Lecture 13: Hidden Markov Model

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

A Markov system

- There are N states $S_1, S_2, ..., S_N$, and the time steps are discrete, t = 0, 1, 2, ...
- On the t-th time step the system is in exactly one of the available states. Call it q_t
- Between each time step, the next state is chosen only based on the information provided by the current state q_t
- The current state determines the probability distribution for the next state

Example

- Three states
- Current state: S₃

- Three states
- Current state: S₂

Current State

- Three states
- The transition matrix

$$P(q_{t+1}=s_1|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_2|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_3|q_t=s_2) = 0$$

$$P(q_{t+1}=s_1|q_t=s_1) = 0$$

$$P(q_{t+1}=s_2|q_t=s_1) = 0$$

$$P(q_{t+1}=s_3|q_t=s_1) = 1$$

$$S_{1}$$

$$S_{3}$$

$$N = 3$$

$$t=1$$

$$q_{t}=q_{1}=s_{2}$$

$$P(q_{t+1}=s_{1}|q_{t}=s_{3}) = 1/3$$

$$P(q_{t+1}=s_{2}|q_{t}=s_{3}) = 2/3$$

$$P(q_{t+1}=s_{3}|q_{t}=s_{3}) = 0$$

Markovian property

- q_{t+1} is independent of $\{q_{t-1}, q_{t-2}, \dots, q_0\}$ given q_t
- In other words:

$$P(q_{t+1} = s_j | q_t = s_i) =$$

$$P(q_{t+1} = s_j | q_t = s_i, any earlier history)$$

 $N = 3$

$$P(q_{t+1}=s_1|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_2|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_3|q_t=s_2) = 0$$

$$P(q_{t+1}=s_2|q_t=s_1) = 0$$

$$P(q_{t+1}=s_3|q_t=s_1) = 1$$

$$1/2$$

$$S_1$$

$$1/2$$

$$S_3$$

$$t=1$$

$$P(q_{t+1}=s_1|q_t=s_3) = 1/3$$

$$P(q_{t+1}=s_1|q_t=s_3) = 1/3$$

$$P(q_{t+1}=s_2|q_t=s_3) = 2/3$$

$$P(q_{t+1}=s_3|q_t=s_3) = 0$$

Example 2

7

Markovian property

Hidden Markov Model

Example

• A human and a robot wander around randomly on a grid

• Each time step the human/robot moves randomly to an adjacent cell

- Typical Questions:
 - "What's the expected time until the human is crushed like a bug?"
 - "What's the probability that the robot will hit the left wall before it hits the human?"
 - "What's the probability Robot crushes human on next time step?"

- The currently time is t, and human remains uncrushed. What's the probability of crushing occurring at time t + 1?
- If robot is blind:
 - We can compute this in advance
- If robot is omnipotent (i.e. if robot knows current state):
 - can compute directly
- If robot has some sensors, but incomplete state information
 - Hidden Markov Models are applicable

We'll do this first

$$P(q_t = s)$$
 -- A clumsy solution

• Step 1: Work out how to compute P(Q) for any path $Q = q_1 q_2 \cdots q_t$

Given we know the start state q_1 (i.e. $P(q_1)=1$) $P(q_1 q_2 ... q_t) = P(q_1 q_2 ... q_{t-1}) P(q_t | q_1 q_2 ... q_{t-1})$ $= P(q_1 q_2 ... q_{t-1}) P(q_t | q_{t-1}) WHY?$ $= P(q_2 | q_1) P(q_3 | q_2) ... P(q_t | q_{t-1})$

• Step 2: Use this knowledge to get $P(q_t = s)$

$$P(q_t = s) = \sum_{Q \in \text{Paths of length } t \text{ that end in } s} P(Q)$$

$$P(q_t = s)$$
 -- A cleverer solution

- For each state S_i , define $p_t(i) = P(q_t = S_i)$ to be the probability of state S_i at time t
- Easy to do inductive computation

$$\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

$$\sum_{i=1}^N P(q_{t+1} = s_j \land q_t = s_i) =$$

$$\sum_{i=1}^N P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^N a_{ij} p_t(i)$$

$$P(q_t = s)$$
 -- A cleverer solution

- For each state S_i , define $p_t(i) = P(q_t = S_i)$ to be the probability of state S_i at time t
- Easy to do inductive computation

$$\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) = \sum_{i=1}^N P(q_{t+1} = s_j \land q_t = s_i) = \sum_{i=1}^N P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^N a_{ij} p_t(i)$$

Complexity comparison

- Cost of computing $p_t(i)$ for all states S_i is now $O(tN^2)$
 - Why?
- The first method has $O(N^t)$
 - Why?

 This is the power of dynamic programming that is widely used in HMM

- It's currently time t, and human remains uncrushed. What's the probability of crushing occurring at time t + 1
- If robot is blind:
 - We can compute this in advance
- If robot is omnipotent (I.E. If robot knows state at time t):
 can compute directly
- If robot has some sensors, but incomplete state information
 - Hidden Markov Models are applicable

We'll do this first

Too Easy. We

won't do this

Main Bod

of Lectu

Hidden state

- The previous example tries to estimate $P(q_t = S_i)$ unconditionally (no other information)
- Suppose we can observe something that's affected by the true state

True state q_t

What the robot see (uncorrupted data)

W		W
	R	W
Н	Н	

What the robot see (corrupted data) 17

Noisy observation of hidden state

- Let's denote the observation at time t by O_t
- O_t is noisily determined depending on the current state
- Assume that O_t is conditionally independent of $\{q_{t-1}, q_{t-2}, \dots, q_0, O_{t-1}, O_{t-2}, \dots, O_1, O_0\}$ given q_t

Hidden Markov Model

• In other words

 $P(O_t = X | q_t = s_i) =$

 $P(O_t = X | q_t = s_i, any earlier history)$

Example

Hidden Markov models

- The robot with noisy sensors is a good example
- Question 1: (Evaluation) State estimation:
 - what is $P(q_t = S_i | O_1, \dots, O_t)$
- Question 2: (Inference) Most probable path:
 - Given $O_1, ..., O_t$, what is the most probable path of the states? And what is the probability?
- Question 3: (Leaning) Learning HMMs:
 - Given $O_1, ..., O_t$, what is the maximum likelihood HMM that could have produced this string of observations?
 - MLE

Application of HMM

- Robot planning + sensing when there's uncertainty
- Speech recognition/understanding
 - Phones \rightarrow Words, Signal \rightarrow phones
- Human genome project
- Consumer decision modeling
- Economics and finance

Basic operations in HMMs

• For an observation sequence $O = O_1, \dots, O_T$, three basic HMM operations are:

Problem	Algorithm	Complexity
Evaluation:	Forward-Backward	$O(TN^2)$
Calculating $P(q_t=S_i O_1O_2O_t)$		
Inference:	Viterbi Decoding	$O(TN^2)$
Computing Q [*] = argmax _Q P(Q O)		-(,
Learning:	Baum-Welch (EM)	$O(TN^2)$
Computing $\lambda^* = \arg \max_{\lambda} P(O \lambda)$		-()

T = # timesteps, N = # states

Formal definition of HMM

- The states are labeled S_1, S_2, \dots, S_N
- For a particular trial, let
 - *T* be the number of observations
 - *N* be the number of states
 - *M* be the number of possible observations
 - $(\pi_1, \pi_2, ..., \pi_N)$ is the starting state probabilities
 - $O = O_1 \dots O_T$ is a sequence of observations
 - $Q = q_1 q_2 \cdots q_t$ is a path of states
- Then $\lambda = \langle N, M, \{\pi_{i,j}\}, \{a_{ij}\}, \{b_i(j)\} \rangle$ is the specification of an HMM > The definition of a_{ij} and $b_i(j)$ will be introduced in next page

Formal definition of HMM (cont.)

• The definition of a_{ij} and $b_i(j)$

a_{1N} a₂₂ a₁₁ • • • The state transition probabilities a_{2N} a₂₂ a_{21} ... : : $P(q_{t+1}=S_i | q_t=S_i)=a_{ii}$ a_{N2} a_{N1} a_{NN} ... $b_1(M)$ $b_1(1)$ $b_1(2)$... The observation probabilities $b_2(1)$ $b_2(2)$ $b_2(M)$ $P(O_t=k | q_t=S_i)=b_i(k)$ $b_{N}(2)$ $b_N(M)$ $b_{N}(1)$

Example

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations:

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations: 50-50 choice between X and Y $q_0 = S_1 \quad O_0 = \Box_1$ $q_1 = \Box_1 \quad O_1 = \Box_1$ $q_2 = \Box_2 \quad O_2 = \Box_2$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations: Goto S₃ with probability 2/3 or S₂ with prob. 1/3 $\boxed{q_0 = S_1 \quad O_0 = X}$ $\boxed{q_0 = Q_1 = Q_2 =$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations: 50-50 choice between Z and X $q_0 = S_1 \quad O_0 = X$ $q_1 = S_3 \quad O_1 = Q_2$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations:

	\bigcirc		
$q_0 =$	S ₁	<i>O</i> ₀ =	Х
<i>q</i> ₁ =	S ₃	O ₁ =	Х
$q_2 =$	0	O ₂ =	

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations: 50-50 choice between Z and X $O_0 =$ Х $q_0 =$ S₁ S_3 Х O₁= $q_1 =$ $^{\circ}$ $O_2 =$ S, $q_2 =$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations:

$q_0 =$	S ₁	<i>O</i> ₀ =	Х
q ₁ =	S ₃	O ₁ =	Х
q ₂ =	S ₃	O ₂ =	Z

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

This is what the observer has to work with				
$q_0 =$?	$O_0 =$	X	
$q_0 =$ $q_1 =$? ?	0 ₀ = 0 ₁ =	X X	

• What is $P(0) = P(0_1 0_2 0_3) = P(0_1 = X \land 0_2 = X \land 0_3 = Z)$?

• How do we compute P(O|Q) for an arbitrary path Q?

• P(Q) for an arbitrary path Q

 $P(Q) = P(q_1, q_2, q_3)$

=P(q₁) P(q₂,q₃|q₁) (chain rule) =P(q₁) P(q₂|q₁) P(q₃| q₂,q₁) (chain) =P(q₁) P(q₂|q₁) P(q₃| q₂) (why?) Example in the case Q = S₁ S₃ S₃: =1/2 * 2/3 * 1/3 = 1/9

• P(O|Q) for an arbitrary path Q

P(O|Q)

- = $P(O_1 O_2 O_3 | q_1 q_2 q_3)$
- = $P(O_1 | q_1) P(O_2 | q_2) P(O_3 | q_3)$ (why?)

Example in the case $Q = S_1 S_3 S_3$:

- $= P(X|S_1) P(X|S_3) P(Z|S_3) =$
- =1/2 * 1/2 * 1/2 = 1/8

- Computation complexity of the slow stupid answer:
 - P(O) would require 27 P(Q) and 27 P(O|Q)
 - A sequence of 20 observations would need 3²⁰=3.5 billion P(Q) and 3.5 billion P(O|Q)
- So we have to find some smarter answer

- Smart answer (based on dynamic programming)
- Given observations $O_1 O_2 \dots O_T$
- Define: $\alpha_t(i) = P(O_1 \ O_2 \ \dots \ O_t \ \land q_t = S_i \mid \lambda)$ where $1 \le t \le T$

 $\alpha_t(i)$ = Probability that, in a random trial,

- We'd have seen the first t observations
- We'd have ended up in S_i as the t'th state visited.
- In the example, what is $\alpha_2(3)$?

 $\alpha_t(i)$: easy to define recursively $\alpha_1(i) = \mathbf{P}(O_1 \wedge q_1 = S_i)$ $= P(q_1 = S_i)P(O_1|q_1 = S_i)$ what? $\alpha_{t+1}(j) = P(O_1 O_2 ... O_t O_{t+1} \land q_{t+1} = S_j)$ $=\sum_{i=1}^{N} \mathbb{P}(O_1 O_2 \dots O_t \wedge q_t = S_i \wedge O_{t+1} \wedge q_{t+1} = S_j)$ $=\sum_{i=1}^{N} P(O_{t+1}, q_{t+1} = S_j | O_1 O_2 ... O_t \land q_t = S_i) P(O_1 O_2 ... O_t \land q_t = S_i)$ $= \sum P(O_{t+1}, q_{t+1} = S_j | q_t = S_i) \alpha_t(i)$ $= \sum P(q_{t+1} = S_j | q_t = S_i) P(O_{t+1} | q_{t+1} = S_j) \alpha_t(i)$ $=\sum a_{ij}b_j(O_{t+1})\alpha_t(i)$

40

$\alpha_t(i)$ in the example

$$\alpha_t(i) = P(O_1 O_2 .. O_t \land q_t = S_i | \lambda)$$

$$\alpha_1(i) = b_i(O_1) \pi_i$$

$$\alpha_{t+1}(j) = \sum_i a_{ij} b_j(O_{t+1}) \alpha_t(i)$$

• We see $O_1 O_2 O_3 = XXZ$

 $\alpha_{1}(1) = \frac{1}{4} \qquad \alpha_{1}(2) = 0 \qquad \alpha_{1}(3) = 0$ $\alpha_{2}(1) = 0 \qquad \alpha_{2}(2) = 0 \qquad \alpha_{2}(3) = \frac{1}{12}$ $\alpha_{3}(1) = 0 \qquad \alpha_{3}(2) = \frac{1}{72} \qquad \alpha_{3}(3) = \frac{1}{72}$

Easy question

• We can cheaply compute

 $\alpha_t(i) = P(O_1O_2...O_t \land q_t = S_i)$

• (How) can we cheaply compute

 $P(O_1O_2...O_t)$?

• (How) can we cheaply compute

 $P(q_t = S_i | O_1 O_2 \dots O_t)$

Easy question (cont.)

• We can cheaply compute

 $\alpha_t(i)=P(O_1O_2...O_t \land q_t=S_i)$

• (How) can we cheaply compute

$$P(O_1O_2...O_t)$$
 ?

 $\frac{\alpha_t(i)}{\sum\limits_{j=1}^N \alpha_t(j)}$

• (How) can we cheaply compute

 $P(q_t = S_i | O_1 O_2 ... O_t)$

Recall: Hidden Markov models

- The robot with noisy sensors is a good example
- Question 1: (Evaluation) State estimation:
 - what is $P(q_t = S_i | O_1, \dots, O_t)$
- Question 2: (Inference) Most probable path:
 - Given $O_1, ..., O_t$, what is the most probable path of the states? And what is the probability?
- Question 3: (Leaning) Learning HMMs:
 - Given $O_1, ..., O_t$, what is the maximum likelihood HMM that could have produced this string of observations?
 - MLE

Most probable path (MPP) given observations

What's most probable path given $O_1 O_2 \dots O_T$, i.e. What is **argmax** $P(Q|O_1O_2...O_T)$? Slow, stupid answer: $\underset{Q}{\operatorname{argmax}} P(Q|O_1O_2...O_T)$ $= \operatorname{argmax}_{O} \frac{P(O_1 O_2 \dots O_T | Q) P(Q)}{P(O_1 O_2 \dots O_T)}$ $= \operatorname{argmax} P(O_1 O_2 \dots O_T | Q) P(Q)$

Efficient MPP computation

• We're going to compute the following variables

$$δ_t(i) = max P(q_1 q_2 ... q_{t-1} \land q_t = S_i \land O_1 ... O_t)
q_1 q_2 ... q_{t-1}$$

- It's the probability of the path of length t 1 with the maximum chance of doing all these things OCCURING and ENDING UP IN STATE S_i and PRODUCING OUTPUT O₁...O_t
- DEFINE: mpp_t(i) = that path
- So: $\delta_t(i) = Prob(mpp_t(i))$

The Viterbi algorithm

$$\begin{split} \delta_{t}(i) &= q_{1}q_{2}...q_{t-1} \quad P(q_{1}q_{2}...q_{t-1} \land q_{t} = S_{i} \land O_{1}O_{2}..O_{t}) \\ \text{argmax} \\ mpp_{t}(i) &= q_{1}q_{2}...q_{t-1} \quad P(q_{1}q_{2}...q_{t-1} \land q_{t} = S_{i} \land O_{1}O_{2}..O_{t}) \\ \delta_{1}(i) &= \text{one choice } P(q_{1} = S_{i} \land O_{1}) \\ &= P(q_{1} = S_{i})P(O_{1}|q_{1} = S_{i}) \\ &= \pi_{i}b_{i}(O_{1}) \\ \end{split}$$
Now, suppose we have all the $\delta_{t}(i)$'s and mpp_{t}(i)'s for all i.
HOW TO GET $\delta_{t+1}(j)$ and $mpp_{t+1}(j)$?
 $mpp_{t}(2)$
 \vdots $mpp_{t}(2)$
 \vdots $mpp_{t}(2)$
 \vdots $mpp_{t}(N)$
 $Prob=\delta_{t}(2)$
 $Prob=\delta_{t}(N)$
 q_{t}
 q_{t+1}

The Viterbi algorithm (cont.)

The most prob path with last two states $S_i S_j$ is the most prob path to S_i , followed by transition $S_i \rightarrow S_i$

time t+1

The Viterbi algorithm (cont.)

The Viterbi algorithm (cont.)

- Summary
- What is the prob of that path?
 - $\delta_t(i) \mathrel{x} \mathsf{P}(S_i \mathop{\rightarrow} S_j \wedge O_{t+1} \mid \lambda)$
 - $= \delta_t(i) a_{ij} b_j (O_{t+1})$
- SO The most probable path to S_j has S_{i*} as its penultimate state where i*=argmax δ_t(i) a_{ij} b_j (O_{t+1})
 - $\begin{array}{l} \delta_{t+1}(j) = \delta_t(i^*) a_{ij} b_j (O_{t+1}) \\ mpp_{t+1}(j) = mpp_{t+1}(i^*)S_{i^*} \end{array} \hspace{0.5cm} \text{with i* defined} \\ to the left \end{array}$

Recall: Hidden Markov models

- The robot with noisy sensors is a good example
- Question 1: (Evaluation) State estimation:
 - what is $P(q_t = S_i | O_1, \dots, O_t)$
- Question 2: (Inference) Most probable path:
 - Given $O_1, ..., O_t$, what is the most probable path of the states? And what is the probability?
- Question 3: (Leaning) Learning HMMs:
 - Given $O_1, ..., O_t$, what is the maximum likelihood HMM that could have produced this string of observations?
 - MLE

Inferring an HMM

• Remember, we've been doing things like

 $P(O_1 O_2 .. O_T | \lambda)$

- That " λ " is the notation for our HMM parameters
- Now we want to estimate λ from the observations
- AS USUAL: We could use

```
(i) MAX LIKELIHOOD \lambda = \operatorname{argmax} P(O_1 .. O_T | \lambda)
\lambda
```

```
(ii) BAYES
Work out P(\lambda \mid O_1 .. O_T)
and then take E[\lambda] or max P(\lambda \mid O_1 .. O_T)
```

• Define:
$$\gamma_t(i) = P(q_t = S_i | O_1 O_2 ... O_T, \lambda)$$

 $\epsilon_t(i,j) = P(q_t = S_i \land q_{t+1} = S_j | O_1 O_2 ... O_T, \lambda)$

 $\gamma_t(i)$ and $\epsilon_t(i,j)$ can be computed efficiently $\forall i,j,t$ (Details in Rabiner paper)

- $\sum_{t=1}^{T-1} \gamma_t(i) =$ Expected number of transitions out of state i during the path
- $\sum_{t=1}^{T-1} \mathcal{E}_t(i, j) = \text{Expected number of transitions from state i to state j during the path}$

Notice
$$\frac{\sum_{t=1}^{T-1} \varepsilon_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)} = \frac{\begin{pmatrix} \text{expected frequency} \\ i \to j \end{pmatrix}}{\begin{pmatrix} \text{expected frequency} \\ i \end{pmatrix}}$$
$$= \text{Estimate of Prob}(\text{Next state } S_j | \text{This state } S_i$$

We can re - estimate

$$\mathbf{a}_{ij} \leftarrow \frac{\sum \varepsilon_t(i, j)}{\sum \gamma_t(i)}$$

We can also re - estimate

 $b_j(O_k) \leftarrow \cdots$ (See Rabiner)

We want
$$a_{ij}^{\text{new}} = \text{new estimate of } P(q_{t+1} = s_j | q_t = s_i)$$

$$= \frac{\text{Expected \# transitions } i \rightarrow j | \lambda^{old}, O_1, O_2, \cdots O_T}{\sum_{k=1}^{N} \text{Expected \# transitions } i \rightarrow k | \lambda^{old}, O_1, O_2, \cdots O_T}$$

$$= \frac{\sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i | \lambda^{old}, O_1, O_2, \cdots O_T)}{\sum_{k=1}^{N} \sum_{t=1}^{T} P(q_{t+1} = s_k, q_t = s_i | \lambda^{old}, O_1, O_2, \cdots O_T)}$$

$$= \frac{S_{ij}}{\sum_{k=1}^{N} S_{ik}} \text{ where } S_{ij} = \sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i, O_1, \dots O_T \mid \lambda^{\text{old}})$$
$$= a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$$

We want
$$a_{ij}^{\text{new}} = S_{ij} / \sum_{k=1}^{N} S_{ik}$$
 where $S_{ij} = a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$

EM for HMMs

- If we knew λ we could estimate EXPECTATIONS of quantities such as
 - Expected number of times in state *i*
 - Expected number of transitions $i \rightarrow j$
- If we knew the quantities such as
 - Expected number of times in state *i*
 - Expected number of transitions $i \rightarrow j$
- We could compute the MAX LIKELIHOOD estimate of

 $\lambda = \langle \{a_{ij}\}, \{b_i(j)\}, \pi_i \rangle$

EM for HMMs

- 1. Get your observations $O_1 \dots O_T$
- 2. Guess your first λ estimate $\lambda(0)$, k=0
- 3. k = k+1
- 5. Compute expected freq. of state i, and expected freq. $i \rightarrow j$
- 6. Compute new estimates of a_{ij} , $b_j(k)$, π_i accordingly. Call them $\lambda(k+1)$
- 7. Goto 3, unless converged.
- Also known (for the HMM case) as the BAUM-WELCH algorithm.

EM for HMMs

- Bad news
 - There are lots of local minima
- Good news
 - The local minima are usually adequate models of the data
- Notice
 - EM does not estimate the number of states. That must be given.
 - Often, HMMs are forced to have some links with zero probability. This is done by setting $a_{ij} = 0$ in initial estimate $\lambda(0)$
 - Easy extension of everything seen today:
 - HMMs with real valued outputs