Lecture 2: Basics

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

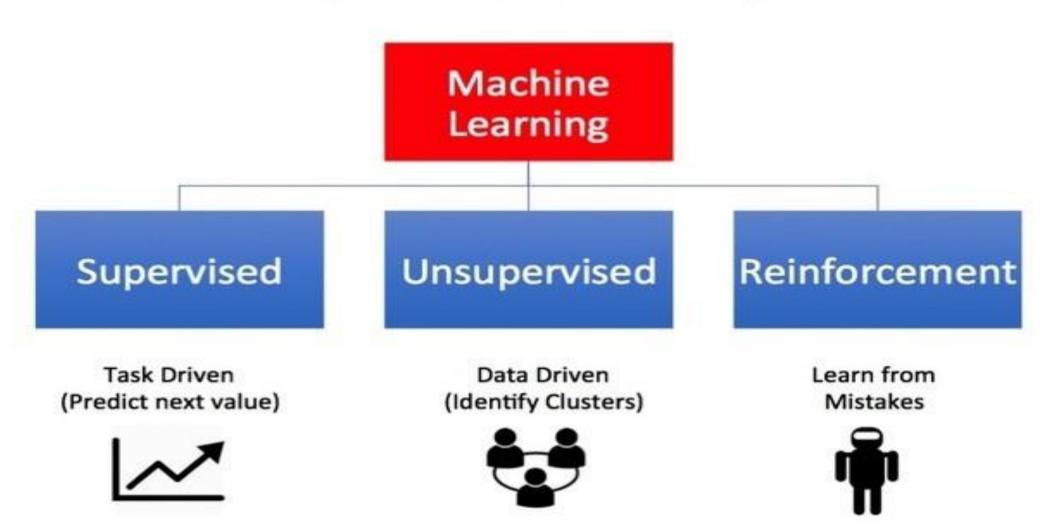
Last lecture

- What is Machine Learning and what is Artificial Intelligence
- An example of AI but not ML
 - A* algorithm
- History of ML
 - Deduction
 - Learning from samples (deep learning)
- Recent progress
 - Computer vision/speech recognition/natural language processing/game AI
- Many applications
 - Many industries/many aspects of life

Today's lecture

- The classification of machine learning
 - Supervised/unsupervised/reinforcement
- Supervised learning
 - Evaluation metrics for classification
 - Accuracy/Precision/Recall/F1 score
 - Evaluation metrics for regression
 - Pearson coefficient/coefficient of determination
 - Model selection: bias/variance/generalization
 - Machine learning process
 - Generalization error bound (next time)

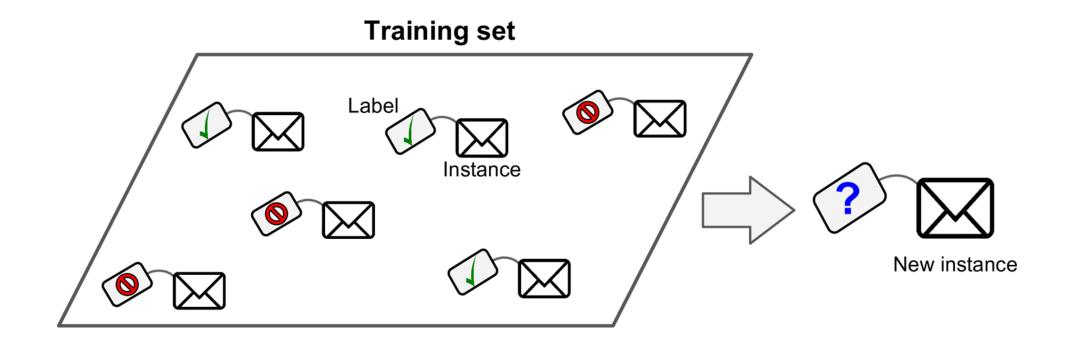
Types of Machine Learning



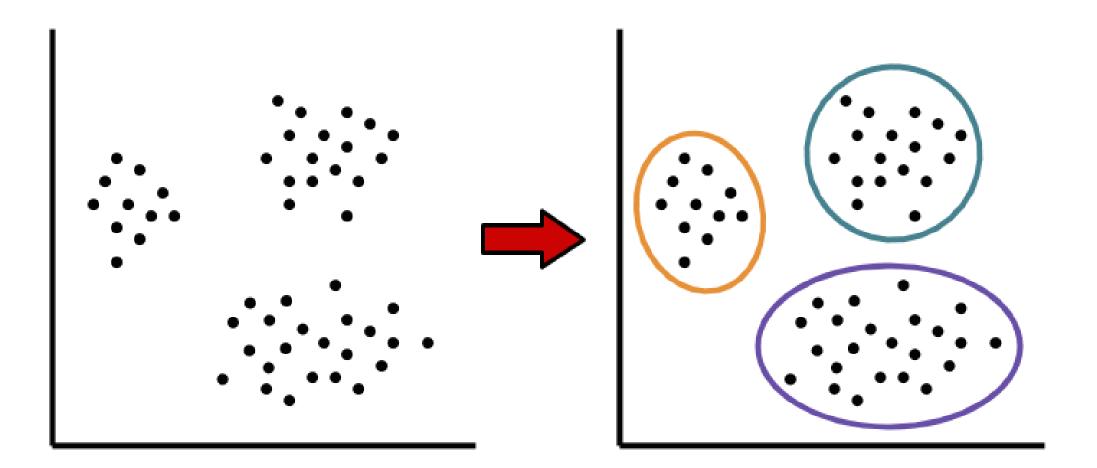
Machine Learning Categories

- Unsupervised learning
 - No labeled data
- Supervised learning
 - Use labeled data to predict on unseen points
- Semi-supervised learning
 - Use labeled data and unlabeled data to predict on unlabeled/unseen points
- Reinforcement learning
 - Sequential prediction and receiving feedbacks

Supervised learning example

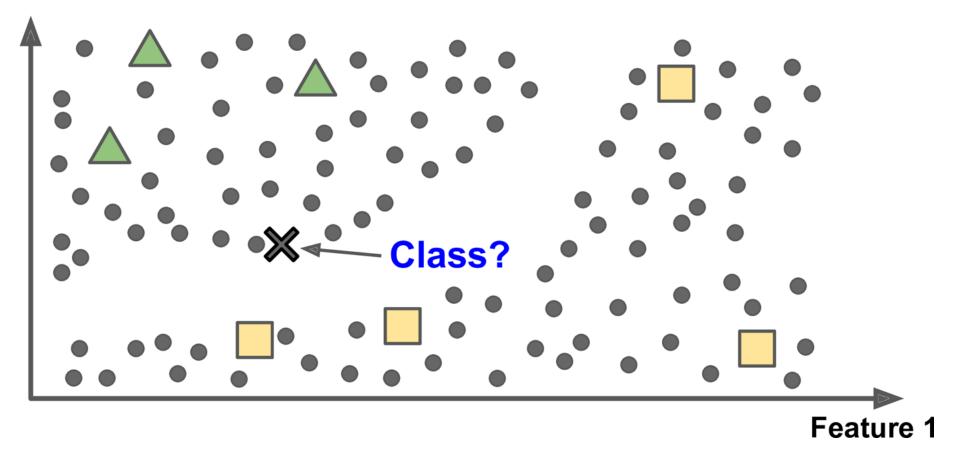


Unsupervised learning example

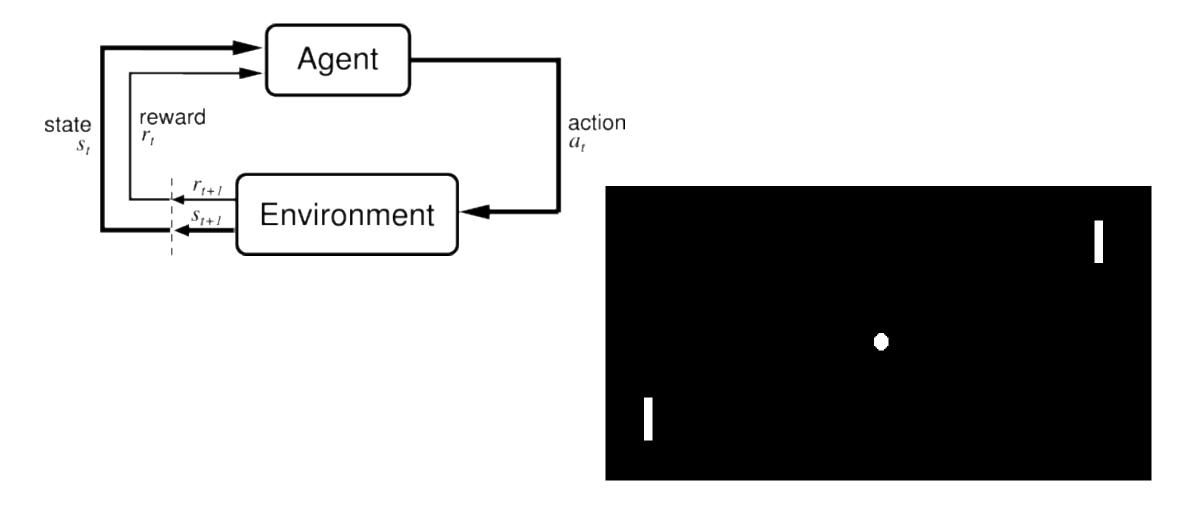


Semi-supervised learning example

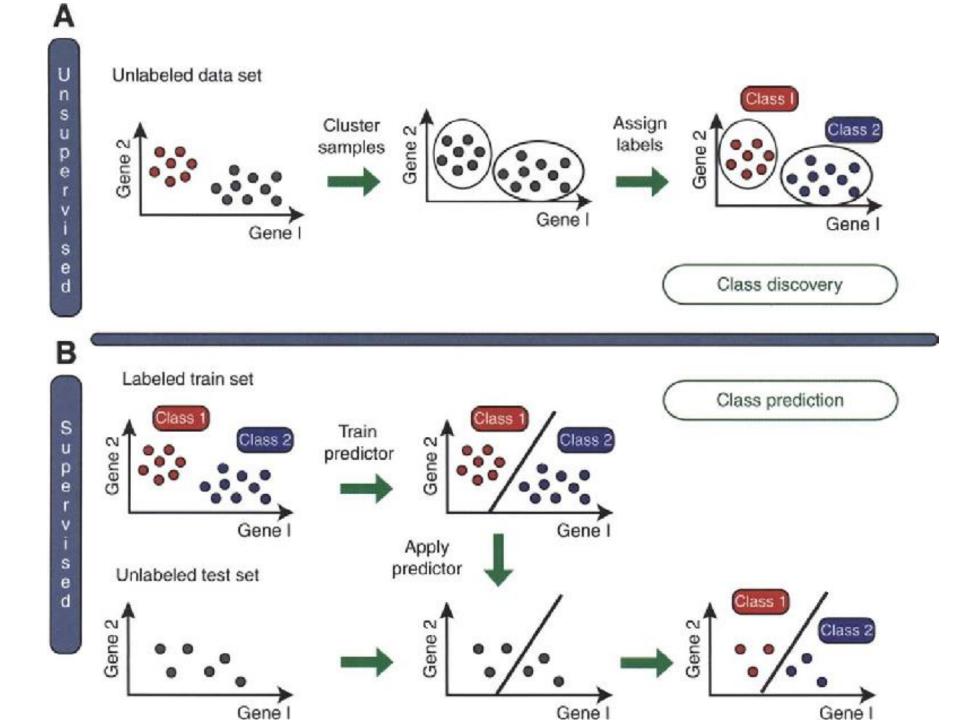
Feature 2



Reinforcement learning example

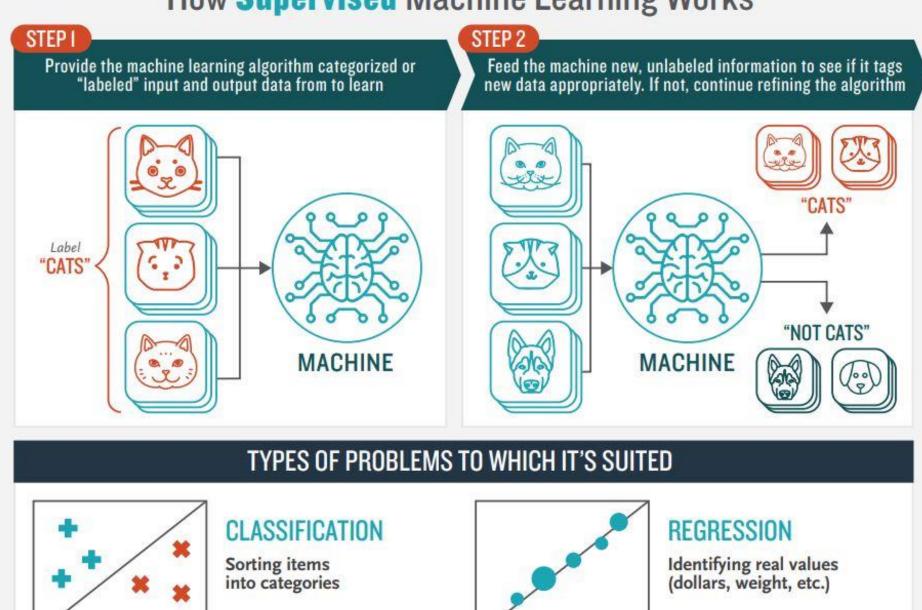


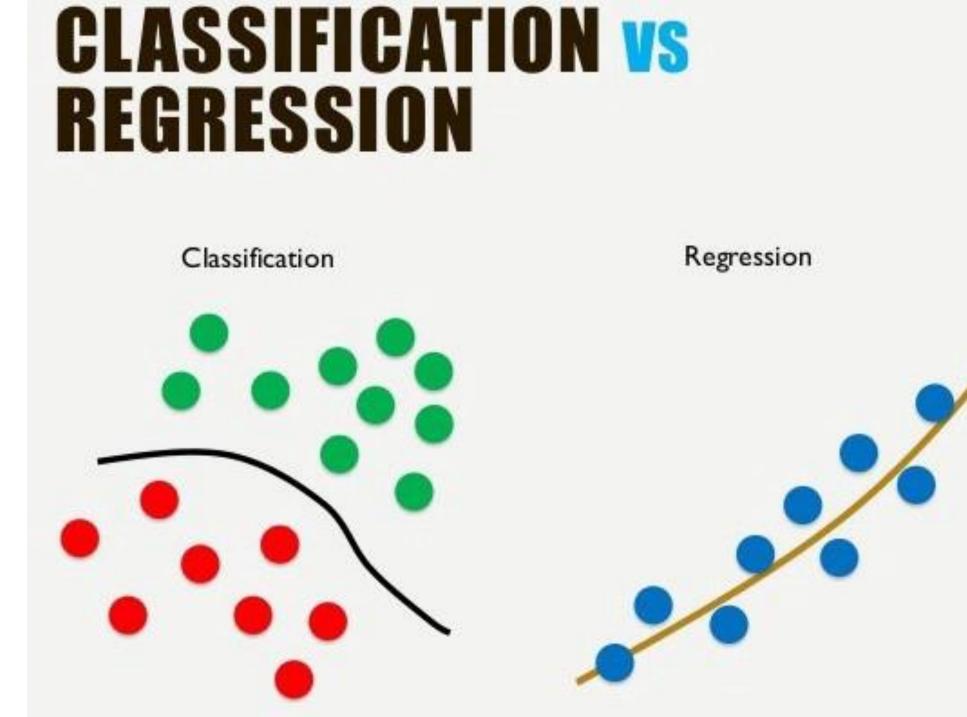
Supervised Learning	Unsupervised Learning
Input data is labelled	Input data is unlabeled
Uses training dataset	Uses just input dataset
Used for prediction	Used for analysis
Classification and regression	Clustering, density estimation and dimensionality reduction



Supervised Learning

How Supervised Machine Learning Works

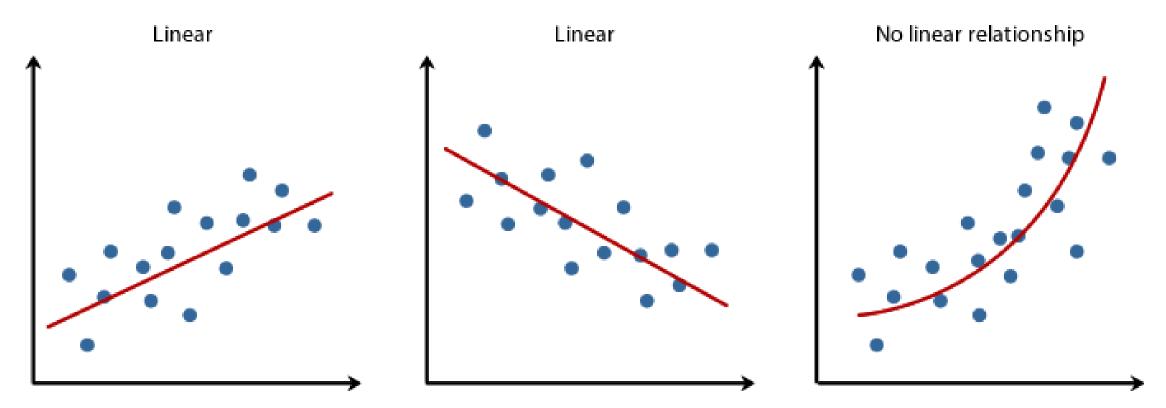




Classification -- Handwritten digits

ð	}	2	3	ч	5	6	7	8	9
0	ſ	г	3	4	5	6	7	8	9
О	l	2	3	44	5	٢	7	8	٩
0	1	2	ż	4	5	6	7	8	٩
٥		2	3	4	5	6	7	8	9
0	/	У	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	S	9
0	1	2	3	9	5	6	7	8	9
0	1	à	3	4	5	6	7	8	9
0	/	2	3	4	5	6	7	8	9

Regression example

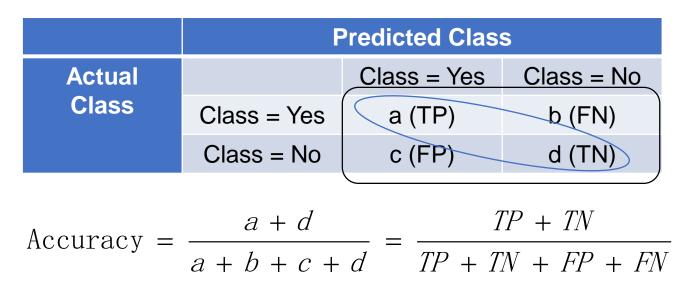


Copyright 2014. Laerd Statistics.

Model Evaluations

• Confusion Matrix

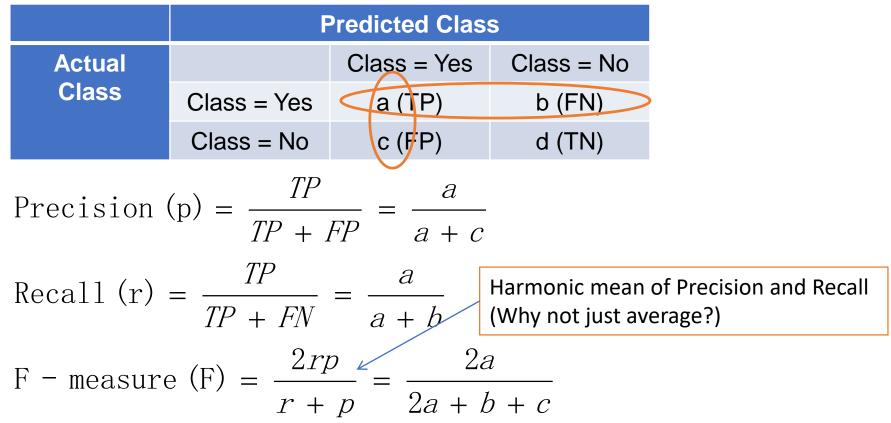
- TP True Positive ; FP False Positive
- FN False Negative; TN True Negative

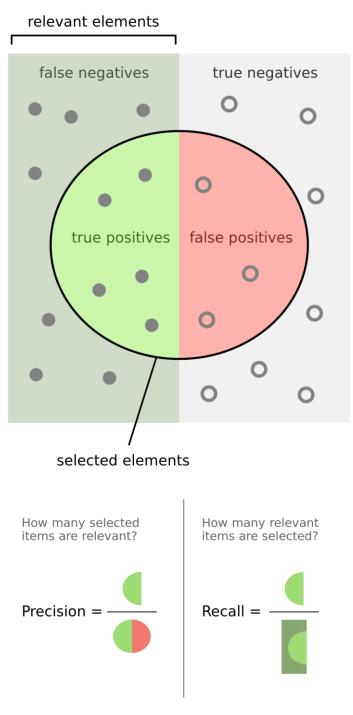


- Given a set of records containing positive and negative results, the computer is going to classify the records to be positive or negative.
- Positive: The computer classifies the result to be positive
- Negative: The computer classifies the result to be negative
- True: What the computer classifies is true
- False: What the computer classifies is false

- Limitation of Accuracy
 - Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
 - If a "stupid" model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- The accuracy is misleading because the model does not detect any example in class 1

Cost-sensitive measures





How to understand

- A school is running a machine learning primary diabetes scan on all of its students
 - Diabetic (+) / Healthy (-)
 - False positive is just a false alarm
 - False negative
 - Prediction is healthy but is diabetic
 - Worst case among all 4 cases
- Accuracy
 - Accuracy = (TP+TN)/(TP+FP+FN+TN)
 - How many students did we correctly label out of all the students?

How to understand (cont.)

- A school is running a machine learning primary diabetes scan on all of its students
 - Diabetic (+) / Healthy (-)
 - False positive is just a false alarm
 - False negative
 - Prediction is healthy but is diabetic
 - Worst case among all 4 cases
- Precision
 - Precision = TP/(TP+FP)
 - How many of those who we labeled as diabetic are actually diabetic?

How to understand (cont.)

- A school is running a machine learning primary diabetes scan on all of its students
 - Diabetic (+) / Healthy (-)
 - False positive is just a false alarm
 - False negative
 - Prediction is healthy but is diabetic
 - Worst case among all 4 cases
- Recall (sensitivity)
 - Recall = TP/(TP+FN)
 - Of all the people who are diabetic, how many of those we correctly predict?

F1 score (F-Score / F-Measure)

- F1 Score = 2*(Recall * Precision) / (Recall + Precision)
- Harmonic mean (average) of the precision and recall
- F1 Score is best if there is some sort of balance between precision (p) & recall (r) in the system. Oppositely F1 Score isn't so high if one measure is improved at the expense of the other.
- For example, if P is 1 & R is 0, F1 score is 0.

Which to choose

- Accuracy
 - A great measure
 - But only when you have symmetric datasets (FN & FP counts are close)
 - Also, FN & FP have similar costs
- F1 score
 - If the cost of FP and FN are different
 - F1 is best if you have an uneven class distribution
- Recall
 - If FP is far better than FN or if the occurrence of FN is unaccepted/intolerable
 - Would like more extra FP (false alarms) over saving some FN
 - E.g. diabetes. We'd rather get some healthy people labeled diabetic over leaving a diabetic person labeled healthy
- Precision
 - Want to be more confident of your TP
 - E.g. spam emails. We'd rather have some spam emails in inbox rather than some regular emails in your spam box.

Example

• Given 30 human photographs, a computer predicts 19 to be male, 11 to be female. Among the 19 male predictions, 3 predictions are not correct. Among the 11 female predictions, 1 prediction is not correct.

	Predicted Class			
Actual Class		Male	Female	
	Male	a = TP = 16	b = FN = 1	
	Female	c = FP = 3	d = TN = 10	

Example

	Predicted Class			
Actual Class		Male	Female	
	Male	a = TP = 16	b = FN = 1	
	Female	c = FP = 3	d = TN = 10	

- Accuracy = (16 + 10) / (16 + 3 + 1 + 10) = 0.867
- Precision = 16 / (16 + 3) = 0.842
- Recall = 16 / (16 + 1) = 0.941
- F-measure = 2(0.842)(0.941) / (0.842 + 0.941)

= 0.889

Discussion

- "In a specific case, precision cannot be computed." Is the statement true? Why?
- If the statement is true, can F-measure be computed in that case?

	а	b	С	\leftarrow Classified as
а	ТР	FN	FN	a: positive
b	FP	TN	TN	a: positive b: negative c: negative
С	FP	TN	TN	c: negative

• How about if b is positive, a and c are negative, or if c is positive, a and b are negative ?

Regression-Model Evaluation

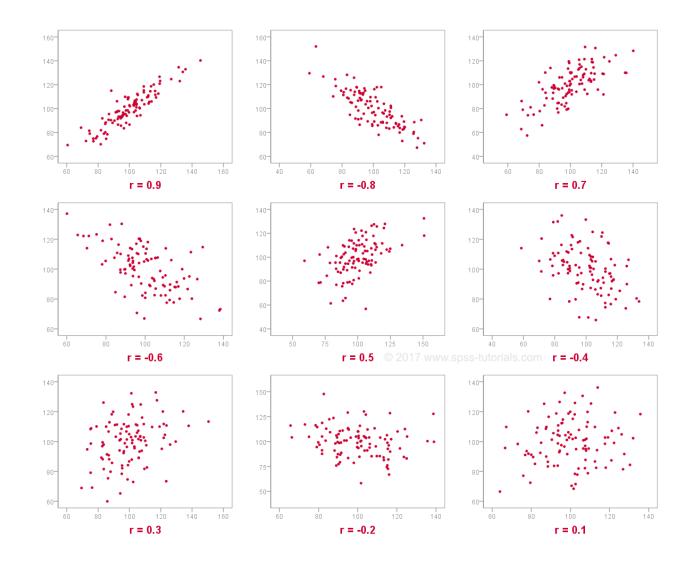
- Pearson correlation measures the linear association between continuous variables
 - Quantifies the degree to which a relationship between two variables can be described by a line.

$$r_{XY} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

• Remember the definition of cosine between vectors:

$$\cos(heta) = rac{\mathbf{A}\cdot\mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Examples of Pearson correlation



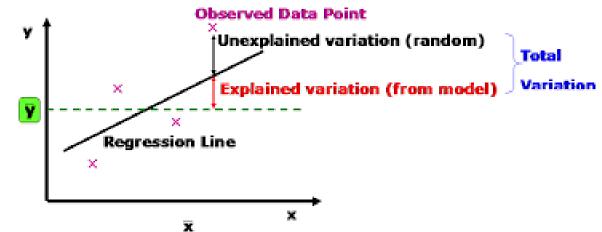
Limitation

- Only linear correlation can be detected.
- Clearly, there are some relationship between X and Y, but the correlation is only 0.02.

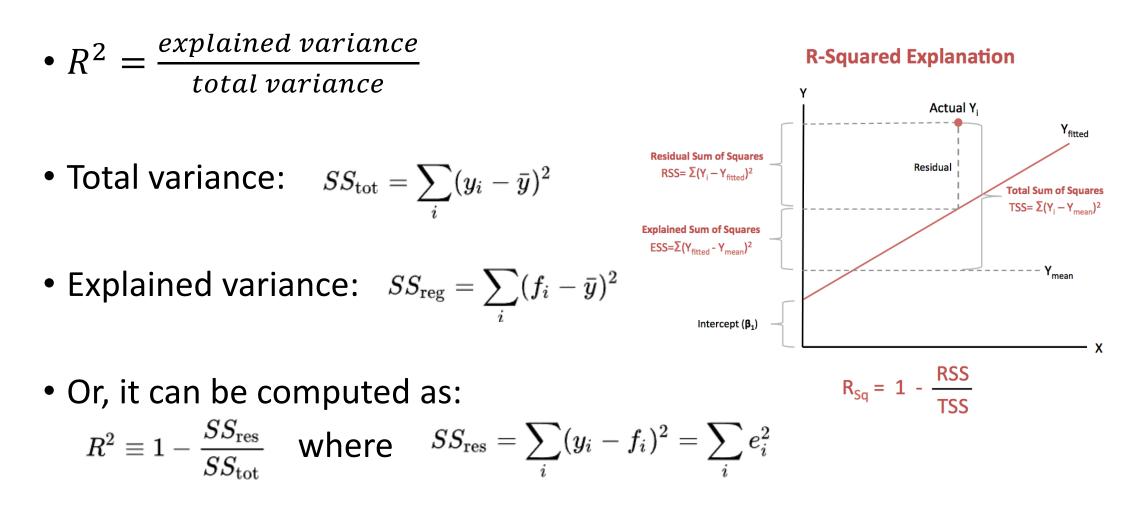


Coefficient of determination

- Coefficient of determination (R²) is the proportion of the variance in the dependent variable that is predictable from the independent variable.
- It measures how much of the residue can be explained by the regression line



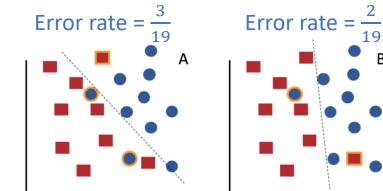
Regression -- Model evaluation

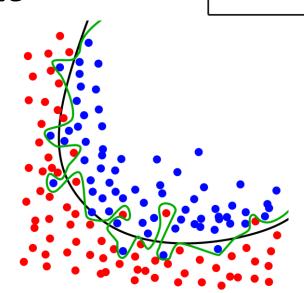


Model Selections

Minimize the error rate?

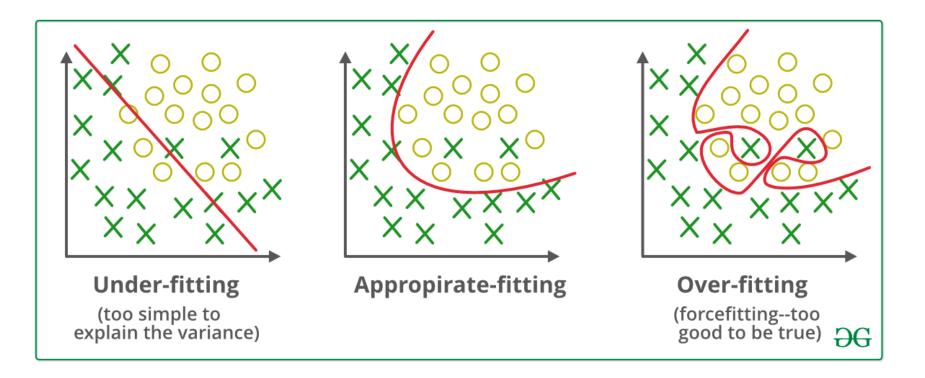
- Given a data set S
- Error rate = $\frac{\# \text{ of Errors}}{\# \text{ of Total Samples}}$
- Accuracy = 1 Error rate





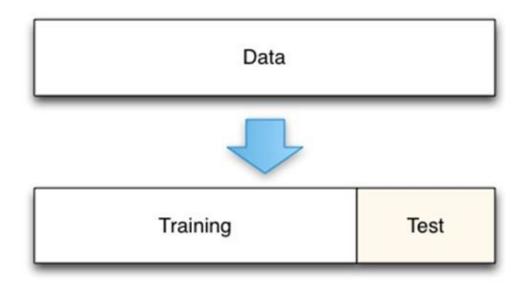
https://malware.news/uploads/default/original/3X/6/d/6df12e50b7f97cdba92697ce164cbe4a5502a349.png https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Overfitting.svg/1200px-Overfitting.svg.png

Fitting



Split training and test

- Split dataset to training and test
- Train models on training dataset
- The evaluation of the model is the error on test dataset



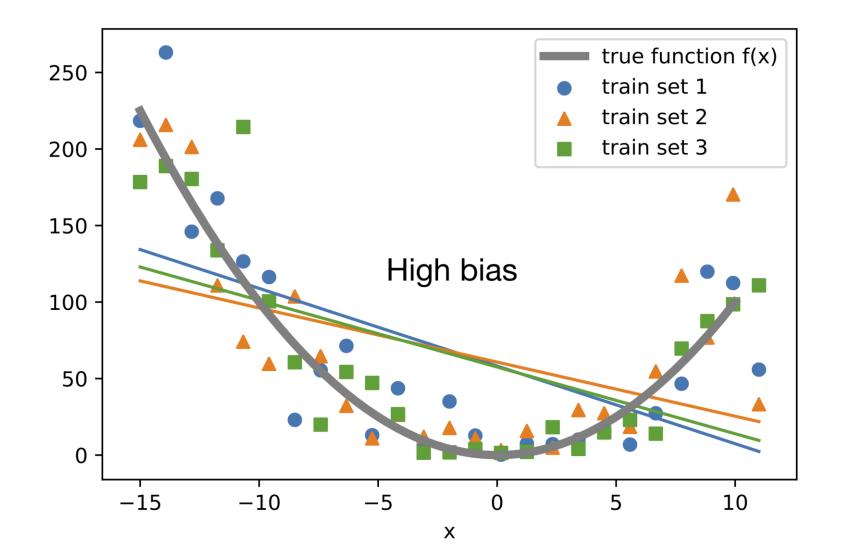
• Might overfit the training dataset

Cross validation



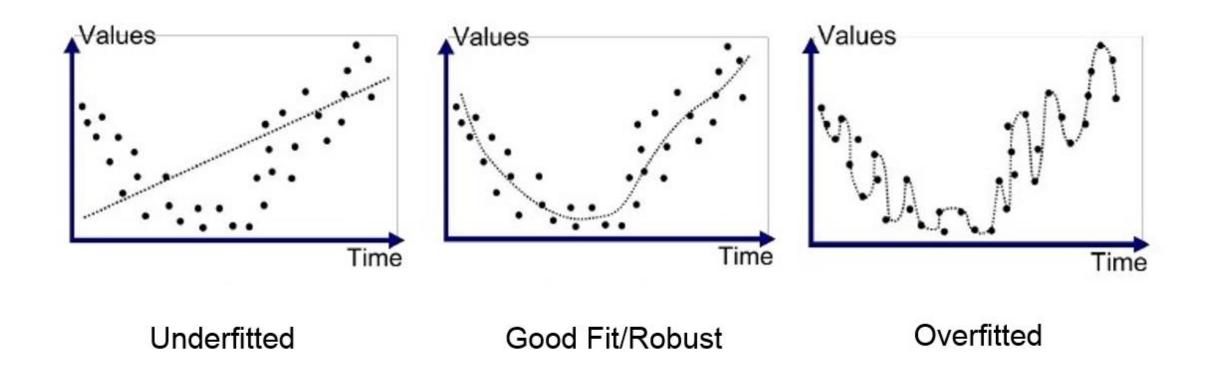
Bias

Bias =
$$E[\hat{\theta}] - \theta$$
.



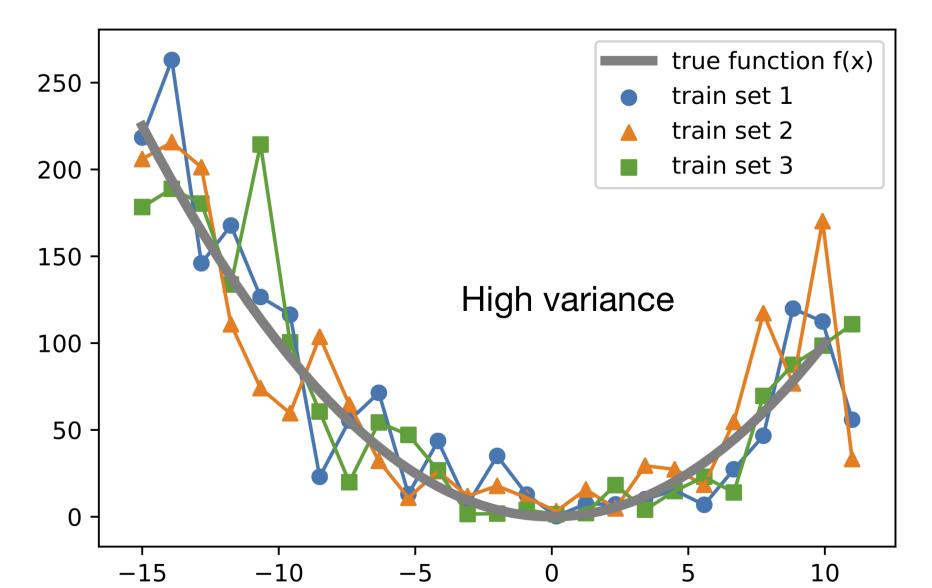
41

Underfitting



$\operatorname{Var}(\hat{\theta}) = E[(E[\hat{\theta}] - \hat{\theta})^2].$

Variance



43

Overfitting



Bias-variance decomposition

$$S = (y - \hat{y})^{2}$$

$$(y - \hat{y})^{2} = (y - E[\hat{y}] + E[\hat{y}] - \hat{y})^{2}$$

$$= (y - E[\hat{y}])^{2} + (E[\hat{y}] - y)^{2} + 2(y - E[\hat{y}])(E[\hat{y}] - \hat{y}).$$

$$E[2(y - E[\hat{y}])(E[\hat{y}] - \hat{y})] = 2E[(y - E[\hat{y}])(E[\hat{y}] - \hat{y})]$$

= 2(y - E[\hat{y}])E[(E[\hat{y}] - \hat{y})]
= 2(y - E[\hat{y}])(E[E[\hat{y}]] - E[\hat{y}])
= 2(y - E[\hat{y}])(E[\hat{y}] - E[\hat{y}])
= 0.

$$E[S] = E[(y - \hat{y})^{2}]$$

$$E[(y - \hat{y})^{2}] = (y - E[\hat{y}])^{2} + E[(E[\hat{y}] - \hat{y})^{2}]$$

$$= [\text{Bias}]^{2} + \text{Variance.}$$

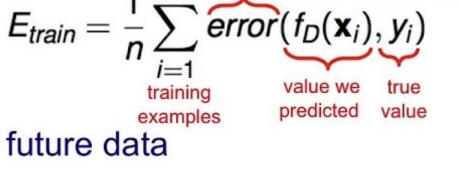
True value

Can be understood by replacing y and \hat{y} with model parameters θ and $\hat{\theta}$

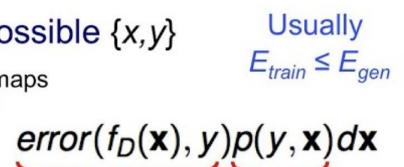
Training vs. Generalization Error

- Training error:
- Generalization error:
 - how well we will do on future data
 - don't know what future data x_i will be
 - don't know what labels y_i it will have
 - but know the "range" of all possible {x,y}
 - x: all possible 20x20 black/white bitmaps
 - y: {0,1,...,9} (digits) Egen

Can never compute generalisation error



error as before



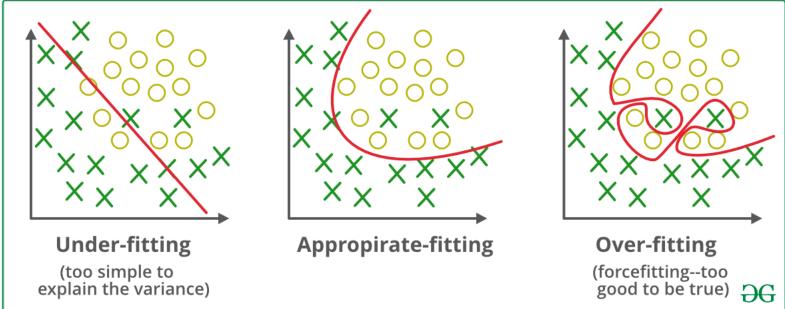
same? different by how much?

over all

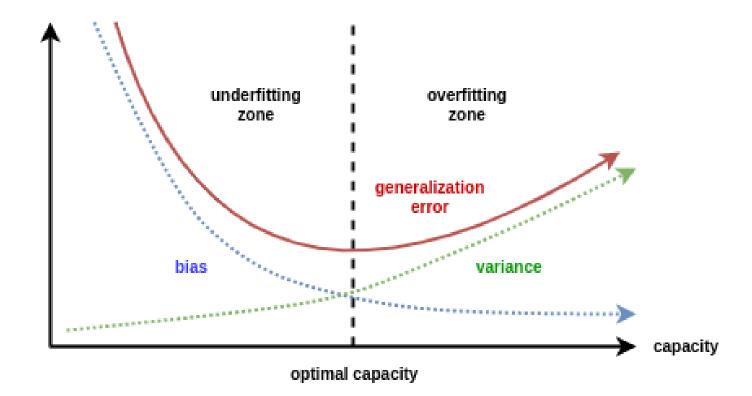
possible x,y

Generalization

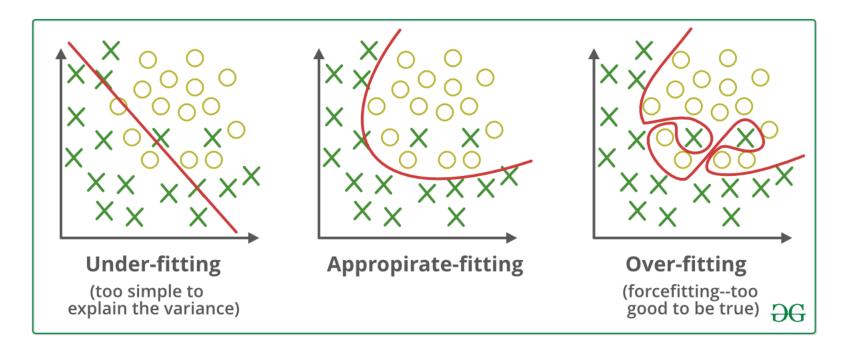
- Observations:
 - The best hypothesis on the sample may not be the best overall
 - Complex rules (very complex separation surfaces) can be poor predictors
 - trade-off: complexity of hypothesis set vs sample size (underfitting/overfitting)



Balance bias-variance trade-off



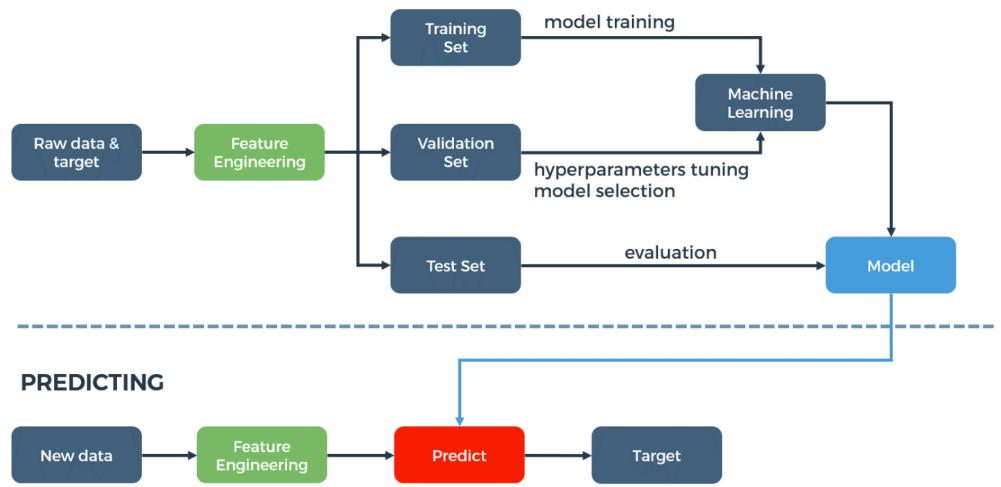
Learning ≠ Fitting



- Notion of simplicity/complexity
- How to define complexity
- Model selection

Machine Learning Process

TRAINING



https://techblog.cdiscount.com/assets/images/DataScience/automl/ML_process.png

Problem Formulation

Problem Definition

- Spaces:
 - Input space (feature space) X, output space (labeled space) Y
- Loss function: $L: Y \times Y \to \mathbb{R}$
 - $L(\hat{y}, y)$: loss of predicting \hat{y} when the true output is y
 - Binary classification: $L(\hat{y}, y) = 1_{\hat{y}\neq y}$
 - Regression: $L(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2$

- Hypothesis set: $H \subseteq Y^X$ (mappings from X to Y)
 - Space of possible models, e.g. all linear functions
 - Depends on feature structure and prior knowledge about the problem

Set-up

- Training data:
 - Sample S of size N drawn i.i.d. from $X \times Y$ according to distribution D: $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- Objective:
 - Find hypothesis $h \in H$ with small generalization error
- Generalization error

$$R(h) = \mathbb{E}_{(x,y)\sim D}[L(h(x),y)]$$

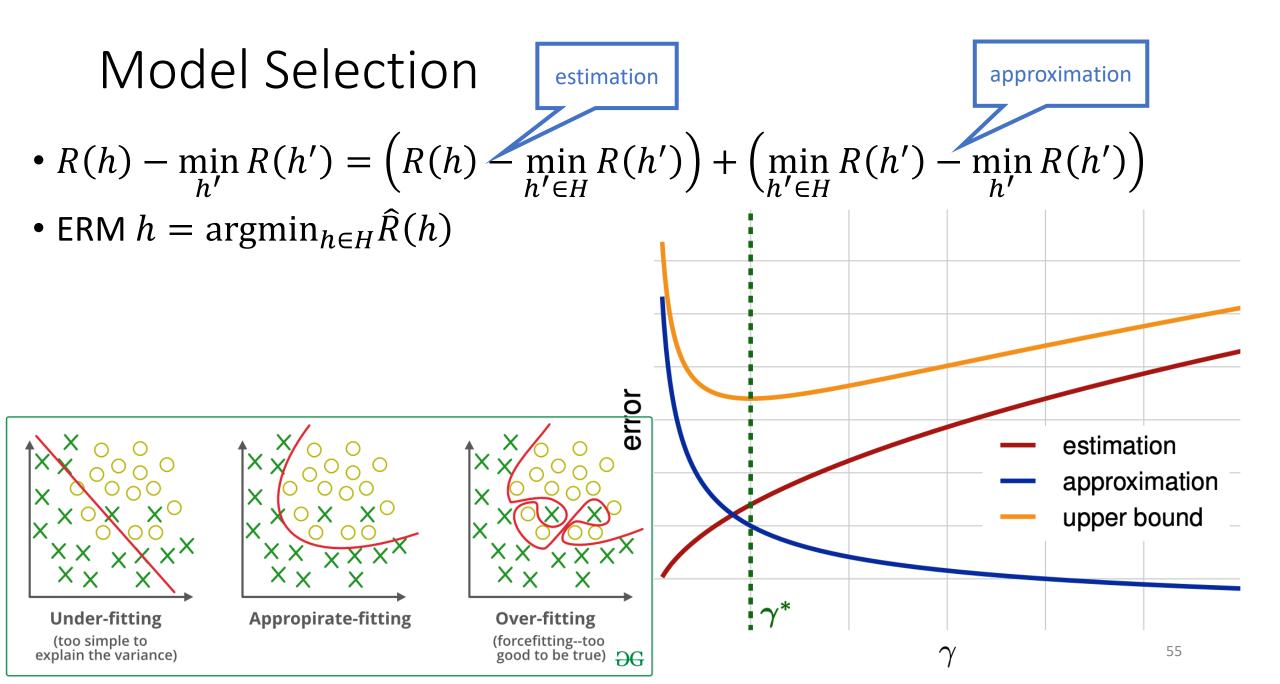
• Empirical error

$$\widehat{R}(h) = \frac{1}{N} \sum_{i=1}^{N} L(h(x_i), y_i)$$

Model Selection

- For any $h \in H$ $R(h) - \min_{h'} R(h') = \left(R(h) - \min_{h' \in H} R(h')\right) + \left(\min_{h' \in H} R(h') - \min_{h'} R(h')\right)$
 - Approximation: only depends on H
 - Estimation
 - Recall $R(h) = \mathbb{E}_{(x,y)\sim D}[L(h(x),y)]$
 - Empirical error: $\hat{R}(h) = \frac{1}{N} \sum_{i=1}^{N} L(h(x_i), y_i)$
- Empirical risk minimization:

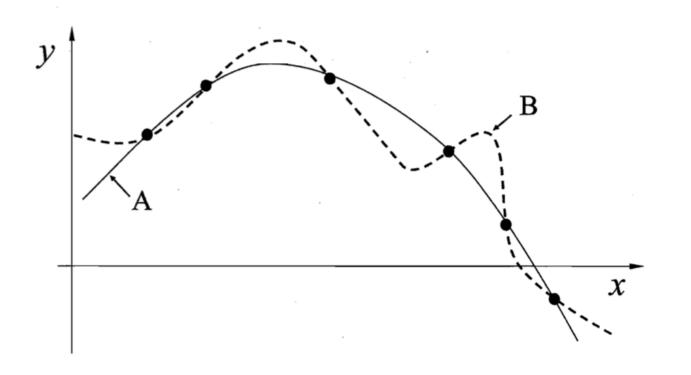
$$h = \operatorname{argmin}_{h \in H} \widehat{R}(h)$$



Principle of Occam's Razor

Suppose there exist two explanations for an occurrence.

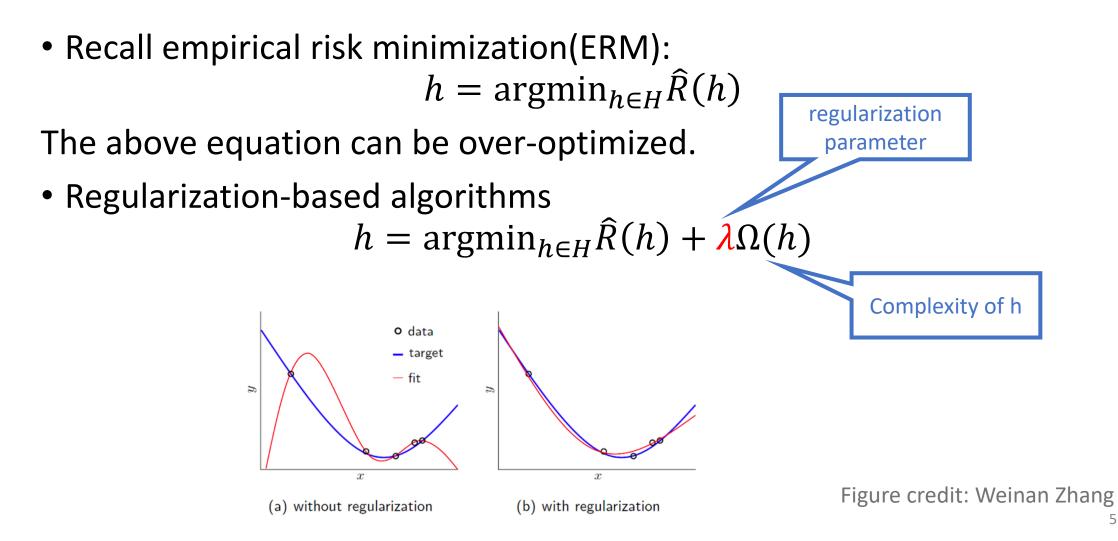
The one that requires the least assumptions is usually correct.



存在多条曲线与有限样本训练集一致

Figure credit: Zhihua Zhou

Regularization

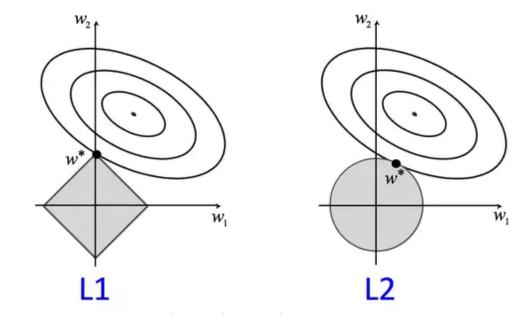


Regularization (cont.)

• E.g. L^2 -norm (Ridge): $\Omega(h = ax + b) = a^2 + b^2$

• E.g. L¹-norm (Lasso):

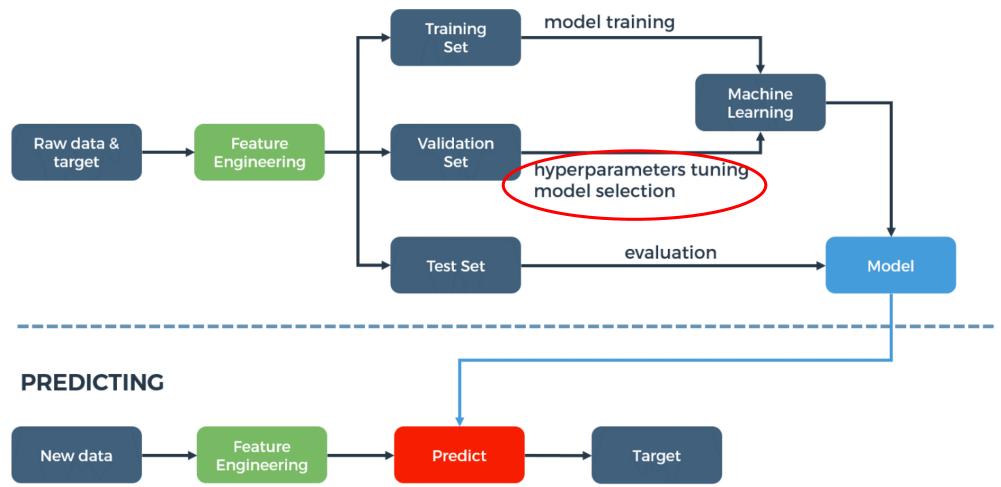
$$\Omega(h = ax + b) = |a| + |b|$$



https://miro.medium.com/max/1200/1*o6H_R3Do1zpch-3MZk_fjQ.png

Machine Learning Process

TRAINING



https://techblog.cdiscount.com/assets/images/DataScience/automl/ML_process.png

Generalization Error Bound

A Simple Case Study on Generalization Error

- Finite hypothesis set $\mathcal{F} = \{f_1, f_2, \dots, f_d\}$
- Theorem of generalization error bound: For any function $f\in\mathcal{F}$, with probability no less than $1-\delta$, it satisfies

$$R(f) \le \hat{R}(f) + \epsilon(d, N, \delta)$$

where

$$\epsilon(d, N, \delta) = \sqrt{\frac{1}{2N} \left(\log d + \log \frac{1}{\delta}\right)}$$

- N: number of training instances
- *d*: number of functions in the hypothesis set

Lemma: Hoeffding Inequality

Let X_1, X_2, \ldots, X_n be bounded independent random variables $X_i \in [a, b]$, the average variable Z is

$$Z = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then the following inequalities satisfy:

$$P(Z - \mathbb{E}[Z] \ge t) \le \exp\left(\frac{-2nt^2}{(b-a)^2}\right)$$
$$P(\mathbb{E}[Z] - Z \ge t) \le \exp\left(\frac{-2nt^2}{(b-a)^2}\right)$$

http://cs229.stanford.edu/extra-notes/hoeffding.pdf

Proof of Generalized Error Bound

- Assume the bounded loss function $L(y, f(x)) \in [0, 1]$
- Based on Hoeffding Inequality, for $\,\epsilon>0$, we have $P(R(f)-\hat{R}(f)\geq\epsilon)\leq\exp(-2N\epsilon^2)$
- As $\mathcal{F} = \{f_1, f_2, \dots, f_d\}$ is a finite set, it satisfies $P(\exists f \in \mathcal{F} : R(f) - \hat{R}(f) \ge \epsilon) = P(\bigcup_{f \in \mathcal{F}} \{R(f) - \hat{R}(f) \ge \epsilon\})$ $\leq \sum_{f \in \mathcal{F}} P(R(f) - \hat{R}(f) \ge \epsilon)$ $\leq d \exp(-2N\epsilon^2)$

Proof of Generalized Error Bound

• Equivalence statements

• Then setting

$$\delta = d \exp(-2N\epsilon^2) \quad \Leftrightarrow \quad \epsilon = \sqrt{\frac{1}{2N}\log\frac{d}{\delta}}$$

The generalized error is bounded with the probability

$$P(R(f) < \hat{R}(f) + \epsilon) \ge 1 - \delta$$

 \Box

Generalization error bound revisit

- Finite hypothesis set $\mathcal{F} = \{f_1, f_2, \dots, f_d\}$
- Theorem of generalization error bound:
 - For any function $f \in \mathcal{F}$, with probability no less than $1-\delta$, it satisfies

$$R(f) \le \hat{R}(f) + \epsilon(d, N, \delta)$$

where

$$\epsilon(d, N, \delta) = \sqrt{\frac{1}{2N} \left(\log d + \log \frac{1}{\delta}\right)}$$

- N: number of training instances
- *d*: number of functions in the hypothesis set

Summary

- The classification of machine learning
 - Supervised/unsupervised/reinforcement
- Supervised learning
 - Evaluation metrics for classification
 - Accuracy/Precision/Recall/F1 score
 - Evaluation metrics for regression
 - Pearson coefficient/coefficient of determination
 - Model selection: bias/variance/generalization
 - Machine learning process
 - Generalization error bound

Next Lecture

Linear Regression

https://shuaili8.github.io

Questions?

https://shuaili8.github.io/Teaching/VE445/index.html

