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A Markov system

* There are N states 54,55, ..., Sy, and the time steps are discrete, t =
0,1,2, ...

* On the t-th time step the system is in exactly one of the available
states. Call it g;

* Between each time step, the next state is chosen only based on the
information provided by the current state g,

* The current state determines the probability distribution for the next
state



Example

* Three states
* Current state: S5
Current State

Of oy

q:=40=S3



Example (cont.)

Current State

* Three states \‘:' -
* Current state: 5, - -

ORO

q:=49+=S;

N =
=1



Example (cont.)

* Three states

 The transition matrix

P(q,.,=S;
P(Q.=s,
P(q.1=S;

qi=s,) = 1/2
q:=s,) = 1/2
q:=s,) =0

P(9..,=s4l9=s,) =0
P(9i.4=S,l9=s;)
P(q.,1=5;3/9=5,)

I
- O

t

Il
-

q:=41=S>

P(q,.,=s,la,=s;) = 1/3
P(q..,=s,lq,=s;) = 2/3
P(9,.4=S;5lq=s;) = 0




Example (cont.)

Markovian property

* g¢,1is independent of
{Qt—l’ At—25 =) qO} given dt
* In other words:

P(Atq = 5[0t =s;) =

P(dt+1 = $;|9; = S ,any earlier history)

P(d.,=S;
P(d;.1=S,
P(0.,=S;

N=3 ~—1~

=1 P(q,.,=s,]9=s;) = 1/3
P(d.1=S,]0,=s,) = 2/3
P(d;.1=S5]0,=s;) =0

q:=41=S>




Example 2




Markovian property

Hidden Markov Model




Example

* A human and a robot wander around randomly on a grid

TN
—¢® :
]l
S
/ Location of Robot, \ Note: N (num.states)

STATEQ= Locatlon of Human =18 * 18 =324



Example (cont.)

* Each time step the human/robot moves randomly to an adjacent cell

R

H

* Typical Questions:

* “What’s the expected time until the human is crushed like a bug?”

* “What’s the probability that the robot will hit the left wall before it hits the
human?”

* “What’s the probability Robot crushes human on next time step?”



Example (cont.)

* The currently time is t, and human remains uncrushed. What’s the
probability of crushing occurring at time t + 1°?

* |If robot is blind: < We'll do this first

~J
* We can compute this in advance

* If robot is omnipotent (i.e. if robot knows current state): 1 IToo Easy. We
. T~ won't do this
* can compute directly

* If robot has some sensors, but incomplete state information

* Hidden Markov Models are applicable <= Viain Bocy

of Lecture




P(g; = s) -- A clumsy solution

* Step 1: Work out how to compute P(Q) for any path Q = g,q, *** q;
Given we know the start state q, (i.e. P(q,)=1)

P(d: dp .. ay) = P(gy 9y .. aq) P(ayay a5 .. deq)
= P(q4 dz -- Ge.4) P(a|acq) WHY?
= P(g,|9,)P(g5]d,)...P(a,g9,4)

* Step 2: Use this knowledge to get P(q; = s)

Plg, =)= > P(Q)

QePaths of lengthf thatendin s

12



P(g; = s) -- A cleverer solution

* For each state S;, define p;(i) = P(q; = S;) to be the probability of
state §; at time t

e Easy to do inductive computation

1 1f s, 1s the start state

0 otherwise

Vi Po(i) :{

V] pr+1 (l) = P(Qr-z—l = Sj) =

a;j = P(qes1 = Silqc = Si)

N
Zp(qr+1 = Sj NG, = Si) =
i=1

N s

ZP(q’“ =5;|q, =5;)P(q, =5;) = Za

i=1 -

7D, (1)

13



P(g; = s) -- A cleverer solution

* For each state S;, define p;(i) = P(q; = S;) to be the probability of

state §; at time t

e Easy to do inductive computation

+ Computation is simple.
« Justfill in this table in

_ . 1 1if s, 1s the start state order: )
Vi Po(i) = a 7
0 otherwise
t P(1) | p2) | .... | P(N)
\7/] pr+1 (l) = P(qr+1 = Sj) = 0 0 1 0
N 1
ZP(([r+1:Sj/\(1r:Si): :
i=1
tﬁnal

N N
> P(q, =5,1q,=5)P(q, =)= > a,p,(0)
=1 i=l1

14



Complexity comparison

e Cost of computing p, (i) for all states S; is now O(tN?)
* Why?

* The first method has O(N?)

* Why?

* This is the power of dynamic programming that is widely used in
HMM



Example (cont.)

* It’s currently time t, and human remains uncrushed. What’s the
probability of crushing occurring attimet+ 1

* If robot is blind: <,:"We’ll do this first

* We can compute this in advance

* If robot is omnipotent (I.E. If robot knows state at time t): - Too Easy. we

won't do this

e can compute directly

r . : . D
* If robot has some sensors, but incomplete state information

* Hidden Markov Models are applicable <= o ooy

of Lecture
\_ _J

16




Hidden state

* The previous example tries to estimate P(g; = S;) unconditionally
(no other information)

e Suppose we can observe something that’s affected by the true state

W W w | "
® ‘Ii denotes
H I “WALL"
R, - What the robot see (uncorrupted data)
H
True state g, " =
1 ® W
H H

What the robot see (corrupted data) .



Noisy observation of hidden state

* Let’s denote the observation at time t by O,
* 0, is noisily determined depending on the current state

* Assume that O; is conditionally independent of Hidden Markov Model
qt—1,Qt—25 -+, 90, Ot—1, Ot —3, ..., 01, 0p } given q; z, 7, Z,

* In other words _
P(O;=X|g;=s;) =

P(O,= X|q,= s;.any earlier history) XX, X

t



Example

?ﬁ@w—?

~ YOBSERVED §




Example (cont.)

[ | Start | ]
N,
ﬂﬁffnhﬁh .
_p!-'_‘--\.\_\_\\f\.ﬂ"f 03 ‘n.._%,.-"_""‘-\\
A — Y
.f | Rainy ‘:{.:% » ;q‘:’ﬁf Sunny J:I ;;J
,\\P_.{ ) ./:f.l- - "\\ . -{K,- "—
0.1 " _D:E: os ..~~D'1
- Loa 03 Ko
/ % : [ \\1
[ walk J -)’____{ |l Clean
*-n.,_,-r/ |i. Shop J \\h‘_ﬁi
S

Lol Lol
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Hidden Markov models

* The robot with noisy sensors is a good example

e Question 1: (Evaluation) State estimation:
* whatis P(q; = S;|04, ..., O¢)

e Question 2: (Inference) Most probable path:
* Given 04, ..., O, what is the most probable path of the states? And what is
the probability?
* Question 3: (Leaning) Learning HMMs:

* Given 04, ..., 0¢, what is the maximum likelihood HMM that could have
produced this string of observations?

* MLE



Application of HMM

* Robot planning + sensing when there’s uncertainty

* Speech recognition/understanding
* Phones - Words, Signal - phones

* Human genome project
* Consumer decision modeling
* Economics and finance



Basic operations in HMMSs

* For an observation sequence O = 04, ..., O, three basic HMM

operations are:

Problem Algorithm Complexity
Evaluation: Forward-Backward | (O (TN'? )
Calculating P(q=S; | ©,0,...0,)
Inference: Viterbi Decoding O(TN;? )
Computing Q" = argmax, P(Q|O)
Learning: Baum-Welch (EM) O(TN2 )
Computing A" = argmax;, P(O|1)

T = # timesteps, N = # states

23



Formal definition of HMM

* The states are labeled S, S5, ..., Sy

* For a particular trial, let
* T be the number of observations
* N be the number of states
* M be the number of possible observations
e (mq,m,, ..., Ty) is the starting state probabilities
* O =0 ...07 is asequence of observations
* ) = q19, - q¢ is a path of states

* Then A=(N,M,{r},{a;},{bj)}) Isthe specification of an HMM
»The definition of a;; and b;(j) will be introduced in next page



Formal definition of HMM (cont.)

* The definition of a;; and b; (j)

a2N >,

The state transition probabilities
P(du1=S;| 4=S,

)=3;

The observation probabilities
P(O&=K | 9=S;)=b;(k)

25



Example

e Start randomly in state 1 or 2 XY'J',___LG__A: ZY

! /
* Choose one of the output symbols 7 ‘/ﬁ\f

: ml X s
in each state at random N/

N=3 7 S,

M=3 \__/113

T, =172 T, = 1/2 M, =0

a,, = a,, =113 a,; = 2/3

a;, =13 a,, = a3 = 2/3

a,, =13 a5, = 1/3 a3 =13

b, (X)=112 b, (Y)=12 b,(Z)=0

b, (X) =0 b, (Y) =112 b, (Z) = 112

b, (X) = 172 b, (Y)=0 b, (Z) = 112

26



Example (cont.)

e Start randomly in state 1 or 2 L XY B ZY
* Choose one of the output symbols ~ me/s* >
in each state at random. - Ny 48 2

* Let’s generate a sequence of M= 3 \ i
observations: = Ve T, = Vs 1,=0
50-50 choice 4 = I L =z,
between S, and a“ _ a12 ~ a13 _.,
12~ 73 22 = 3= 73
A3 =75 A =5 A3 =5
<O b (X)=%  b,()=% b (2)=0
q,= E Oﬂz . b, (X)=0 b, (Y)="% b, (2) =¥
q,= 0,= by (X) =" by (Y)=0 b, (2) =%
Q= | O,= |__




Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols
in each state at random.

* Let’s generate a sequence of
observations;

50-50 choice
between X and Y

-
-
Qo= S, Op= |Z
q,= | O,= |__
4= | __ O,= | __




Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols
in each state at random.

* Let’s generate a sequence of
observations;

Goto S, with

probability 2/3 or
S, with prob. 1/3

)
o= S? Op= | X
q:= | __ O= |__
q,= _ O~ |__

S [| T T L aa- b “\SQ
Il XY Eq—-—-—-—'—'_'_| ZY |
.I. mEn E‘E— 2! ; v/ﬁ:x] /

. '.___ X

A S,
\ / 13

n, =2 =0
a12 =% 513 =%
dyy = Q4 = 24
332 =% a13 =
by (Y) =72 by (Z) =
b, (Y)=" b, (Z) =%
b, (Y)=0 b, (Z) =%

29



Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols
in each state at random.

* Let’s generate a sequence of

observations:

50-50 choice
between Z and X

o=

q,=

q,=

N=3
M=3
="

a;; =0
Ay =75
3= "5

b, (X) =12
b, (X) =0
b, (X) =12

EAINNENS

30



Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols

in each state at random.

* Let’s generate a sequence of
observations:

Each of the three
next states is
equally likely

'
o= 5|H Op= |X
g= |S:— |0= |X
q,= _@ O= |__

Aj3 =75

b, (£)=0
b, (Z) = "2
b, (Z£) =%

31



Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols
in each state at random.

* Let’s generate a sequence of
observations;

50-50 choice
between Z and X

G~ |S, |0~ X
q:= S, O= |X

[
q,= S, O,= |__




Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols
in each state at random.

* Let’s generate a sequence of
observations:

o=

N © X

© XN

.=

>

q,=

(N

L
w
|
N
w

a

L

@
non
N R

o T O
W N -
—

N

S S

N N
L I |
~ o ©
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Example (cont.)

e Start randomly in state 1 or 2

* Choose one of the output symbols
in each state at random.

This Is what the
observer has to
work with. ..

]

Q= |7 O,= X

q+= ?
q,= ? O,= |Z

O
I
X

o oo
N

TR TR

NN

34



Probability of a series of observations
'What|SP(0) =P(010203) =P(01 =X/\02 =X/\03 =Z)?

* Slow, stupid way: P(O)= > P(OAQ) . )

SRR L B
Q<Paths of length 3 XY i .

—

= 2 PO|QPQ) AR G

n > :
Qe<Paths of length 3 1/3 3

* How do we compute P(Q) for an arbitrary path Q? \/5

* How do we compute P(0|Q) for an arbitrary path Q?



Probability of a series of observations (cont.)

* P(Q) for an arbitrary path Q

_ s, —/ N
P(Q)= P(qy,92,95) 1 oy ) 3 zy
=P(q,) P(q,,9;|q,) (chain rule) \_ A @
=P(q) P(d2ldl1) P(d| d2.ql;) (chain) S Zx
=P(q,) P(q,la,) P(qs| a,) (why?) \—7 Ss

\_/173

Example in the case Q = 5, S; Sa:

=1/2*2/3*1/3=1/9

36



Probability of a series of observations (cont.)

* P(0|Q) for an arbitrary path Q

s, — N Sz
P(O|Q) L XY - LE ZY
=P(01 0,05 (9,9, 93) N AT am
=P(O;19:)P(O;]9;) P(O; ] q3 ) (Why?) b1¥ ZX 4‘
Example in the case Q= S, S, S.: \/,: Ss

= P(X] S4) P(X| S5) P(Z] S5) =
=1/2*1/2*1/2=1/8

37



Probability of a series of observations (cont.)

* Computation complexity of the slow stupid answer:

* P(0) would require 27 P(Q) and 27 P(0|Q) s, — s _\52
Xy —— B — 7Y
* A sequence of 20 observations would need 32°=3.5 A N
billion P(Q) and 3.5 billion P(0|Q) S ox -/
1/3 A I 1/3

* So we have to find some smarter answer NG

38



Probability of a series of observations (cont.)

* Smart answer (based on dynamic programming)

* Given observations 0,0, ... O7
* Define: a(1))=P(O, 0, ... Oy Aq,=S,| L) where 1 <t<T

a(1) = Probability that, in a random trial,
 \We'd have seen the first t observations

* We'd have ended up in S; as the t'th state visited.

* In the example, what is a,(3) ?



a: (1) : easy to define recursively

aﬁ(-):P(O *”\91 =35, )
= Plg, = 5, )P(O}g, =S,)

= what?
ar+1(]):P(OO .00 NG, = Sj)

t "+l

N
2P0
N

= Z P(Or—la‘i’m =5;|0,0,..0, A q, =5, )P(Olol'“or rg, =S,)
i=1
2

P(O,...q,. =S, |g :Shf
:ZP(Q =3, ‘qr—S

o Z azjbj Or—l br (?)

_g}z

40



a: (1) in the example

Tj )

a,(i)=P(0,0,.0, nq, =
a, (z) = b.(0,)r,

am j Zau . OHI)Q’

* We see 0,0,05; = XXZ
o (1)=-
a,(l)=

1
4
0

aa(l)zo ‘955(2):—

1/3 13
1 . S.
e,(3)=0 NS5
| 1
@, (%) - 12
|
& (%) = E 41



Easy question

* We can cheaply compute
a()=P(040,...0Aq=S))

* (How) can we cheaply compute

P(0,0,...0,) ?

* (How) can we cheaply compute

P(q=5040,...0;)



Easy question (cont.)

* We can cheaply compute
a()=P(040,...0Aq=S))

* (How) can we cheaply compute

P(0,0,...0,) ?

* (How) can we cheaply compute

P(q=5040,...0;)




Recall: Hidden Markov models

* The robot with noisy sensors is a good example

e Question 1: (Evaluation) State estimation:
* whatis P(q; = S;|04, ..., O¢)

* Question 3: (Leaning) Learning HMMs:

* Given 04, ..., 0¢, what is the maximum likelihood HMM that could have
produced this string of observations?

* MLE



Most probable path (MPP) given observations

What's most probable path given O,0,...0; ,1.¢e.

Whatis argmax P(Q|O1 0,..0,)?
Q
Slow, stupid answer :

argmax P(0[0,0,..0,)
Q

P(0,0,..0,|0)P(0)
P(0,0,...0,)

=argmax P(0,0,..0;|0)P(0)
Q

=argmax
Q



Efficient MPP computation

* We’re going to compute the following variables
Ol)=  max P(A1 dy .- A4 A G =S, A 04 .. Oy)
9192--Gt-1

* It’s the probability of the path of length t — 1 with the maximum
chance of doing all these things OCCURING and ENDING UP IN STATE
S, and PRODUCING OUTPUT 0O;,...0,

* DEFINE: mpp,(i) = that path
* So: ,(i)= Prob(mpp,(i))

46



The Viterbi algorithm

5()=q19>...9, 1 Pla.g:q,417q,=5,100,.0,)

argimax

mpp,(i)=q1q5...q, | Plag, 4, 7q =S 100,.0,)

max

5,(i) = one choice P(g, =S, A O,)

Now, suppose we have all the d(i)’'s and mppy(i)'s for all i.

= P(ql — S,— )P(Ol“?l — Sa) HOW TO GET 6t+1(J) and MPP.1()7?
= R'ibi(ol) mpp,(1 \ mﬁr’o;ﬁﬁ \/ - _*@1;
mppt<2) s (s)

mpp,(N)
qt+1

© Andrew W. Moore

47



The Viterbi algorithm (cont.)

The most prob path with last
two states S; S,

IS
the most prob path to S, ,
followed by transition S; — S

48



The Viterbi algorithm (cont.)

The most prob path with last time t

two states S; S Wl'/é ~
1/
S N
AN 6
the most prob path to S, , !

followed by transition S; — S, /\/\/\;ﬁ N
| \_/
What is the prob of that path? -

O(i) X P(S; — ij"\ O | A)
= 6((1) aj b (Ogq)
SO The most probable path to S; has

S, as its penultimate state

where i*=argmax O(i) a; b; (Oy4)

49



The Viterbi algorithm (cont.)

* Summary

What is the prob of that path?
Oll) X P(S;— SjA Oy [ A)
= 0((I) & b (Oyy4)
SO The most probable path to S; has
S;. as its penultimate state

where i*=argmax 8(i) a; b; (Oy,4)

J )
B1(i) = 8(i*) a; b, (Oy,,)\ With i* defined
MPP.+(j) = mMpp.4(i*)S. to the left



Recall: Hidden Markov models

* The robot with noisy sensors is a good example

e Question 1: (Evaluation) State estimation:
* whatis P(q; = S;|04, ..., O;)

e Question 2: (Inference) Most probable path:
* Given 04, ..., O, what is the most probable path of the states? And what is
the probability?
* Question 3: (Leaning) Learning HMMs:

* Given 0Oy, ..., O¢, what is the maximum likelihood HMM that could have
produced this string of observations?

* MLE

51



Inferring an HMM

* Remember, we’ve been doing things like
P(O,0,..0;|A)

* That “A” is the notation for our HMM parameters

* Now we want to estimate A from the observations

* AS USUAL: We could use

(i) MAX LIKELIHOOD A = argmax P(O, .. O; | A)
A

(i) BAYES

Work out P(A | O, .. O;)

and then take E[A] ormax P(A | O, .. O¢)
A



Max likelihood HMM estimation
* Define:  y(i) = P(q;= S;| 0,0,...01, )
&(1,)) = P(di = Sj A Geq = 5] 040,...0+1 ,A)
Vi(l) and g(i,J)) can be computed efficiently Vit

(Details in Rabiner paper)

-1
Z }/r (l) — Expected number of transitions
=1 out of state i during the path

71
Z < (l ]) — Expected number of transitions from
1 EA2 state i to state j during the path

53



Max likelihood HMM estimation

T-1 expected frequency

2 &

=

1—> ] )
T—l

i j)
Notice
Z (i) expected frequency )
A

- 1 )
= Estimate of Pmb(Next state S J.‘This. state Si)

We can re - estimate

Zs i.7)
Zm

We can also re - estimate
b, (0, )« (See Rabiner)

54



Max likelihood HMM estimation

We want @, = new estimate of P(q,,, =s,|q, =s5,)

Expected#tran51t10nsz—> il 27,0,0,,--0,

Z Expected # transitions i — k | 2, 0,, 0, ,-+- O,

T
ZP(qI+l =s,.q,=s,12",0,,0,,---0,)

=

N T
ZZP((]IH =S4, = 5; ‘ﬂOlda()Ia()za”'()T)
=1

=

S‘F
= ~ where S _ZP((]HI _ S C]; — 5 () ;r |ﬂ,01d)

2.5

k= = a?.j Z , (i)[))rﬂ (])bj (Or+l )

55



Max likelihood HMM estimation

N T
o vant @™ =S, / 'S, where S, =a, > a, ()., ()b(O,,)
k=1 =1




EM for HMMSs

* If we knew A we could estimate EXPECTATIONS of quantities such as
e Expected number of times in state i
* Expected number of transitions i — j

* If we knew the quantities such as
* Expected number of times in state i
* Expected number of transitions i — j

* We could compute the MAX LIKELIHOOD estimate of
A= (L {bi0)} m)



EM for HMMSs

Get your observations O, ...O
Guess your first A estimate A(0), k=0
kK = k+1

Given O, ...O+, A(k) compute
vi(i), &@ij) Y1<t<T, V1<isN, V1<j<N

Compute expected freq. of state i, and expected freq. i—|

s~ W Dh -~

Compute new estimates of a;, bi(k), 7; accordingly. Call
them A(k+1)

7. Goto 3, unless converged.

« Also known (for the HMM case) as the BAUM-WELCH
algorithm.



EM for HMMSs

e Bad news
* There are lots of local minima

* Good news
* The local minima are usually adequate models of the data

* Notice
 EM does not estimate the number of states. That must be given.
* Often, HMMs are forced to have some links with zero probability. This is done
by setting a;; = 0 in initial estimate A(0)
* Easy extension of everything seen today:
* HMMs with real valued outputs



