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Outline

• Linear classifiers and the margins

• Objective of the SVM

• Lagrangian method in convex optimization

• Solve SVM by Lagrangian duality

• Regularization

• Kernel method

• SMO algorithm to solve the Lagrangian multipliers
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Review: Label decision of logistic regression

• Logistic regression provides the probability

• The final label of an instance is decided by setting a threshold ℎ



Scores of logistic regression

• Let 𝑠 𝑥 = 𝜃0 + 𝜃1𝑥2 + 𝜃2𝑥2, so the probability in logistic regression 

is defined as   𝑝𝜃 𝑦 = 1 𝑥 =
1

1+𝑒−𝑠(𝑥)

• Positive prediction means positive scores

• Negative prediction means negative scores

• The absolute value of the score 𝑠 𝑥 is proportional to the distance 𝑥
to the decision boundary 𝜃0 + 𝜃1𝑥2 + 𝜃2𝑥2 = 0
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Illustration of logistic regression

• The higher score, the larger distance to the decision boundary, the 
higher confidence. E.g.
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𝑠 𝑥𝐴 = 𝜃0 + 𝜃1𝑥1
𝐴 + 𝜃2𝑥2

𝐴 = 7

𝑠 𝑥𝐵 = 𝜃0 + 𝜃1𝑥1
𝐵 + 𝜃2𝑥2

𝐵 = 3

𝑠 𝑥𝐶 = 𝜃0 + 𝜃1𝑥1
𝐶 + 𝜃2𝑥2

𝐶 = 1

𝑠 𝑥 = 0



Intuition

• Positive when 
𝑝𝜃 𝑦 = 1 𝑥 = ℎ𝜃 𝑥 = 𝜎 𝜃⊤𝑥 ≥ 0.5

or
𝜃⊤𝑥 ≥ 0

• Point 𝐴
• Far from decision boundary

• More confident to predict the label 1

• Point 𝐶
• Near decision boundary

• A small change to the decision boundary could 
cause prediction to be 𝑦 = 0
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Decision boundary /
Separating hyperplane

𝜃⊤𝑥 = 0



Example

• Given a dataset of two classes, how to find a line to separate them?
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Example (cont.)

• Both the two solutions can separate the data perfectly, but we prefer 
the one on the right, why?
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Example (cont.)

• It makes us feel safe because it provides the most margin!

• These are the support vectors, and the model is called support vector 
machine. 9



Notations for SVM

• Feature vector 𝑥

• Class label 𝑦 ∈ {−1, 1}
• Instead of 0,1

• Parameters
• Intercept 𝑏

• We also drop the convention we had previously of letting 𝑥0 = 1 be an extra coordinate in 
the input feature vector

• Feature weight vector 𝑤

• Label prediction
• ℎ𝑤,𝑏 𝑥 = 𝑔 𝑤⊤𝑥 + 𝑏

• 𝑔 𝑧 = ቊ
+1 𝑧 ≥ 0
−1 otherwise

• Directly output the label
• Without estimating probability first (compared with logistic regression)
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Sign function



Hyperplane and margin

• Idea of using 𝑦 ∈ {−1, 1}
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Functional margin

• Functional margin of (𝑤, 𝑏) with respect to (𝑥, 𝑦) is
𝛾 = 𝑦(𝑤⊤𝑥 + 𝑏)

• 𝑤⊤𝑥 + 𝑏 is the score of 𝑥

• When 𝑦 = 1, large positive 𝑤⊤𝑥 + 𝑏 value would give a high 
confidence

• When 𝑦 = −1, large negative 𝑤⊤𝑥 + 𝑏 value would give a 
high confidence

• 𝑦 𝑤⊤𝑥 + 𝑏 > 0 means the prediction is correct

• But changing (𝑤, 𝑏) to (2𝑤, 2𝑏) would increase the 
functional margin
• Without changing the decision boundary 𝑤⊤𝑥 + 𝑏 = 0
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Decision boundary 
𝜃⊤𝑥 = 𝑤𝑇𝑥 + 𝑏 = 0



Geometric margin

• 𝑤 vector is orthogonal to the decision boundary

• Geometric margin is the distance of the point to the decision 
boundary
• For positive prediction points

• 𝑥 − 𝛾
𝑤

𝑤
lies on the decision boundary

• 𝑤⊤ 𝑥 − 𝛾
𝑤

𝑤
+ 𝑏 = 0

• Solve it, get

𝛾 =
𝑤⊤𝑥 + 𝑏

𝑤

• In general, 𝛾 = 𝑦 𝑤⊤𝑥 + 𝑏 with 𝑤 = 1
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Objective of an SVM

• Given a training set 
𝑆 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, … ,𝑁

margin is the smallest geometric margin 
𝛾 = min

𝑖=1,…,𝑛
𝛾𝑖

• Objective: maximize the margin
max
𝛾,𝑤,𝑏

𝛾

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 𝛾, 𝑖 = 1,… , 𝑁
𝑤 = 1

which is equivalent to

max
𝛾,𝑤,𝑏

𝛾

𝑤
𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 𝛾, 𝑖 = 1,… , 𝑁 14

Non-convex constraint
𝑤 ≤ 1 is convex

Non-convex objective

Scaling 𝛾, 𝑤, 𝑏 as 
𝑐𝛾, 𝑐𝑤, 𝑐𝑏 doesn’t 

change the problem



Objective of an SVM (cont.)

• Functional margin scales w.r.t. (𝑤, 𝑏) without changing the decision 
boundary

• Fix the functional margin as 1, that is let 
𝛾 = 1

• Then the objective is

max
𝑤,𝑏

1

𝑤
𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, 𝑖 = 1,… , 𝑁

or equivalently

min
𝑤,𝑏

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, 𝑖 = 1,… , 𝑁
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Can be efficiently solved by 
quadratic programming (QP)



Lagrange Duality
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Lagrangian for convex optimization

• Given a convex optimization problem

• The Lagranigan of this problem is defined as 

• Solving

yields the solution of the original optimization problem
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Geometric interpretation

• With only one constraint
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The two gradients are 
on the same line but 
with different direction



With inequality constraints

• What if there are inequality constraint?

• The Lagrangian of this problem is defined as:
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More on primal problem

• Primal problem

• Consider quantity

• If a given 𝑤 violates any constraints, i.e. 𝑔𝑖 𝑤 > 0 or ℎ𝑖 𝑤 ≠ 0, then
𝜃𝓟 𝑤 = +∞

• If all constraints are satisfied for 𝑤, then
𝜃𝓟 𝑤 = 𝑓(𝑤)

20

• Generalized Lagrangian

primal



More on primal problem (cont.)

• Primal problem

• Consider quantity

21

• Generalized Lagrangian

primal



More on primal problem (cont.)

• The minimization problem

is the same with the original problem 

• The value of the primal problem
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Dual problem

•

• Define

• Dual optimization problem

with the value

23

Dual



Primal problem vs. dual problem

• Proof

• But under certain condition
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• 𝑤∗, 𝛼∗, 𝛽∗satisfy the KKT conditions:

• If 𝛼𝑖
∗ > 0, then 𝑔𝑖 𝑤

∗ = 0

• The converse is also true
• If some w, a, b satisfy the KKT conditions, then 

it is also a solution to the primal and dual 
problems

• More details can be found in Boyd’s book 
“Convex optimization” 

Karush-Kuhn-Tucker (KKT) Conditions

• Suppose 
• 𝑓 and 𝑔𝑖’s are convex

• ℎ𝑖’s are affine

• 𝑔𝑖’s are all strictly feasible
• There exists 𝑤 such that 𝑔𝑖 𝑤 < 0 for all 𝑖

• Then there must exist 𝑤∗, 𝛼∗, 𝛽∗

• 𝑤∗ is the solution of the primal problem

• 𝛼∗, 𝛽∗ are the solution of the dual problem

• And the values of the two problems are 
equal 
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Back to SVM
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Rewrite the SVM objective

• The objective of SVM is

min
𝑤,𝑏

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, 𝑖 = 1,… , 𝑁

• Rewrite the constraints as
𝑔𝑖 𝑤 = −𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 + 1 ≤ 0

• It is equivalent to solve the dual problem

• Note that from the KKT dual complementarity condition, 𝛼𝑖 > 0 is 
only possible for training samples with 𝑔𝑖 𝑤 = 0
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Support vectors

• The points with smallest margins

• 𝑔𝑖 𝑤 = 0
• −𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 + 1 = 0

• Positive support vectors
• 𝑤⊤𝑥 + 𝑏 = 1

• Negative support vectors
• 𝑤⊤𝑥 + 𝑏 = −1

• Only support vectors decide the decision 
boundary
• Moving or deleting non-support points doesn’t 

change the decision boundary
28



Lagrangian of SVM

• SVM objective:

min
𝑤,𝑏

1

2
𝑤 2

𝑔𝑖 𝑤 = −𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 + 1 ≤ 0, 𝑖 = 1,… , 𝑁

• Lagrangian

𝐿 𝑤, 𝑏, 𝛼 =
1

2
𝑤 2 + 

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏
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Solve the dual

• 𝐿 𝑤, 𝑏, 𝛼 =
1

2
𝑤 2 + σ𝑖=1

𝑁 𝛼𝑖 1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

• Let the partial derivative to be zero:

•
𝜕𝐿 𝑤,𝑏;𝛼

𝜕𝑤
= 𝑤 − σ𝑖=1

𝑁 𝛼𝑖𝑦
𝑖𝑥𝑖 = 0

•
𝜕𝐿 𝑤,𝑏;𝛼

𝜕𝑏
= −σ𝑖=1

𝑁 𝛼𝑖𝑦
𝑖 = 0

• Then substitute them back to 𝐿:
• min𝑤,𝑏 𝐿 𝑤, 𝑏, 𝛼

=
1

2


𝑖=1

𝑁

𝛼𝑖𝑦
𝑖𝑥𝑖

2

+

𝑖=1

𝑁

𝛼𝑖 −

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 

𝑗=1

𝑁

𝛼𝑗𝑦
𝑗𝑥𝑗

⊤

𝑥𝑖 + 𝑏

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖

=

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖
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Solve the dual (cont.)

• max
𝛼≥0

𝜃𝒟(𝛼) = max
𝛼≥0

min
𝑤,𝑏

𝐿(𝑤, 𝑏, 𝛼)

• Dual problem

max
𝛼

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 𝛼𝑖 ≥ 0, 𝑖 = 1,… ,𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

• Then solve 𝛼∗ by SMO

31

Can check the KKT 
conditions hold



Solve 𝑤∗ and 𝑏∗

• With 𝛼∗

𝑤 =

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖𝑥𝑖

• 𝛼𝑖 > 0 only holds on support vectors

• Then

32

Check it!



Predicting values

• 𝑤⊤𝑥 + 𝑏 = σ𝑖=1
𝑁 𝛼𝑖𝑦

𝑖𝑥𝑖
⊤
𝑥 + 𝑏

=

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 𝑥𝑖 , 𝑥 + 𝑏

• Only need to calculate the inner product of 𝑥 with support vectors

• Prediction is
𝑦 = Sign 𝑤⊤𝑥 + 𝑏
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Regularization and the Non-
Separable Case
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Motivation

• SVM assumes data is linearly separable
• But some data is linearly non-separable

• SVM is susceptible to outliers
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Solution – Soft margin

• To make the algorithm work for non-linearly 
separable datasets as well as be less sensitive to 
outliers

• Add slack variables

min
𝑤,𝑏

1

2
𝑤 2 + 𝐶

𝑖=1

𝑁

ξ𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 − ξ𝑖 , 𝑖 = 1, … , 𝑁
ξ𝑖 ≥ 0, 𝑖 = 1,… , 𝑁

36

𝐿1 regularization



Example
• Correctly classified points beyond the support line 

with ξ = 0

• Correctly classified points on the support line 
(support vectors) with ξ = 0

• Correctly classified points inside the margin with 
0 < ξ < 1

• The misclassified points inside the margin with 
slack 1 < ξ < 2

• The misclassified points outside the margin with 
slack ξ > 2
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• Lagrangian

𝐿 𝑤, 𝑏, ξ, 𝛼, 𝑟 =
1

2
𝑤 2 + 𝐶

𝑖=1

𝑁

ξ𝑖 +

𝑖=1

𝑁

𝛼𝑖 1 − ξ𝑖 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 −

𝑖=1

𝑁

𝑟𝑖ξ𝑖

• Let the partial derivative to be zero:

•
𝜕𝐿 𝑤,𝑏,ξ;𝛼,𝑟

𝜕𝑤
= 𝑤 − σ𝑖=1

𝑁 𝛼𝑖𝑦
𝑖𝑥𝑖 = 0

•
𝜕𝐿 𝑤,𝑏,ξ;𝛼,𝑟

𝜕𝑏
= −σ𝑖=1

𝑁 𝛼𝑖𝑦
𝑖 = 0

•
𝜕𝐿 𝑤,𝑏,ξ;𝛼,𝑟

𝜕ξ𝑖
= 𝐶 − 𝛼𝑖 − 𝑟𝑖 = 0

• Then substitute them back to 𝐿:
• min

𝑤,𝑏,ξ
𝐿 𝑤, 𝑏, ξ, 𝛼, 𝑟

=
1

2


𝑖=1

𝑁

𝛼𝑖𝑦
𝑖𝑥𝑖

2

+

𝑖=1

𝑁

𝛼𝑖 −

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 

𝑗=1

𝑁

𝛼𝑗𝑦
𝑗𝑥𝑗

⊤

𝑥𝑖 + 𝑏

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖

=

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

Solve the Lagrangian dual problem

38

Make ξ term disappear

Same as before



Dual problem

• max
𝛼≥0,𝑟≥0

𝜃𝒟(𝛼, 𝑟) = max
𝛼≥0,𝑟≥0

min
𝑤,𝑏,ξ

𝐿 𝑤, 𝑏, ξ, 𝛼, 𝑟

• Dual problem

max
𝛼,𝑟

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 𝛼𝑖 ≥ 0, 𝑟𝑖 ≥ 0, 𝑖 = 1,… ,𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

𝐶 − 𝛼𝑖 − 𝑟𝑖 = 0, 𝑖 = 1,… , 𝑁

39



Dual problem (cont.)

• max
𝛼

𝑊 𝛼 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

• When 𝛼 is solved, 𝑤 and 𝑏 can be solved

40

Surprisingly, this is the only change

Efficiently solved by SMO algorithm



Revisit the regularized objective

• min
𝑤,𝑏

1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑁 ξ𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 − ξ𝑖 , 𝑖 = 1, … , 𝑁
ξ𝑖 ≥ 0, 𝑖 = 1,… , 𝑁

• min
𝑤,𝑏

1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑁 max 0, 1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

41

SVM hinge loss 



SVM hinge loss vs. logistic loss

42

• Logistic loss
• 𝐿 𝑦, 𝑓 𝑥 =

−𝑦 log 𝜎 𝑓 𝑥 −(1 − y) log 1 − 𝜎 𝑓 𝑥

• SVM hinge loss 
• 𝐿 𝑦, 𝑓 𝑥 = max 0, 1 − 𝑦𝑓 𝑥

• For 𝑦 = 1



The effect of penalty coefficient

• min
𝑤,𝑏

1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑁 ξ𝑖

• Large 𝐶 will result in narrow margin
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Kernels

44



Non-linearly separable case

• Feature mapping

45



From inner product to kernel function

• SVM

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

• Kernel

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗

• 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝛷 𝑥𝑖 , 𝛷 𝑥𝑗

• Kernel trick:
• For many cases, only 𝐾 𝑥𝑖 , 𝑥𝑗 are needed, so we can only define these 𝐾𝑖𝑗 without 

explicitly defining 𝛷

• For prediction, only need 𝐾 𝑥𝑖 , 𝑥 on support vectors
46



Property

• If 𝐾 is a valid kernel (that is, is defined 
by some feature mapping 𝛷), then 
the kernel matrix 𝐾 = 𝐾𝑖𝑗 𝑖𝑗

∈

ℝ𝑁×𝑁 is symmetric positive semi-
definite

• Symmetric
• 𝐾𝑖𝑗 = 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝛷 𝑥𝑖 , 𝛷 𝑥𝑗 =
𝛷 𝑥𝑗 , 𝛷 𝑥𝑖 = 𝐾 𝑥𝑗 , 𝑥𝑖 = 𝐾𝑗𝑖

47

• Positive semi-definite



Examples on kernels

• Gaussian kernel

• Radial basis function (RBF) kernel

• What is the feature mapping 𝛷? (Hint: by using Taylor series)

• Simple polynomial kernel

• Cosine similarity kernel

• Sigmoid kernel   

48



Which kernel to select?

49By Prof. Chih-Jen Lin (NTU)



Examples
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Demo time

• Before we learn how to solve the 
optimization problem, let’s have 
some relax and see the online 
demo of SVM
https://cs.stanford.edu/~karpath
y/svmjs/demo/
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SMO Algorithm
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Solve 𝛼∗

• Dual problem

max
𝛼

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

• With 𝛼∗ solved, 𝑤 and 𝑏 are solved 
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Coordinate Ascent (Descent)

• For the optimization problem
max
𝛼

𝑊(𝛼1, 𝛼2, … , 𝛼𝑁)

• Coordinate ascent algorithm

54
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Illustration
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A two-dimensional coordinate ascent example



Sequential minimal optimization (SMO)

• Recall the SVM optimization problem:

max
𝛼

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

• The coordinate ascent algorithm cannot be applied directly, because



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0 ⇒ 𝛼𝑖𝑦

𝑖 =

𝑗≠𝑖

𝛼𝑗𝑦
𝑗

• If we hold other 𝛼𝑗, we can’t make any changes to 𝛼𝑖
56



Solution

• Update two variable each time

• Convergence test: whether the change of 𝑊(𝛼) is smaller than a 
predefined value (e.g. 0.01)

• Key advantage of SMO algorithm 
• The update of 𝛼𝑖 and 𝛼𝑗 (step 2) is efficient
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SMO (cont.)

• max
𝛼

𝑊 𝛼 = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

• Without loss of generality, hold 𝛼3…𝛼𝑁 and 
optimize 𝑤(𝛼) w.r.t 𝛼1 and 𝑎2

𝛼1𝑦
1 + 𝛼2𝑦

2 = −

𝑖=3

𝑁

𝛼𝑖𝑦
𝑖 = 𝜁

⇒ 𝛼1 = 𝑦1 𝜁 − 𝛼2𝑦
2
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SMO (cont.)

• With 𝛼1 = (𝜁 − 𝛼2𝑦
2)𝑦1, the objective is written as

𝑊 𝛼1, 𝛼2, … , 𝛼𝑁 = 𝑊 (𝜁 − 𝛼2𝑦
2)𝑦1, 𝛼2, … , 𝛼𝑁

• Thus the original optimization problem

max
𝛼

𝑊 𝛼 =

𝑖=1

𝑁

𝛼𝑖 −
1

2


𝑖=1

𝑁



𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑁



𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 = 0

is transformed into a quadratic optimization problem w.r.t  𝛼2
max
𝛼2

𝑎𝛼2
2 + 𝑏𝛼2 + 𝑐

𝑠. 𝑡. 𝑑 ≤ 𝛼2 ≤ 𝑒
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SMO (cont.)

• Optimizing a quadratic function is much efficient
• Hint: The interval 0, 𝐶 should be revised according to your computation
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Pros and cons of SVM

• Advantages:
• The solution, which is based on convex optimization, is globally optimal
• Can be applied to both linear/non-linear classification problems
• Can be applied to high-dimensional data 

• since the complexity of the data set mainly depends on the support vectors

• Complete theoretical guarantee
• Compared with deep learning

• Disadvantages:
• The number of parameters 𝛼 is number of samples, thus hard to apply to 

large-scale problems
• SMO can ease the problem a bit

• Mainly applies to binary classification problems
• For multi-classification problems, can solve several binary classification problems, but 

might face the problem of imbalanced data 61


