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Last lecture

* What is Machine Learning and what is Artificial Intelligence
* An example of Al but not ML
 A* algorithm

* History of ML
* Deduction
* Learning from samples (deep learning)

* Recent progress
* Computer vision/speech recognition/natural language processing/game Al

* Many applications
* Many industries/many aspects of life



Today’s lecture

* The classification of machine learning
* Supervised/unsupervised/reinforcement

* Supervised learning
e Evaluation metrics for classification
* Accuracy/Precision/Recall/F1 score

Evaluation metrics for regression
* Pearson coefficient/coefficient of determination

Model selection: bias/variance/generalization
Machine learning process
Generalization error bound (next time)



Types of Machine Learning

Machine
Learning

Supervised Unsupervised Reinforcement
Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes
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Machine Learning Categories

* Unsupervised learning
* No labeled data

* Supervised learning
* Use labeled data to predict on unseen points

* Semi-supervised learning
* Use labeled data and unlabeled data to predict on unlabeled/unseen points

* Reinforcement learning
* Sequential prediction and receiving feedbacks



Supervised learning example

Training set
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Unsupervised learning example




Semi-supervised learning example

Feature 2
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Reinforcement learning example
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Supervised Learning
Input data is labelled
Uses training dataset

Used for prediction

Classification and regression

Unsupervised Learning
Input data is unlabeled
Uses just input dataset

Used for analysis

Clustering, density estimation and

dimensionality reduction




Unlabeled data set
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Supervised Learning



STEP|

Provide the machine learning algorithm categorized or
“labeled” input and output data from to learn

Label

“CATS"

How Supervised Machine Learning Works

d v

MACHINE

STEP 2

Feed the machine new, unlabeled information to see if it tags
new data appropriately. If not, continue refining the algorithm

d v
“NOT CATS”

MACHINE '@m ’6‘

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLASSIFICATION

Sorting items
into categories

REGRESSION

Identifying real values
(dollars, weight, etc.)
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GLASSIFIGATION vs

Classification

Regression
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Classification -- Handwritten digits

g
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g
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Regression example

Linear Linear Mo linear relationship

Copyright 2014, Laerd Statistics.
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Model Evaluations



Classification -- Model evaluations

e Confusion Matrix
* TP — True Positive ; FP — False Positive
* FN — False Negative; TN — True Negative

_ Predicted Class

Actual Class =Yes Class = No
Class Class = Yes h (FN)
Class = No c (FP

a+ d P + IN

Accuracy =

a+btctd TP+TIN + FP+ IV
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Classification -- Model evaluations

e Given a set of records containing positive and negative results, the
computer is going to classify the records to be positive or negative.

* Positive: The computer classifies the result to be positive

* Negative: The computer classifies the result to be negative
* True: What the computer classifies is true

* False: What the computer classifies is false



Classification -- Model evaluations

* Limitation of Accuracy

* Consider a 2-class problem
* Number of Class 0 examples = 9990
* Number of Class 1 examples = 10

* If a “stupid” model predicts everything to be class 0, accuracy is 9990/10000 =
99.9 %

* The accuracy is misleading because the model does not detect any
example in class 1



Classification -- Model evaluations

e Cost-sensitive measures

Predicted Class

Actual Cla;Q: Yes Class = No
Class Class = Yes a (TP) b (FN) >
Class = No c (FP) d (TN)
.. 1P a
Precision (p) = =
TP + FP a+c
1P a : "
Recall (1”) — — Harmonic mean of Precision and Recall
TP + FN a + (Why not just average?)
21D 2a

F — measure (F) = =
r+p 2a+ b +c
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relevant elements

true negatives

selected elements

How many selected How many relevant
items are relevant? items are selected?
Precision = —— Recall =

22



How to understand

* A school is running a machine learning primary diabetes scan on all of
its students
 Diabetic (+) / Healthy (-)
 False positive is just a false alarm

* False negative
* Prediction is healthy but is diabetic
* Worst case among all 4 cases

* Accuracy
e Accuracy = (TP+TN)/(TP+FP+FN+TN)
* How many students did we correctly label out of all the students?



How to understand (cont.)

* A school is running a machine learning primary diabetes scan on all of
its students
 Diabetic (+) / Healthy (-)
 False positive is just a false alarm

* False negative
* Prediction is healthy but is diabetic
* Worst case among all 4 cases

* Precision
* Precision = TP/(TP+FP)
* How many of those who we labeled as diabetic are actually diabetic?



How to understand (cont.)

* A school is running a machine learning primary diabetes scan on all of
its students
 Diabetic (+) / Healthy (-)
 False positive is just a false alarm

* False negative
* Prediction is healthy but is diabetic
* Worst case among all 4 cases

* Recall (sensitivity)
e Recall = TP/(TP+FN)
» Of all the people who are diabetic, how many of those we correctly predict?



F1 score (F-Score / F-Measure)

* F1 Score = 2*(Recall * Precision) / (Recall + Precision)
 Harmonic mean (average) of the precision and recall

* F1 Score is best if there is some sort of balance between precision (p)
& recall (r) in the system. Oppositely F1 Score isn’t so high if one
measure is improved at the expense of the other.

* For example, if Pis1 & Ris O, F1 score is O.



Which to choose

* Accuracy
* A great measure
e But only when you have symmetric datasets (FN & FP counts are close)
e Also, FN & FP have similar costs

* F1 score
* If the cost of FP and FN are different
* F1is best if you have an uneven class distribution

* Recall
* If FP is far better than FN or if the occurrence of FN is unaccepted/intolerable
* Would like more extra FP (false alarms) over saving some FN

e E.g. diabetes. We'd rather get some healthy people labeled diabetic over leaving a
diabetic person labeled healthy

* Precision
* Want to be more confident of your TP

* E.g. spam emails. We’d rather have some spam emails in inbox rather than some
regular emails in your spam box.



Example

* Given 30 human photographs, a computer predicts 19 to be male, 11
to be female. Among the 19 male predictions, 3 predictions are not
correct. Among the 11 female predictions, 1 prediction is not correct.

_ Predicted Class

Actual Male Female
Class Male a=TP=16 b=FN=1
Female c=FP=3 d=TN =10
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Example
| predictedClass

Actual Male Female
Class Male a=TP=16 b=FN=1
Female c=FP=3 d=TN =10

e Accuracy =(16+10) /(16 +3 + 1 + 10) = 0.867

* Precision =16/ (16 + 3) =0.842

e Recall=16 /(16 + 1) =0.941

* F-measure =2 (0.842)(0.941) / (0.842 + 0.941)
= 0.889
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Discussion

“In a specific case, precision cannot be computed.” Is the statement true?

Why?
* |f the statement is true, can F-measure be computed in that case?

a: positive
b FP N TN b: negative

C: hegative
C FP TN TN

 How about if b is positive, a and c are negative, or if c is positive, a and b
are negative ?
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Regression-Model Evaluation

* Pearson correlation measures the linear association between
continuous variables

* Quantifies the degree to which a relationship between two variables can be
described by a line.

_ Z?:l(xi—)_{)(yi—l’_')
TXYy = — —
VI (X = X230, (v - Y )2

e Remember the definition of cosine between vectors:

~ A.B,
A_B g 1 1

@) = =
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Examples of Pearson correlation
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Limitation

* Only

e Clear
corre

inear correlation can be detected.

y, there are some relationship between X and Y, but the
ation is only 0.02.

20
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Coefficient of determination

* Coefficient of determination (R?) is the proportion of the variance in
the dependent variable that is predictable from the independent
variable.

* It measures how much of the residue can be explained by the
regression line

Oh=erved Daka Point

s
v Unexplained vanation {random)
Total
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Regression -- Model evaluation

explained variance

0R2:

total variance

* Total variance: S8 = (4 — 7)’ v

1
Explained Sum of Squares
ESS:Z(aned - Ymean}2

* Explained variance: SSw.; =Y (f: — )’

?' Intercept (B,)

* Or, it can be computed as:

R2 =1-— ggres Where SSrcs — Z(yi - fi}z — Eg'z
tot i 1

Y

R-Squared Explanation

Actual Y,

@
Yﬁ'cts.hd

Residual /
Total Sum of Squares
/ TSS= 2(Y; = Yinean)®
Y

/ mean
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Model Selections



Minimize the error rate?

* Given a dataset S Err_ér rzte - :% A Error:te - %B

+ Error rate = —o LIrOTS -_""i;..,\'.: . -_'._ ..
# of Total Samples _ -o _ . ®

* Accuracy =1 - Error rate m "W . "

https://malware.news/uploads/default/original/3X/6/d/6df12e50b7f97cdba92697cel64cbed4a5502a349.png

https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/0verfitting.sve /1200px-Overfitting.svg.png
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Fitting

Under-fitting

(too simple to
explain the variance)

Appropirate-fitting

Over-fitting

(forcefitting--too
good to be true) HG

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png
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Split training and test

 Split dataset to training and test

* Train models on training dataset

* The evaluation of the model is the
error on test dataset

* Might overfit the training dataset

‘ Data |

L

‘ Training ‘ Test |
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Cross validation

Training set

1stiteration

2"d jteration

3rd jteration

Training folds Test fold
A
[
—> E;
—> E;_.
—> E;
—> Elo

10t iteration -
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Bias

Bias = E[0] — 6.

250 A

200 -

150 A

100 A

memmsm true function f(x)
o
A
=

train set 1
train set 2
train set 3
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Underfitting

Values =
& 9
£ .‘.ﬂ';..-'

ot
.
n"
.
v
o’
"
o
-
-
N
-

Underfitted Good Fit/Robust Overfitted

42



Var(9) = E[(E[0] — 6)2].

Variance
mmmm true function f(x)
250 1 ® trainsetl
A trainset?2
200 - B trainset3
150 -
High variance
100 -
50 -
O -




Overfitting

Underfitting

Just right!

overfitting
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Bias-variance decomposition

True value I Estimated value |
AN2
S = I@— y)

o -3 =y — EB] + E[] - $)*
= (y — ED* + (E] — y)* + 2(y — EBD(EB] - ).

E[2(y — E[YD(E[Y] — Y] = 2E[(y — E[YD(EY] — )]
= 2(y — EYDEI(EDY] — y)]
= 2(y — E[YD(ELE[Y]] — E[Y])

= 2(y — EYI(ED] — ED]
E[S] = E[(y — $)?] =0.()f DDED 5]

(v — EBD* + ELED] - $)7]

= [Bias]® + Variance.

Can be understood by replacing y and y with model parameters 6 and 6
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Training vs. Generalization Error

n same? different by how much?

- p— T
 Training error: Ejroin = — Zerror(fD(x,) ¥)
- =1 o i 4

» Generalization error: prateiic value we true
examples predicted value

* how well we will do on future data
« don’t know what future data x; will be
« don’'t know what labels y; it will have

» but know the “range” of all possible {x,y} Usually

. . - - Etra/n sE en
» x: all possible 20x20 black/white bitmaps g

s [ ) By 9} (digit
B I Egen = / error(fp(X), y)p(y,X)dx
e ¥ error a:before

over all
possible x,y

Can never compute
generalisation error

how often we expect
to see such x and y

Copvrnight © 2014 Victor Lavrenko
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Generalization

e Observations:
* The best hypothesis on the sample may not be the best overall
e Complex rules (very complex separation surfaces) can be poor predictors

 trade-off: complexity of hypothesis set vs sample size
(underfitting/overfitting)

s X 4 X
X X
X X X X X(O\X
X
XX XXX X X7 X X
XX X XX X
> >
Under-fitting Appropirate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be true) HG




Balance bias-variance trade-off

underfitting
zone

overfitting
zone

generalization
Error

" variance

optimal capacity
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Learning # Fitting

s X
X
X
X X
XX XXX
XX X
>
Under-fitting Appropirate-fitting
(too simple to
explain the variance)

Over-fitting

(forcefitting--too
good to be true) laYal

* Notion of simplicity/complexity
* How to define complexity
* Model selection
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Machine Learning Process

TRAINING
Training model training
Set
Machine
Learning
Raw data & Feature Validation f
target Engineering Set hyperparameters tuning
model selection
evaluation
PREDICTING l

Feature

New data . : Predict
Engineering

https://techblog.cdiscount.com/assets/images/DataScience/automl/ML_process.png "



Problem Formulation



Problem Definition

* Spaces:
* Input space (feature space) X, output space (labeled space) Y

* Loss function: L:Y XY - R
* L(¥,y): loss of predicting ¥ when the true outputis y
* Binary classification: L(J,y) = 154,
e Regression: L(9,y) = %()7 — y)?

» Hypothesis set: H € Y*(mappings from X to Y)
* Space of possible models, e.g. all linear functions
* Depends on feature structure and prior knowledge about the problem
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Set-up

* Training data:

 Sample S of size N drawn i.i.d. from X X Y according to distribution D:
S ={(x1,y1), (x2,¥2), o, ey, YD}

* Objective:
* Find hypothesis h € H with small generalization error

 Generalization error
R(h) = E(yy)~plL(h(x),y)]

* Empirical error

N

R 1

R(h) = Nz L(R(x), v))
=1
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Model Selection

estimation approximation
e Foranyh € H
R(h) —min R(h") = (R() )+ (min R(h") €min R(h"))

=~ min R(h")
h'eH h'eH h'

* Approximation: only depends on H

* Estimation
* Recall R(h) = E(yy)~p[L(h(x),y)]
 Empirical error: R(h) = %Zli\’:l L(h(x;),y:)

* Empirical risk minimization:
h = argmingcyR(h)
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Model Selection

estimation approximation

* R(h) —minR(h') = (R(W) <min R(h')) + (min R(K') ~min R(R"))

h h'eH h'eH h'
* ERM h = argminycyR(h) :
5 :
f X e X o " —  estimation
5 v ! — approximation
X X 5 X X upper bound
XX XXX X X% X X :
XX X XX X : - —_—
Under-fitting Appropirate-fitting Over-fitting E '7*
(too simple to (forcefitting--too
explain the variance) good to be true) NG Y 55




Principle of
Occam’s Razor

Suppose there exist two
explanations for an
occurrence.

The one that requires the
least assumptions is
usually correct.

BEZFHREABRHEANGE K

Figure credit: Zhihua Zhou
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Regularization

e Recall empirical risk minimization(ERM):
h = argmingcyR(h)

regularization

The above equation can be over-optimized. parameter

* Regularization-based algorithms R
h = argminyecyR(h) + AQ(h)

\ Complexity of h ‘

Figure credit: Weinan Zhang

(a) without regularization (b) with regularization
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Regularization (cont.)

e E.g. L°-norm (Ridge):
Q(h = ax + b) = a* + b*

e E.g. L*-norm (Lasso):
QCh=ax+b) = |a| + |b]

B &
P T

L1 L2
https://miro.medium.com/max/1200/1*06H_R3Dolzpch-3MZk_fjQ.png
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Machine Learning Process

TRAINING
Training model training
Set
Machine
Learning
Raw data & Feature Validation f
target Engineering Set —yperparam eters tunin
model selection
evaluation
PREDICTING l

Feature

New data . : Predict
Engineering

https://techblog.cdiscount.com/assets/images/DataScience/automl/ML_process.png >



Generalization Error Bound



A Simple Case Study on Generalization Error

* Finite hypothesis set F ={f1, f2,..., fa}
* Theorem of generalization error bound:

For any function f € F, with probability no less
than 1 — ¢, it satisfies

R(f) < R(f) + €(d, N, 6)
where

1 1
e(d, N,9) = \/ﬁ(logd—klog 5)

* N: number of training instances
* d: number of functions in the hypothesis set

Section 1.7 in Dr. Hang Li’s text book.
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Lemma: Hoeftding Inequality

Let X, X»,...,X,, be bounded independent random
variables X; € [a,b] , the average variable Z is

1 mn
Z:E;X,;

Then the following inequalities satisfy:

_ont?
P(Z —E[Z] > t) < exp ((b:)z)

—Int?
P(E[Z] — Z > t) < exp ((53;)2)

http://cs229.stanford.edu/extra-notes/hoeffding.pdf

62



Proof of Generalized Error Bound

* Assume the bounded loss function L(y, f(x)) € [0, 1]

* Based on Hoeffding Inequality, for € > 0, we have
P(R(f) — R(f) > €) < exp(—2Né?)

e As F =A{fi1, fo,..., fq}is afinite set, it satisfies

P(3f € F: R(f) — R(f P(| J{R(f) £)>€h)
feF
<ZP f) >e)
ferF

< dexp(—2N¢€?)
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Proof of Generalized Error Bound

* Equivalence statements
P(3f € F: R(f) — R(f) > €) < dexp(—2N¢?)
)
P(Vfe F:R(f)— R(f) <€) >1—dexp(—2Ne?)

* Then setting

1 d
— — - — _— —
0 =dexp(—2Ne”) & ¢ \/2N10g5

The generalized error is bounded with the probability

P(R(f) < R(f)+€)>1-6
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Generalization error bound revisit

* Finite hypothesis set F = {f, fo,..., fa}
* Theorem of generalization error bound:

For any function f € F, with probability no less
than1 — ¢ , it satisfies

R(f) < R(f) + €(d, N, 9)
where

1 1
e(d, N,9) = \/ﬁ(logd—l—log 5)

* N: number of training instances
* d: number of functions in the hypothesis set
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summary

* The classification of machine learning
* Supervised/unsupervised/reinforcement

* Supervised learning
e Evaluation metrics for classification
* Accuracy/Precision/Recall/F1 score

Evaluation metrics for regression
* Pearson coefficient/coefficient of determination

Model selection: bias/variance/generalization
Machine learning process
Generalization error bound



Next Lecture

Linear Regression



Shuai Li
https://shuaili8.github.io

Questions?

https://shuaili8.github.io/Teaching/VE445/index.html
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