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A Markov system

• There are 𝑁 states 𝑆1, 𝑆2, … , 𝑆𝑁, and the time steps are discrete, 𝑡 =
0,1,2, …

• On the t-th time step the system is in exactly one of the available 
states. Call it 𝑞𝑡

• Between each time step, the next state is chosen only based on the 
information provided by the current state 𝑞𝑡

• The current state determines the probability distribution for the next 
state
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Example

• Three states

• Current state: 𝑆3
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Example (cont.)

• Three states

• Current state: 𝑆2
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Example (cont.)

• Three states

• The transition matrix
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Example (cont.)

Markovian property

• 𝑞𝑡+1is independent of 
𝑞𝑡−1, 𝑞𝑡−2, … , 𝑞0 given 𝑞𝑡

• In other words:
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Example 2
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Markovian property
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Example

• A human and a robot wander around randomly on a grid
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Note: N (num.states) 
= 18 * 18 = 324



Example (cont.)

• Each time step the human/robot moves randomly to an adjacent cell

• Typical Questions:
• “What’s the expected time until the human is crushed like a bug?”

• “What’s the probability that the robot will hit the left wall before it hits the 
human?”

• “What’s the probability Robot crushes human on next time step?”
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Example (cont.)

• The currently time is 𝑡, and human remains uncrushed. What’s the 
probability of crushing occurring at time 𝑡 + 1? 

• If robot is blind:
• We can compute this in advance

• If robot is omnipotent (i.e. if robot knows current state):
• can compute directly

• If robot has some sensors, but incomplete state information
• Hidden Markov Models are applicable
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𝑃 𝑞𝑡 = 𝑠 -- A clumsy solution

• Step 1: Work out how to compute 𝑃(𝑄) for any path 𝑄 = 𝑞1𝑞2⋯𝑞𝑡

• Step 2: Use this knowledge to get 𝑃 𝑞𝑡 = 𝑠
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𝑃 𝑞𝑡 = 𝑠 -- A cleverer solution

• For each state 𝑆𝑖, define 𝑝𝑡 𝑖 = 𝑃 𝑞𝑡 = 𝑆𝑖 to be the probability of 
state 𝑆𝑖 at time t

• Easy to do inductive computation
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𝑃 𝑞𝑡 = 𝑠 -- A cleverer solution

• For each state 𝑆𝑖, define 𝑝𝑡 𝑖 = 𝑃 𝑞𝑡 = 𝑆𝑖 to be the probability of 
state 𝑆𝑖 at time t
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Complexity comparison

• Cost of computing 𝑝𝑡 𝑖 for all states 𝑆𝑖 is now 𝑂 𝑡𝑁2

• Why?

• The first method has 𝑂 𝑁𝑡

• Why?

• This is the power of dynamic programming that is widely used in 
HMM
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Example (cont.)

• It’s currently time t, and human remains uncrushed. What’s the 
probability of crushing occurring at time t + 1

• If robot is blind:
• We can compute this in advance

• If robot is omnipotent (I.E. If robot knows state at time t):
• can compute directly

• If robot has some sensors, but incomplete state information
• Hidden Markov Models are applicable
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Hidden state

• The previous example tries to estimate 𝑃 𝑞𝑡 = 𝑆𝑖 unconditionally 
(no other information)

• Suppose we can observe something that’s affected by the true state
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What the robot see (uncorrupted data)

What the robot see (corrupted data)



Noisy observation of hidden state

• Let’s denote the observation at time 𝑡 by 𝑂𝑡

• 𝑂𝑡 is noisily determined depending on the current state

• Assume that 𝑂𝑡 is conditionally independent of 
𝑞𝑡−1, 𝑞𝑡−2, … , 𝑞0, 𝑂𝑡−1, 𝑂𝑡−2, … , 𝑂1, 𝑂0 given 𝑞𝑡

• In other words
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Example
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Example (cont.)
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Hidden Markov models

• The robot with noisy sensors is a good example

• Question 1: (Evaluation) State estimation: 
• what is 𝑃 𝑞𝑡 = 𝑆𝑖|𝑂1, … , 𝑂𝑡

• Question 2: (Inference) Most probable path: 
• Given 𝑂1, … , 𝑂𝑡, what is the most probable path of the states? And what is 

the probability?

• Question 3: (Leaning) Learning HMMs: 
• Given 𝑂1, … , 𝑂𝑡, what is the maximum likelihood HMM that could have 

produced this string of observations?

• MLE
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Application of HMM

• Robot planning + sensing when there’s uncertainty

• Speech recognition/understanding
• Phones → Words, Signal → phones

• Human genome project

• Consumer decision modeling

• Economics and finance

• …
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Basic operations in HMMs

• For an observation sequence 𝑂 = 𝑂1, … , 𝑂𝑇, three basic HMM 
operations are:
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T = # timesteps, N = # states



Formal definition of HMM

• The states are labeled 𝑆1, 𝑆2, … , 𝑆𝑁
• For a particular trial, let 

• 𝑇 be the number of observations

• 𝑁 be the number of states

• 𝑀 be the number of possible observations

• 𝜋1, 𝜋2, … , 𝜋𝑁 is the starting state probabilities

• 𝑂 = 𝑂1…𝑂𝑇 is a sequence of observations

• 𝑄 = 𝑞1𝑞2⋯𝑞𝑡 is a path of states

• Then                                                is the specification of an HMM
➢The definition of 𝑎𝑖𝑗 and 𝑏𝑖(𝑗) will be introduced in next page
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Formal definition of HMM (cont.)

• The definition of 𝑎𝑖𝑗 and 𝑏𝑖(𝑗)
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Example

• Start randomly in state 1 or 2

• Choose one of the output symbols 
in each state at random
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Example (cont.)
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• Let’s generate a sequence of 
observations:



Example (cont.)
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Example (cont.)
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Example (cont.)
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Example (cont.)
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Example (cont.)
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Example (cont.)
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Example (cont.)
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Probability of a series of observations

• What is 𝑃 𝑂 = 𝑃 𝑂1𝑂2𝑂3 = 𝑃 𝑂1 = 𝑋 ∧ 𝑂2 = 𝑋 ∧ 𝑂3 = 𝑍 ?

• Slow, stupid way:

• How do we compute 𝑃(𝑄) for an arbitrary path 𝑄?

• How do we compute 𝑃(𝑂|𝑄) for an arbitrary path 𝑄?
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Probability of a series of observations (cont.)

• 𝑃(𝑄) for an arbitrary path 𝑄
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Probability of a series of observations (cont.)

• 𝑃(𝑂|𝑄) for an arbitrary path 𝑄
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Probability of a series of observations (cont.)

• Computation complexity of the slow stupid answer:
• 𝑃(𝑂) would require 27 𝑃(𝑄) and 27 𝑃(𝑂|𝑄)

• A sequence of 20 observations would need 320=3.5 
billion 𝑃(𝑄) and 3.5 billion 𝑃(𝑂|𝑄)

• So we have to find some smarter answer
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Probability of a series of observations (cont.)

• Smart answer (based on dynamic programming) 

• Given observations 𝑂1𝑂2…𝑂𝑇
• Define:

• In the example, what is 𝛼2(3) ?
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𝛼𝑡(𝑖) : easy to define recursively
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𝛼𝑡(𝑖) in the example

• We see 𝑂1𝑂2𝑂3 = 𝑋𝑋𝑍
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Easy question

• We can cheaply compute

• (How) can we cheaply compute

• (How) can we cheaply compute
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Easy question (cont.)

• We can cheaply compute

• (How) can we cheaply compute

• (How) can we cheaply compute
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Recall: Hidden Markov models

• The robot with noisy sensors is a good example

• Question 1: (Evaluation) State estimation: 
• what is 𝑃 𝑞𝑡 = 𝑆𝑖|𝑂1, … , 𝑂𝑡

• Question 2: (Inference) Most probable path: 
• Given 𝑂1, … , 𝑂𝑡, what is the most probable path of the states? And what is 

the probability?

• Question 3: (Leaning) Learning HMMs: 
• Given 𝑂1, … , 𝑂𝑡, what is the maximum likelihood HMM that could have 

produced this string of observations?

• MLE
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Most probable path (MPP) given observations
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Efficient MPP computation

• We’re going to compute the following variables

• It’s the probability of the path of length 𝑡 − 1 with the maximum 
chance of doing all these things OCCURING and ENDING UP IN STATE 
Si and PRODUCING OUTPUT O1…Ot

• DEFINE: mppt(i) = that path

• So: δt(i)= Prob(mppt(i))
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The Viterbi algorithm
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The Viterbi algorithm (cont.)
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The Viterbi algorithm (cont.)
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The Viterbi algorithm (cont.)

• Summary
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Recall: Hidden Markov models
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Inferring an HMM

• Remember, we’ve been doing things like

• That “𝜆” is the notation for our HMM parameters

• Now we want to estimate 𝜆 from the observations

• AS USUAL: We could use
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Max likelihood HMM estimation

• Define:
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Max likelihood HMM estimation
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Max likelihood HMM estimation
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Max likelihood HMM estimation
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EM for HMMs

• If we knew 𝜆 we could estimate EXPECTATIONS of quantities such as
• Expected number of times in state 𝑖

• Expected number of transitions 𝑖 → 𝑗

• If we knew the quantities such as
• Expected number of times in state 𝑖

• Expected number of transitions 𝑖 → 𝑗

• We could compute the MAX LIKELIHOOD estimate of
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EM for HMMs
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EM for HMMs

• Bad news
• There are lots of local minima

• Good news
• The local minima are usually adequate models of the data

• Notice
• EM does not estimate the number of states. That must be given.

• Often, HMMs are forced to have some links with zero probability. This is done 
by setting 𝑎𝑖𝑗 = 0 in initial estimate 𝜆(0)

• Easy extension of everything seen today: 
• HMMs with real valued outputs
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