parameters or variables

• Then do the conditional inference

• Recover the data distribution [essence of data science]

• Benefit from hidden variables modeling

• E.g. Naive Bayes, Hidden Markov Model, Mixture Gaussian, Markov 
Random Fields, Latent Dirichlet Allocation
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Discriminative Models vs Generative Models

• In General
• A Discriminative model models the decision boundary between the classes

• A Generative Model explicitly models the actual distribution of each class

• Example: Our training set is a bag of fruits. Only apples and oranges
are labeled. Imagine a post-it note stuck to the fruit
• A generative model will model various attributes of fruits such as color, 

weight, shape, etc

• A discriminative model might model color alone, should that suffice to 
distinguish apples from oranges
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Gaussian Mixture Models
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Gaussian Mixture Models

• Is a clustering algorithms

• Difference with K-means
• K-means outputs the label of a sample

• GMM outputs the probability that a sample 
belongs to a certain class

• GMM can also be used to generate new samples!
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K-means vs GMM
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Gaussian distribution

• Very common in probability theory and important in statistics

• often used in the natural and social sciences to represent real-valued 
random variables whose distributions are not known

• is useful because of the central limit theorem
• averages of samples independently drawn from the same distribution converge in 

distribution to the normal with the true mean and variance, that is, they become 
normally distributed when the number of observations is sufficiently large

• Physical quantities that are expected to be the sum of many independent 
processes often have distributions that are nearly normal

• The probability density of the Gaussian distribution is

𝑓 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2
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High-dimensional Gaussian distribution

• The probability density of Gaussian distribution on 𝑥 = 𝑥1, … , 𝑥𝑑
⊤

is

𝒩 𝑥|𝜇, ∑ =

exp −
1
2
𝑥 − 𝜇 ⊤∑−1 𝑥 − 𝜇

2𝜋 𝑑 ∑
• where 𝜇 is the mean vector

• ∑ is the symmetric covariance matrix (positive semi-definite)

• E.g. the Gaussian distribution with 
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𝑒
−
𝑥−𝜇 2

2𝜎2



Mixture of Gaussian

• The probability given in a mixture of K Gaussians is:

𝑝 𝑥 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥|𝜇𝑗 , Σ𝑗)

where 𝑤𝑗 is the prior probability of the j-th Gaussian

• Example
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Examples
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Data generation

• Let the parameter set 𝜃 = {𝑤𝑗 , 𝜇𝑗 , Σ𝑗: 𝑗}, then the probability density 
of mixture Gaussian can be written as 

𝑝 𝑥 𝜃 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥|𝜇𝑗 , Σ𝑗)

• Equivalent to generate data points in two steps
• Select which component 𝑗 the data point belongs to according to the 

categorical (or multinoulli) distribution of 𝑤1, … , 𝑤𝐾

• Generate the data point according to the probability of 𝑗-th component
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Learning task

• Given a dataset 𝑋 = 𝑥(1), 𝑥(2),∙∙∙, 𝑥(𝑁) to train the GMM model

• Find the best 𝜃 that maximizes the probability ℙ 𝑋 𝜃

• Maximal likelihood estimator (MLE)

17



Introduce latent variable

• For data points 𝑥(𝑖), 𝑖 = 1, … , 𝑁, let’s write the probability as

ℙ 𝑥(𝑖) 𝜃 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥(𝑖)|𝜇𝑗 , Σ𝑗)

where ∑𝑗=1
𝐾 𝑤𝑗 = 1

• Introduce latent variable
• 𝑧(𝑖) is the Gaussian cluster ID indicates which Gaussian 𝑥(𝑖) comes from

• ℙ 𝑧(𝑖) = 𝑗 = 𝑤𝑗 “Prior”

• ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃 = 𝒩(𝑥(𝑖)|𝜇𝑗 , Σ𝑗)

• ℙ 𝑥(𝑖) 𝜃 = ∑𝑗=1
𝐾 ℙ 𝑧(𝑖) = 𝑗 ∙ ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃
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Maximal likelihood
• Let 𝑙 𝜃 = ∑𝑖=1

𝑁 log ℙ(𝑥 𝑖 ; 𝜃) = ∑𝑖=1
𝑁 log∑𝑗ℙ(𝑥

𝑖 , 𝑧 𝑖 = 𝑗; 𝜃) be 
the log-likelihood

• We want to solve

argmax 𝑙 𝜃 = argmax ෍

𝑖=1

𝑁

log෍

𝑗=1

𝐾

ℙ 𝑧(𝑖) = 𝑗 ∙ ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃

= argmax ෍

𝑖=1

𝑁

log෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥(𝑖)|𝜇𝑗 , Σ𝑗)

• No closed solution by solving
𝜕ℙ 𝑋|𝜃

𝜕𝑤
= 0,

𝜕ℙ 𝑋|𝜃

𝜕𝜇
= 0,

𝜕ℙ 𝑋|𝜃

𝜕Σ
= 0
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Likelihood maximization
• If we know 𝑧(𝑖) for all 𝑖, the problem becomes

argmax 𝑙 𝜃 = argmax ෍

𝑖=1

𝑁

log ℙ 𝑥(𝑖) 𝜃

= argmax ෍

𝑖=1

𝑁

log ℙ 𝑥(𝑖), 𝑧(𝑖) 𝜃

= argmax ෍

𝑖=1

𝑁

logℙ 𝑥(𝑖) 𝜃, 𝑧(𝑖) + logℙ 𝑧(𝑖) 𝜃

= argmax ෍

𝑖=1

𝑁

log𝒩(𝑥(𝑖)|𝜇𝑧(𝑖) , Σ𝑧(𝑖)) + log𝑤𝑧(𝑖)
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The solution is

• 𝑤𝑗 =
1

𝑁
∑𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗

• 𝜇𝑗 =
∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)

∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

• Σ𝑗 =
∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)−𝜇𝑗 𝑥(𝑖)−𝜇𝑗

⊤

∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

Average over 
each cluster



Likelihood maximization (cont.)

• Given the parameter 𝜃 = {𝑤𝑗 , 𝜇𝑗 , Σ𝑗: 𝑗}, the posterior distribution of 
each latent variable 𝑧(𝑖) can be inferred

• ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖); 𝜃 =
ℙ 𝑥(𝑖), 𝑧(𝑖) = 𝑗 𝜃

ℙ 𝑥(𝑖) 𝜃

• =
ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜇𝑗 , Σ𝑗 ℙ 𝑧(𝑖) = 𝑗 𝑤

∑
𝑗′=1
𝐾 ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗′; 𝜇𝑗′ , Σ𝑗′ ℙ 𝑧(𝑖) = 𝑗′ 𝑤

• Or 𝑤𝑗
(𝑖)

= ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖); 𝜃 ∝ ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜇𝑗 , Σ𝑗 ℙ 𝑧(𝑖) = 𝑗 𝑤
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Likelihood maximization (cont.)

• For every possible values of 𝑧(𝑖)’s

• Take the expectation on probability of 𝑧(𝑖)

22

Which is equivalent to

• 𝑤𝑗 =
1

𝑁
∑𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗

• ∑𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗 𝜇𝑗 = ∑𝑖=1

𝑁 𝟏 𝑧(𝑖) = 𝑗 𝑥(𝑖)

• ∑𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗 Σ𝑗 = ∑𝑖=1

𝑁 𝟏 𝑧(𝑖) = 𝑗 𝑥(𝑖) − 𝜇𝑗 𝑥(𝑖) − 𝜇𝑗
⊤

Take expectation on two sides

• 𝑤𝑗 =
1

𝑁
∑𝑖=1
𝑁 ℙ(𝑧(𝑖) = 𝑗)

• ∑𝑖=1
𝑁 ℙ(𝑧 𝑖 = 𝑗) 𝜇𝑗 = ∑𝑖=1

𝑁 ℙ(𝑧 𝑖 = 𝑗)𝑥(𝑖)

• ∑𝑖=1
𝑁 ℙ(𝑧 𝑖 = 𝑗) Σ𝑗 = ∑𝑖=1

𝑁 ℙ(𝑧 𝑖 = 𝑗) 𝑥(𝑖) − 𝜇𝑗 𝑥(𝑖) − 𝜇𝑗
⊤

The solution is

• 𝑤𝑗 =
1

𝑁
∑𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗

• 𝜇𝑗 =
∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)

∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

• Σ𝑗 =
∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)−𝜇𝑗 𝑥(𝑖)−𝜇𝑗

⊤

∑𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

𝑤𝑗
(𝑖)

= ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖); 𝜃

The solution is

• 𝑤𝑗 =
1

𝑁
∑𝑖=1
𝑁 𝑤𝑗

(𝑖)

• 𝜇𝑗 =
∑𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖)

∑𝑖=1
𝑁 𝑤

𝑗
(𝑖)

• Σ𝑗 =
∑𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖)−𝜇𝑗 𝑥(𝑖)−𝜇𝑗

⊤

∑𝑖=1
𝑁 𝑤

𝑗
(𝑖)

Take 
expectation



Likelihood maximization (cont.)

• If we know the distribution of 𝑧(𝑖)’s, then it is equivalent to maximize

𝑙 ℙ𝑧(𝑖) , 𝜃 =෍

𝑖=1

𝑁

෍

𝑗=1

𝐾

ℙ 𝑧(𝑖) = 𝑗 log
ℙ 𝑥(𝑖), 𝑧 𝑖 = 𝑗|𝜃

ℙ 𝑧(𝑖) = 𝑗

• Compared with previous if we know the values of 𝑧(𝑖)

argmax ෍

𝑖=1

𝑁

logℙ 𝑥(𝑖), 𝑧(𝑖) 𝜃

• Note that it is hard to solve if we directly maximize

𝑙 𝜃 =෍

𝑖=1

𝑁

logℙ 𝑥(𝑖) 𝜃 =෍

𝑖=1

𝑁

log෍

𝑗=1

𝐾

ℙ 𝑧(𝑖) = 𝑗|𝜃 ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃
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Expectation maximization methods

• E-step: 
• Infer the posterior distribution of the latent variables given the model 

parameters

• M-step: 
• Tune parameters to maximize the data likelihood given the latent variable 

distribution

• EM methods
• Iteratively execute E-step and M-step until convergence
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EM for GMM

• Repeat until convergence:{
(E-step) For each 𝑖, 𝑗, set

𝑤𝑗
(𝑖)

= ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖), 𝑤, 𝜇, Σ
(M-step) Update the parameters

𝑤𝑗 =
1

𝑁
෍

𝑖=1

𝑁

𝑤𝑗
(𝑖)
, 𝜇𝑗 =

∑𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖)

∑𝑖=1
𝑁 𝑤𝑗

(𝑖)

Σ𝑗 =
∑𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖) − 𝜇𝑗 𝑥(𝑖) − 𝜇𝑗

⊤

∑𝑖=1
𝑁 𝑤𝑗

(𝑖)

}
25



Example

• Hidden variable: for each point, which Gaussian generates it?

26

𝑝 𝑥 𝜃 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥|𝜇𝑗 , Σ𝑗)



Example (cont.)

• E-step: for each point, estimate the probability that each Gaussian 
component generated it
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Example (cont.)

• M-Step: modify the parameters according to the hidden variable to 
maximize the likelihood of the data 
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Example 2
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Remaining issues

• Initialization:
• GMM is a kind of EM algorithm which is very sensitive to initial conditions

• Number of Gaussians:
• Use some information-theoretic criteria to obtain the optima K

• Minimal description length (MDL)
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Minimal description length (MDL)

• All statistical learning is about finding regularities in data, and the best 
hypothesis to describe the regularities in data is also the one that is able to 
compress the data most

• In an MDL framework, a good model is one that allows an efficient (i.e. 
short) encoding of the data, but whose own description is also efficient

• For the GMM

• 𝑋 is the vector of data elements

• 𝑝(𝑥) is the probability by GMM

• 𝑃 is the number of free parameters needed to describe the GMM
• 𝑃 = 𝐾 𝑑 + 𝑑(𝑑 + 1)/2 + (𝐾 − 1) 31

(negative) log-likelihood
The cost of coding data

The cost of coding GMM itself



Example

32

𝐾 = 2 𝐾 = 16

400 new data 
points generated 
from the 16-GMM



Remaining issues (cont.)

• Simplification of the covariance matrices
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Application in computer vision

• Image segmentation
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Application in computer vision (cont.)

• Object tracking: Knowing the moving object distribution in the first 
frame, we can localize the objet in the next frames by tracking its 
distribution
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Expectation and Maximization
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Background: Latent variable models

• Some of the variables in the model are not observed

• Examples: mixture model, Hidden Markov Models, LDA, etc
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Background: Marginal likelihood

• Joint model ℙ 𝑥, 𝑧|𝜃 , 𝜃 is the model parameter

• With 𝑧 unobserved, we marginalize out 𝑧 and use the marginal log-
likelihood for learning

ℙ 𝑥|𝜃 =෍

𝑧

ℙ 𝑥, 𝑧|𝜃

• Example: mixture model

ℙ 𝑥|𝜃 =෍

𝑘

ℙ 𝑥|𝑧 = 𝑘, 𝜃𝑘 ℙ 𝑧 = 𝑘|𝜃𝑘 =෍

𝑘

𝜋𝑘ℙ 𝑥|𝑧 = 𝑘, 𝜃𝑘

where 𝜋𝑘 is the mixing proportions 
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Examples

• Mixture of Bernoulli

• Mixture of Gaussians

• Hidden Markov Model
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Learning the hidden variable 𝑍

• If all 𝑧 observed, the likelihood factorizes, and learning is relatively 
easy

• If 𝑧 not observed, we have to handle a sum inside log
• Idea 1: ignore this problem and simply take derivative and follow the gradient

• Idea 2: use the current 𝜃 to estimate 𝑧, fill them in and do fully-observed 
learning

• Is there a better way? 
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Example

• Let events be “grades in a class”

• Assume we want to estimate 𝜇 from data. In a class, suppose there 
are
• a students get A, b students get B, c students get C and d students get D.

• What’s the maximum likelihood estimate of 𝜇 given 𝑎, 𝑏, 𝑐, 𝑑 ?

41



Example (cont.)

42

• for MLE 𝜇, set 

• Solve

• So if class got                                               max like  



Example (cont.)

• What if the observed information is 

• What is the maximal likelihood estimator of 𝜇 now?

43



Example (cont.)

• What is the MLE of 𝜇 now?

• We can answer this question circularly:

44

Expectation

If we know the value of 𝜇
we could compute the
expected value of 𝑎 and 𝑏

Maximization

If we know the expected 
values of 𝑎 and 𝑏 we could 
compute the maximum 
likelihood value of 𝜇

Since the ratio 𝑎: 𝑏 should be the same 
as the ratio ½ : 𝜇



Example – Algorithm 

• We begin with a guess for 𝜇, and then iterate between EXPECTATION 
and MAXIMALIZATION to improve our estimates of 𝜇 and 𝑎, 𝑏

• Define 
• μ (t) the estimate of μ on the t-th iteration

• b (t) the estimate of b on t-th iteration

45



Example – Algorithm (cont.)

• Iteration will converge 

• But only assured to converge to local optimum

46



General EM methods

• Repeat until convergence{
(E-step) For each data point 𝑖, set

𝑞𝑖 𝑗 = ℙ 𝑧(𝑖) = 𝑗|𝑥 𝑖 ; 𝜃
(M-step) Update the parameters

argmax𝜃 𝑙 𝑞𝑖 , 𝜃 =෍

𝑖=1

𝑁

෍

𝑗

𝑞𝑖 𝑗 log
ℙ(𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃)

𝑞𝑖 𝑗

}

47



Convergence of EM

• Denote 𝜃(𝑡) and 𝜃(𝑡+1) as the parameters of two successive iterations 
of EM, we want to prove that

𝑙 𝜃(𝑡) ≤ 𝑙 𝜃 𝑡+1

where note that

𝑙 𝜃 =෍

𝑖=1

𝑁

log ℙ(𝑥 𝑖 ; 𝜃) =෍

𝑖=1

𝑁

log෍

𝑗

ℙ(𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃)

• This shows EM always monotonically improves the log-likelihood, 
thus ensures EM will at least converge to a local optimum

48



Proof
• Start from 𝜃(𝑡), we choose the posterior of latent variable

𝑞𝑖
(𝑡)

𝑗 = 𝑝 𝑧(𝑖) = 𝑗|𝑥 𝑖 ; 𝜃(𝑡)

• By Jensen’s inequality on the log function

• 𝑙 𝑞, 𝜃(𝑡) = ∑𝑖=1
𝑁 ∑𝑗 𝑞𝑖 𝑗 log

𝑝(𝑥 𝑖 ,𝑧 𝑖 =𝑗;𝜃(𝑡))

𝑞𝑖 𝑗

≤෍

𝑖=1

𝑗

log෍

𝑗

𝑞𝑖 𝑗 ∙
𝑝 𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃 𝑡

𝑞𝑖 𝑗

=෍

𝑖=1

𝑗

log෍

𝑗

𝑝 𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃(𝑡) = 𝑙 𝜃(𝑡)

• When 𝑞𝑖
(𝑡)

𝑗 = 𝑝 𝑧(𝑖) = 𝑗|𝑥 𝑖 ; 𝜃(𝑡) , the above inequality is equality
49

𝑙 𝜃(𝑡) = 𝑙 𝑞𝑖
(𝑡)
, 𝜃(𝑡) ≥ 𝑙 𝑞, 𝜃(𝑡)



Proof (cont.)

• Then the parameter 𝜃(𝑡+1) is obtained by maximizing 

𝑙 𝑞𝑖
(𝑡)
, 𝜃 =෍

𝑖=1

𝑁

෍

𝑗

𝑞𝑖
(𝑡)

log
𝑝(𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃)

𝑞𝑖
(𝑡)

• Thus 

𝑙 𝜃(𝑡+1) ≥ 𝑙 𝑞𝑖
(𝑡)
, 𝜃(𝑡+1) ≥ 𝑙 𝑞𝑖

(𝑡)
, 𝜃(𝑡) = 𝑙 𝜃(𝑡)

• Since the likelihood is at most 1, EM will converge (to a local optimum)

50



Example

• Follow previous example,  suppose 
ℎ = 20, 𝑐 = 10, 𝑑 = 10, 𝜇(0) = 0

• Then

• Convergence is generally linear: error 
decreases by a constant factor each 
time step
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Advantages

• EM is often applied to NP-hard problems

• Widely used

• Often effective
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K-means and EM

• After initialize the position of the centers, K-means interactively 
execute the following two operations:
• Assign the label of the points based on their distances to the centers

• Specific posterior distribution of latent variable

• E-step

• Update the positions of the centers based on the labeling results
• Given the labels, optimize the model parameters

• M-step
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