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Last lecture

* Linear regression
* Normal equation
* Gradient methods
* Examples
Probabilistic view
Applications
Regularization



Today’s lecture

* Discriminative / Generative Models

* Logistic regression (binary classification)
* Cross entropy
* Formulation, sigmoid function
* Training—gradient descent

* More measures for binary classification (AUC, AUPR)
* Class imbalance

* Multi-class logistic regression



Discriminative / Generative
Models



Discriminative / Generative Models

* Discriminative models
* Modeling the dependence of unobserved variables on observed ones
* also called conditional models.
* Deterministic: Y = fe(m)
* Probabilistic:  pg(y|z)
* Generative models

* Modeling the joint probabilistic distribution of data
* Given some hidden parameters or variables

Po (fL’, y)
* Then do the conditional inference
::U? m?
pa(y]z) = po(z,y)  po(z,¥)

po(x) >, pe(z,y)



Discriminative Models

* Discriminative models
* Modeling the dependence of unobserved variables on observed ones
* also called conditional models.
* Deterministic: Y = fﬂ(ﬂ?)
* Probabilistic:  pg(y|z)

* Directly model the dependence for label prediction
» Easy to define dependence on specific features and models
* Practically yielding higher prediction performance

* E.g. linear regression, logistic regression, k nearest neighbor, SVMs, (multi-
layer) perceptrons, decision trees, random forest



Generative Models

e Generative models
* Modeling the joint probabilistic distribution of data
e Given some hidden parameters or variables

po(x,y)

* Then do the conditional inference
Po\ZL,Yy po\x,y
po(yla) = DAY _ _polry)
po(z) Xy po(z,y)
* Recover the data distribution [essence of data science]

* Benefit from hidden variables modeling

e E.g. Naive Bayes, Hidden Markov Model, Mixture Gaussian, Markov
Random Fields, Latent Dirichlet Allocation




Discriminative Models vs Generative Models

* In General
e A Discriminative model models the decision boundary between the classes
* A Generative Model explicitly models the actual distribution of each class

* Example: Our training set is a bag of fruits. Only apples and oranges
Each labeled. Imagine a post-it note stuck to the fruit

* A generative model will model various attributes of fruits such as color,
weight, shape, etc

* A discriminative model might model color alone, should that suffice to
distinguish apples from oranges



Discriminative model Generative model

Goal Directly estimate P(y|x) Estimate P(x|y) to then deduce P(y|x)
What's learned Decision boundary Probability distributions of the data
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Examples Regressions, SVMs GDA, Naive Bayes



Discriminative Generative




Linear Discriminative Models

e Discriminative model
* modeling the dependence of unobserved variables on observed ones
* also called conditional models
* Deterministic: y = fg(x)
* Probabilistic: pg (v]x)

* Linear regression model

d
y = Jo(z) = 0o + Zgjﬂij — 0z

j=1

r=(1,21,x9,...,2q)



Logistic Regression



From linear regression to logistic regression

* Logistic regression

e Similar to linear regression
* Given the numerical features of a sample, predict the numerical label value
* E.g. given the size, weight, and thickness of the cell wall, predict the age of the cell
* The values y we now want to predict take on only a small number of discrete
values
* E.g.to predict the cell is benign or malignant



Example

* Given the data of cancer cells below, how to predict they are benign

or malignant?
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Logistics regression

* It is a Classification problem

 Compared to regression problem, which predicts the labels from many
numerical features

* Many applications

* Spam Detection: Predicting if an email is Spam or not based on word
frequencies

* Credit Card Fraud: Predicting if a given credit card transaction is fraud or not
based on their previous usage

* Health: Predicting if a given mass of tissue is benign or malignant
* Marketing: Predicting if a given user will buy an insurance product or not
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Classification problem

* Given:

e A description of aninstance x € X

* Afixed set of categories: C = {ci1,¢2,...,¢m}
* Determine:

* The category of z: f(x) € C where f(x) is a categorization function whose
domain is X and whose range is C

* If the category set binary, i.e. C = {0, 1} ({false, true}, {negative, positive})
then it is called binary classification



Binary classification
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Linear discriminative model

e Discriminative model
* modeling the dependence of unobserved variables on observed ones
* also called conditional models.
« Deterministic: ¥ = fo(x)
* Probabilistic: pe(y\ﬂﬁ)

* For binary classification

*po(y=1[x)
*po(y=0|x)=1 —pg(y =1]x)



Loss Functions



KL divergence

* Regression: mean squared error (MSE)

* Kullback-Leibler divergence (KL divergence)
* Measure the dissimilarity of two probability distributions

L (pllq) = Z D 10{_, o Entropy
Cross entropy

KL (p|lg) = Zpk log pi, — Zpk. log g = —H (p) + H (p, fI)V :;"
k ke : :
0.8} : .l
e "
0.6} X
04F F
Question:
Which one is more similar to 0.2r

norm distribution?




KL divergence (cont.)

* Information inequality
KIL (pllg) > 0 with equality iff p = q.

. Entropy
Zp = k)logy p(X = k)
. Is a measure of the uncertainty
» Discrete distribution with the maximum entropy is the uniform distribution

* Cross entropy
e Hip, q) Zp;, log qj.

* |s the average number of bits needed to encode data coming from a source
with distribution p when we use model g to define our codebook



Cross entropy loss

* Cross entropy
e Discrete case: H(p,q) = — ., p(x)logqg(x)

 Continuous case: H(p,q) = — fx p(x)logqg(x)

* Cross entropy loss in classification:
* Red line p: the ground truth label distribution.

* Blue line g: the predicted label distribution.

_




Example for binary classification

* Cross entropy: H(p,q) = — 2, p(x) log q(x)

* Given a data point (x, 0) with prediction probability
qo(y = 1|x) = 0.4
the cross entropy loss on this point is
L=—-p(y=0|x) logqeéy = 0|x) —p(y = 1l|x) log qo(y = 1|x)

= —log(1—-04) = log§

What is the cross entropy loss for data point (x, 1) with prediction
probability

qgo(y = 1|x) = 0.3



Cross entropy loss for binary classification

* Loss function for data point (x, y) with prediction model
| pe (- |x)
is
L(y' X, pH)
—1;=1log pg(1lx) — 1=0log pg(0]x)
—y logpe(1lx) — (1 —y)log (1 — pe(1]x))



Cross entropy loss for multiple classification

* Loss function for data point (x, y) with prediction model

| po (- [x)
is

m
L(y,x,pg) = — Z 1y-c, logpe(Ck|x)
=1



Binary Classification



Binary classification: linear and logistic

Linear Regression Logistic Regression

LA L 2 B RN 22 o000 OPOPOROIRRNEDS

Predicted Y lies within

Predicted Y can exceed
0 and 1 range

0 and 1 range




Binary classification: linear and logistic

* Linear regression:
e Target is predicted by hg(x) = 0"x

* Logistic regression

e Target is predicted by hy(x) = (6 Tx) =
where

1
1+ e=0"x

1
0(2) = 1+ e 2

is the logistic function or the sigmoid function

0.5

9(z)

Logistic function

t
-20
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Properties for the sigmoid function

1
) U(Z) - 1+ e 2

* Bounded in (0,1)
*g(z) > 1whenz -
* 0(z) > 0Owhenz » —

. 7 . d 1 _ —7 _2._10_ -B_Z
0'(2) =Ll = (1467 (—e )

1
=1+e‘Z 1_1+e‘Z)
= a(z)(l — a(z))
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Logistic regression

* Binary classification
po(y = 1|z) = 0(0'z) =

g—l_

1
1+ e 0z

e I

pe(y = Olz) =
1+ E—HTI . / is also convexin 6
* Cross entropy loss function

L(y,z,pg) = —ylogo(0'z) — (1 —y)log(l — (8 'x))

* Gradient
8£(yt:rap9) _ 1 1
50 = _yg(ﬁTm)J(z)(l —o(z))z — (1 — y)l — g(ﬂTm)g(z)(l —o(z))z
= (0(0"2) —y)z 502) o
6 —0+n(y—o(0T2) 8:; =0(2)(1—0(2)) | Onew < 0w _3;78—((9)




Label decision

* Logistic regression provides the probability

1
—1lz) =0(0'z) =
Pe(y | ) ( ) ]."‘E’._HT'I
e—BTm
Po(y = 0lz) = < g

* The final label of an instance is decided by setting a threshold h

;o {1, po(y = 1|z) > h

0, otherwise



How to choose the threshold

* Precision-recall :crr;)ade—off . {1, po(y = 1|z) > h
* Precision = e 0, otherwise
. Recall = ——
TP+FN

Higher threshold
 More FN and less FP
* Higher precision
* Lower recall
Lower threshold
* More FP and less FN
* Lower precision
* Higher recall



Example

* We have the heights and weights of a group of T ——
students 45890
* Height: in inches,
* Weight: in pounds
* Male: 1, female, O

* Please build a Logistic regression model to predict
their genders
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Example (cont.)

* As there are only two features, height and weight, the logistic

. o 1
regression equation is: hg (X) = ——@ s 576570

* Solve it by gradient descent

—_ There will be a lab hw

" 0.69254 ] on logistic regression

* The solutionis @ = |—0.49269
1 0.19834
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Weight (pounds)

Example (cont.)

Decision boundary

1 ® Male
250

4 Female
200
150 - _
100 4

50 55 60 65 70 75 80 85
Height (inches)

Threshold h = 0.5

Decision boundary
HO -+ 91x1 + 92X2 = O

Above the decision boundary lie most of
the blue points that correspond to the
Male class, and below it all the pink
plomts that correspond to the Female
class

The predictions won’t be perfect and can

be improved by including more features
(beyond weight and height), and by

Botentlally using a different decision
oundary (e.g. nonlinear)
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Example 2

* A group of 20 students spends between 0 and 6 hours studying for an

exam. How does the number of hours spent studying affect the
probability of the student passing the exam?

Hours ___|Pass | [Hours __[Pass
0.50 0 2.75 1
0.75 0 3.00 0
1.00 0 3.25 1
1.25 0 3.50 0
1.50 0 4.00 1
1.75 0 4.25 1
1.75 1 4.50 1
2.00 0 4.75 1
2.25 1 5.00 1
2.50 0 5.50 1
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Example 2 (cont.)

1
* h9 (X) ~  1{4+e—(1.5046xhours —4.0777)

00000

Buissed Jo Alljigegold

00D~ © o e° & 9 o 9

Study Hours



Interpretation of logistic regression

* Given a probability p, the odds of p is defined as odds = pa—

p

-Pp
i)
1-p

* The logit is defined as the log of the odds: In(odds) = In (

e Let In(odds) = 8T x, we will have In (1%) =0 "x, and

Po 14 e

* So in logistic regression, the logit of an event(predicted positive)’s
probability is defined as a result of linear regression



More Measures for Classification



Confusion matrix

e Remember what we have learned about the confusion matrix
Prediction Prediction
1 0
True False True False
1 Positive Negative . Positive Negative
Label Label |
False True False True
0 Positive | Negative 0 Positive Negative F]_ — 2 X PI'EC X RGCEL]_]_
Prec + Rec
* Precision: the ratio of true * Recall: the ratio of cases
class 1 cases in those with with prediction 1 in all true
prediction 1 class 1 cases
TP TP
Prec = Rec =
TP + FP TP + FN

* These are the basic metrics to measure the classifier
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AUC (cont.)

* |t’s the relationship between TPR and FPR when the
threshold is changed from 0 to 1

* In the top right corner, threshold is 0, and every thing
is predicted to be positive, so both TPR and FPRis 1

* In the bottom left corner, threshold is 1, and every
thing is predicted to be negative, so both TPR and FPR
isO

* The size of the area under this curve (AUC) is an
important metric to binary classifier

* Perfect classifier get AUC=1 and random classifier get
AUC=0.5

TPR

FPR

TPR: true positive rate
FPR: false positive rate



True positive rate

AUC (cont.)

| /
0.8 - ’1:7/
0.6
— NetChop C-term 3.0
0.4 — TAP + ProteaSMM-i
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False positive rate

It considers all possible thresholds.

Various thresholds result in different true/false
positive rates.

As you decrease the threshold, you get more true
positives, but also more false positives.

From a random classifier you can expect as many true
positives as false positives. That’s the dashed line on
the plot. AUC score for the case is 0.5. A score for a
perfect classifier would be 1. Most often you get
something in between.
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AUC example

‘

1.0 0.91 1
0.85 0
0.75
True 0.77 1
P05|t‘|ve os | 0.72 1
Ratio
0.61 0
0.25
‘ 0.48 1
. . 0.42 0
0.25 05 075 1.0 0.33 0

False Positive Ratio

AUC =0.75



Precision recall curve

* The precision recall curve, or pr curve, is another plot to measure the
performance of binary classifier.

Precision (PPV)

1.0 1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Precision-recall curves - examples

0.0

0.2

0.4 0.6

Recall (sensitiviity)

0.8

1.0

It’s the relationship between Precision and Recall
when the threshold is changed from 0 to 1

It’s more complex than the ROC curve

The size of the area under this curve is an important
metric to binary classifier

It can handle imbalanced dataset

Usually, the classifiers gets lower AUPR value than AUC
value
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AUPR examples
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Class Imbalance



Class imbalance

* Down sampling

* Sample less on frequent class
* Up sampling

* Sample more on infrequent class
* Hybrid Sampling

e Combine them two
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Weighted loss functions

L(y,x,p9) = —ylogpe(1|x) — (1 —y)log (1 — pge(1]x))

L(y,x,pg) = —wiylogpg(1lx) — wo(1 —y)log (1 — pe(1]x))



Multi-Class Logistic Regression



Multi-class classification

* L(y' X pH) — _271'11 1y=Ck lngg (Cklx)

Binary classification: Multi-class classification:
A A
X ol xX
|l o X " X, AN X X
O O / Y
O
> >




Multi-Class Logistic Regression

* Class set C = {ci,c2,...,¢Cm}

* Predicting the probability of pe(y = ¢;|z)

0, x
(y = cjlz) = c for j=1,...,m
e : Iy el -
* Softmax

* Parameters 6 = {01,02,...,0,}
* Can be normalized with m-1 groups of parameters
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Multi-Class Logistic Regression

* Learning on one instance (z,y = ¢;)
* Maximize log-likelihood

max log pg(y = ¢;|z)

6
* Gradient
T:I.:
Ologpo(y = cjle) 0 e’s
89j 693 Ez"‘:l 69;15'3
=T — ilf::-gie@g"’“’
00,
k=1
B eH:ime
- m ng
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summary

* Discriminative / Generative Models

* Logistic regression (binary classification)
* Cross entropy
* Formulation, sigmoid function
* Training—gradient descent

* More measures for binary classification (AUC, AUPR)
* Class imbalance
* Multi-class logistic regression



Next Lecture

SVM



Shuai Li
https://shuaili8.github.io

Questions?

https://shuaili8.github.io/Teaching/VE445/index.html
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