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Last lecture

* The classification of machine learning
* Supervised/unsupervised/reinforcement

* Supervised learning
e Evaluation metrics for classification
* Accuracy/Precision/Recall/F1 score

Evaluation metrics for regression
* Pearson coefficient/coefficient of determination

Model selection:
Machine learning process
Generalization error bound



Today’s lecture

* Linear regression
* Normal equation
* Gradient methods
* Examples
Probabilistic view
Applications
Regularization



Linear Regression



Regression example

* Given the following values of Xand Y :
(1,1), (2,2), (4,4), (100,100), (20, 20)
what is the value of Y when X =57

* The answer is 5, not difficult

 What if the given values are
(1,1),(2,4),(4,16),(100,10000), (20,400)

* Yis 25 when X =5, right?

e Rationale:

* Look at some examples and then tries to identify the most suitable relationship
between the sets Xand Y

e Using this identified relationship, try to predict the values for new examples



Regression example (cont.)

Living area (feet?)

Price (10003s)
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Linear regression

e Use linear relationship to approximate the function of Y on X

* How to select the most appropriate linear model?
* Error: Mean squared error (MSE)

1 <& .
MSE = — Y: — Y;)?
- ;Zlﬁ( )

e Where Y and Y are the true values and predicted values

* Find the linear model with the smallest MSE



price (in $1000)

Use linear model to fit the given data
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Linear regression 2D example

* In the 2D example, you are looking for a linear equation
y = xq1 * 081 + 0, to fit the data with smallest MSE
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Question

* Given the dataset
(1,1),(2,4), (3,5)

Y=2X+1
* What is the mean squared error?

and the linear model

* The predicted points are
(1,3),(2,5),(3,7)

* So the mean squared error (MSE) is
1
5(22 +12 +22) =3



Question 2

* Given the <real value, predicted value> pairs as:
<12,1.7 >,<09,0.2 ><-0.3,01><13,03><11,12 >
compute the means squared error

* The answer is

1
E(O.S2 + 0.7% + 0.4% + 1% + 0.1%) = 0.382



How to get linear model with minimal MSE

* MSE for model parameter 6:

1
J©) =5 ) (= 07x)?
=1

* Find an estimator 8 to minimize J(6)

*y=0Tx+b+e. Thenwe canwritex’ = (1,x1,...,x%),0 =
(b,04,...,0,),theny =0"x" + ¢

* Note that /(8) is a convex function in 8, so it has a unique minimal
point



Interpretation

Sum of squares error contours for linear regression
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Figure credit: Kevin Murphy



Convex set

* A convex set S is a set of points such that, given any
two points A, B in that set, the line AB joining them
lies entirely within S.

try + (1 —t)xe € S
forall 1,22 € S,0<t<1

Convex set Non-convex set
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Convex function

f(z2)

tf(z1) + (1 —t)f(z2)
f(t-Tl : 2 (1 = t).’BQ)

f(z1)

Z1 tr; + (1 —t)zy T2

f:R®™ = R isconvexif dom f is aconvex setand

fltzy + (1 —t)xo) < tf(xy) + (1 —1)f(x2)
forall 1,20 € dom f,0 <t <1

15



J(8) is convex

A Check it by yourself !

* f(x) = - X)2= (x — y)2 IS convex in x

* g(8) = f(0"x)
9((1 = )6, + t6,)
— f ((1 _ t)elTx T tHZTx) 2 Convexity of f
< (1 -0f(6;'x) +tf(6;"x)
= (1—-1t)g(61) +tg(6;)

e The sum of convex functions is convex
* Thus J(6) is convex
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Minimal point (Normal equation)

aj(0) _ T T
° 38 Z 1(9 Xi — YL)XL — 1(xx H_xlyl)
* Letting the derivative be zero
N N
T _
z xix; |10 = z X;Yi
ol | [x o x® V1
clfwewriteX =1|: | = : ,y =1 |, then
xn | |xn xf\l,_ VN




Minimal point (Normal equation) (cont.)

c XTX0 = XTy
 When X "X is invertible A
h=(XTX)1xTy

* When X T X is not invertible )ewo_mverse
d=xX"X)"xTy

_1 - _1

e E.g. The pseudo-inverse of 2 IS




Interpretation of Least square error

* Atwo-dim example: x; * 6; + x5, * 8, = y, where x; and y are
vectors.

* We are using the combination of x; to approximate the projection of
y at their plane. y.

X2




Geometric interpretation

e N=3,d=2 o
1 ' ,
1 2 8.8957 o '
X=1[1 -2, y=0.6130 | |
1 2 1.7761 . )
argmin |y —ylf2.

y€span({Xy,....,Xp })

column vectors in X

e =X"X)"1XTy
P =X0=XX"X)"'XTy
khatmatrix

(put a "hat” on y) Figure credit: Kevin Murphy 20




Examples



Question 1

 Given the dataset

(1,1), (2,4), (3,5)
compute the normal equation for 8, solve 8 and compute the MSE

X'l 1 1 ﬁzXTy

1 1 17
X=|x,|=[1 2|,y=|4
x] 1 3. 5.
oo v 3 61 1. [10
XX_[ 14]’X3’_[24

[2 164] rgj B B?L

0 = [—%,ZI,yz —§+ 2X. MSE=§



Question 2

* Some economist say that the impact of GDP in ‘current year’ will have
effect on vehicle sales ‘next year’. So whichever year GDP was less,
the coming year sales was lower and when GDP increased the next
year vehicle sales also increased.

* Let’s have the equationasy = 6, + 6,x, where
* vy = number of vehicles sold in the year

 x = GDP of prior year

We need to find 8, and 6,



Question 2 (cont.)
 Here is the data between 2011 and 2016.

Ve GDP |Selesofvehice

2011 6.2

2012 6.5 26.3

2013 5.48 26.65 Homework
2014 6.54 25.03

2015 7.18 26.01 /

2016 7.93 27.9

2017 30.47

2018

* Question 1: what is the normal equation?

* Question 2: suppose the GDP increasement in 2017 is 7%, how many
vehicles will be sold in 20187?



Gradient methods



Motivation — large dataset

18

0 — (XTX)—1XTy 1ab N\

* Recall the objective is to minimize the
loss function L(6)

: : : : I

81

1 _ X
L(§) = J(8) = Nz(yl' —9Tx)? N S

* Gradient descent method — o en;weold
earning rate
\ AL (0)

enew A 901d — 784



Batch gradient descent

N

* fo(x) =0"x J(0) = 5 Z(yi — fo(@:))? min J(6)

6

. (6)
o0

* Update Onew < Oo1a — 71 for the whole batch

N
T i fata 2

1=1 27



Stochastic gradient descent

JO0) = S~ folw)?  min IO (0)

* Update Ohew = Oo1q — nan’;(a) for|every single instance
0™ (6) 0 fo(x:)

= —(yi — fo(x;))x;
Onew = Oold + n(yi — fo(xi))zi

* Compare with BGD
* Faster learning
* Uncertainty or fluctuation in learning
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Mini-Batch Gradient Descent

A combination of batch GD and stochastic GD

 Split the whole dataset into K mini-batches

1,2,3,....K}

*|For each mini-batch k,

towards minimizing

J*)(9) =

* Update Qnew — Qold — 1N

1
2N} —

perform one-step BGD

Ny,

(yi — fo(zs))?

0J k) (9)

5 for each mini-batch
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Mini-Batch Gradient Descent (cont.)

* Good learning stability (BGD)
* Good convergence rate (SGD)

* Easy to be parallelized
* Parallelization within a mini-batch

Map Parallelized Gradient Reduce Gradient

Sum
WorkerlIIIIII
WorkerZIIIIII

Worker3IIIIII

30



Comparisons

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Searching

e Start with a new initial value 6
» Update @ iteratively (gradient descent)
* Ends at a minimum

1

J(eo'el) 0-

32



Unigueness of minimum for convex objectives

loss w.r.t. parameters

0.8

0.6 -

0.2 4

0.0 4

-0.2

-2 -1 0 1 2 3
H(i

* Different initial parameters and different learning algorithm lead to the
same optimum
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Learning rate

Qnew — Hold — 1

18

16}
14}

7 too small

12+

o\ slow convergence

J(0)

s —4 -2 0 2 4 6

* The initial point may be too far away
from the optimal solution, which
takes much time to converge

J(0)

. (6)

00

18

ol 7 too large
1) ‘Increasing value of J(0)

12+

10

-6 '} =2 0 2 a
0

* May overshoot the minimum

* May fail to converge

* May even diverge

* To see if gradient descent is working, print out J(6) for each or every
several iterations. If J(8) does not drop properly, adjust 7

34



Probabilistic view



Probabilistic view

* Assume for each sampled (x, y)~D,
y=0"x+¢
where ¢ is Gaussian noise and e~N'(0, 62), or equivalently,
y~N(0Tx,0%)

* The linear regression estimator 6 is the maximal likelihood estimator
(MLE) of the data



Maximum likelihood estimation (MLE)

* Frequentists’ view

éMLE = arg max P(X;6)
= argmax P(x1;0)P(x2;0) - - - -P(x,;0)

= arg max log H P(x;;0)
i—1

= arg max Z log P(x;;6)
—1

1=

= arg min — Z log P(x;;0)
i=1

37



MLE view

e Given dataset S, find @ to maximli,ze the likelihood of S, which is
Pisio] = | [Prylx. 6
i=1

* § = argmaxyP[S]6]
= argmaxg I(K’g P[S|6]

= argmaxg 2 log P|y;|x;, 6]
i=1

1 (=0T x?

o P[yilxi' Q] — — e 2 g2 :l_‘ Gaussian distribution

38



MLE view (cont.)
:!P[ T 0] =
* § = argmaxy Y., log PL%’i X;, g

B 2 1 (vi — 60"x)?
= argmax, ) log—— >3

llN

s ) 30"

T 2
argming ) (y; — 6" x;)

llN

1
= argming NE()G’ —67x;)?
i=1

39



Application Examples



Trend line

* A trend line represents a trend, the long-term movement in time
series data after other components have been accounted for

e E.g. Stock price, heart rate, sales volume, temperature

* Given a set of points in time t and data values y;, find the linear
relationship of y; with respectto ¢

* Find a and b to minimize

Z[yt — (at + b)]?

i



Finance: Capital asset pricing model (CAPM)

* Describes the relationship between systematic risk and expected
return for assets, particularly stocks

* Is widely used throughout finance for pricing risky securities and
generating expected returns for assets given the risk of those assets
and cost of capital

E(R;) = Ry + Bi(E(R.) — Ry)
where:

e E(R;) isthe expected return on the capital asset

¢ Ry is the risk-free rate of interest such as interest arising from government bonds

e B; (the beta) is the sensitivity of the expected excess asset returns to the expected excess market returns,

« E(R,,) isthe expected return of the market

. . . 42
o E(R,,) — Ry is sometimes known as the market premium



Example of CAPM

* The risk-free rate of return (which is usually the return rate of
government bonds) is 3%, and average market rate is 5%. Suppose
the beta in car industry is 1.4, what is the average return rate for the
car industry?

* In another way, if we have the risk-free return rate, the market return
rate and the return rate of 10 car companies, how to compute the
beta for car industry?



Regularization



Problems of ordinary least squares (OLS)

e Best model is to minimize both the bias and the

variance
* Ordinary IeaSt Squares (OLS) Low Variance High Variance
* Previous linear regression
* Unbiased
* Can have huge variance :
e Multi-collinearity among data 3
* When predictor variables are correlated to each other and to the
response variable
e E.g. To predict patient weight by the height, sex, and diet. But height
and sex are correlated
e Many predictor variables
* Feature dimension close to number of data points 3
;_f:u

 Solution
e Reduce variance at the cost of introducing some bias
* Add a penalty term to the OLS equation

45



Ridge regression

* Regularization with L2 norm
LRidge = (y _X9)2+/1”9“%

* )l’ — O’ HRldge — HOLS wy A '
A F IR ENFAL
el —> 00,0 -0 - /
* As A becomes larger, the variance decreases but the N\
I I 36 4 AR B — (NS
bias increases RREHA— PN
. . LR EEs /ST W}\'\‘ e o
* A: Trade-off between bias and variance ) / //,/ N
* Choose by cross-validation < % w;
* Ridge regression decreases the complexity of a
model but does not reduce the number of variables V

(compared to Lasso later) ”



Solution of the ridge regression

a l e
Lg;g =230 1(0Tx; — y)x; + 226

* Letting the derivative be zero

/11+2XXT 9—2 XiVi

| [ xd]
*lfwewriteX =| : | = : ,y =1 + |, then

.X'T 1 d y

AN er XN LV N

AU +XTX)0=X"y
erdge — (/11 +XTX) 1XT

Always invertible

47



Maximum A Posteriori (MAP)

* Bayesians’ view

P(X|0) x P(6)

P(4|X) = 0

Aniap = arg max P(6|X)

= arg min —

= arg min —

log P(6] X)
log P(X|0) — log P(0) + log P(X)

= arg min — .

log P(X|0) — log P(6)

48



Probabilistic view (MAP)

* Ridge regression estimator is a MAP estimator with Gaussian orior
* Suppose 8 has the prior P(8) = N (0,72]) (e, ay) = 2AE T =)

n VO
* Oyap = argmaxy TiL; log P[y;|x;, 6] + log P(8)

i —0'x)* 1
rgmaxgz— : P : —7”9“%

1 00T : 272
P[yilxirg]zme 207 l=1N

= argmaxg — ) (v; —07x;)? — A|10]|5

Ni=1 \/1:0‘2/‘[2

= argming E(yi —07x;)% + 716]5
i—1

49



Lasso regression

e Lasso regression: linear regression with L1
norm

Ligsso = (y _XH)2+/1||9”1

w1 ‘ ‘
F iR EREF AL
 Lasso eliminates some features entirely and \
gives a subset of predictors that helps - N\ N\
mitigate multi-collinearity and model RRAHLA— XN
complexity LERFEE 77 RN
o b
* Predictors do not shrink towards zero 44 .
significantly that they are important and N\ | A
thus L1 regularization allows for feature

selection (sparse selection)

50



Ridge vs Lasso

e Often neither one is overall better.

* Lasso can set some coefficients to zero, thus performing variable selection, while ridge regression
cannot.

* Both methods allow to use correlated predictors, but they solve multicollinearity issue differently:
* Inridge regression, the coefficients of correlated predictors are similar;
* Inlasso, one of the correlated predictors has a larger coefficient, while the rest are (nearly) zeroed.

* Lasso tends to do well if there are a small number of significant parameters and the others are
close to zero

* when only a few predictors actually influence the response

* Ridge works well if there are many large parameters of about the same value
 when most predictors impact the response

* However, in practice, we don't know the true parameter values, so the previous two points are
somewhat theoretical. Just run cross-validation to select the more suited model for a specific case.

e Or...combine the two!



Elastic regression

* A combination of Ridge and Lasso regression

1
Leiastic = N (y _X9)2+/11||9”1 +/12”6“%

--- Ridge
Lasso
—— Elastic Net

52
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10F

Linear regression with non-linear relationships

*Eg. p(x) = (1, x,x%, ..., x and y~N (8T p(x),02)

e Features: Last hidden layer of Neural Networks

degree 14

15

degree 20

101

-10—

15 20

Figure credit: Kevin Murphy
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summary

* Linear regression
* Normal equation
* Gradient methods
* Examples
Probabilistic view
Applications
Regularization



Next Lecture

Logistic Regression



Shuai Li
https://shuaili8.github.io

Questions?

https://shuaili8.github.io/Teaching/VE445/index.html
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