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Outline

* Linear classifiers and the margins

* Objective of the SVM

* Lagrangian method in convex optimization

* Solve SVM by Lagrangian duality

e Regularization

* Kernel method

* SMO algorithm to solve the Lagrangian multipliers

References: http://cs229.stanford.edu/notes/cs229-notes3.pdf
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Review: Label decision of logistic regression

* Logistic regression provides the probability

1
—1lz) =0(0'z) =
Pe(y | ) ( ) 1—|—E._HT'I
e—BTm
Po(y = 0lz) = < g

* The final label of an instance is decided by setting a threshold h

j— 1, pe(y=1lz) >h
0, otherwise



Scores of logistic regression

e let s(x) = 6, + 0;x, + 6,x,, so the probability in logistic regression
is defined as pg(y = 1]x) = -

1+e—SX)

* Positive prediction means positive scores
* Negative prediction means negative scores

* The absolute value of the score s(x) is proportional to the distance x
to the decision boundary 8y, + 8,x, + 6,x, = 0



llustration of logistic regression

* The higher score, the larger distance to the decision boundary, the
higher confidence. E.g.
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= . — s(xB) = 0y +0,x% +0,x5 =3
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Intultion

e Positive when
pe(y = 1|x) = hg(x) = 0(6'x) = 0.5
or
0Tx>0

 Point A

e Far from decision boundary
* More confident to predict the label 1

* Point C
* Near decision boundary

* A small change to the decision boundary could
cause predictiontobey =0

Decision boundary /
Separating hyperplane
0Tx=0




Example

* Given a dataset of two classes, how to find a line to separate them?

Te




Example (cont.)

* Both the two solutions can separate the data perfectly, but we prefer
the one on the right, why?

X2

5 3 7 8 9 0 1 2 3 B
x1 x1



Example (cont.)

* It makes us feel safe because it provides the most margin!

X,

X2
Te
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x1

* These are the support vectors, and the model is called support vector
machine.



Notations for SVM

Feature vector x

Class label y € {—1,1}
* |Instead of {0,1}

Parameters
* Intercept b

* We also drop the convention we had previously of letting x, = 1 be an extra coordinate in

the input feature vector
* Feature weight vector w

Label prediction

Sign function

2!

1

* hyp(x) = gw'x+Db)

o3/

. g(2) = +1 z=>0
—1 otherwise

 Directly output the label
* Without estimating probability first (compared with logistic regression)
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Hyperplane and margin

e |deaofusingy € {—1,1
Y €L ) xX'w+b=0

XwW+b>1 ——, o
X' w+b<-1

xw+b=1
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Functional margin

* Functional margin of (w, b) with respect to (x,y) is

Yy =y(w'x + b)

w'x + b is the of x

Wheny =1, positive w ' x + b value would give a high
confidence

Wheny = —1, negative w ' x + b value would give a

high confidence
y(w'x + b) > 0 means the prediction is correct

But changing (w, b) to (2w, 2b) would the
functional margin

changing the decision boundaryw x +b =0

Decision boundary
OTx =wlix+b=0
A

12
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Geometric margin

* w vector is orthogonal to the decision boundary

* Geometric margin is the distance of the point to the decision
boundary

* For prediction points
* X — yﬁ lies on the decision boundary

‘WT(X—Vﬁ)-l-b:O

* Solve it, get “/(37 %

In general, y = y(wTx + b) with [[w|| = 1

13



Objective of an SVM

* Given a training set

S = {(xi;yi)};i — 11 ,N
margin is the smallest geometric margin

Yy = min y*
n

i=1,...,
* Objective: maximize the margin
max y
y.w,b

s.t. y'(w'x'+b)=y, i=1,.,N

”W” — 1 —==—— Non-convex constraint
Iw]l < 1 is convex

which is equivalent to

Non-convex objective

max ——
yw.b ||[w]|

s.t. y‘(WTxi + b) >, i=1,..

_

Scaling (y,w, b) as
(cy,cw, cb) doesn’t
change the problem

, N
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Objective of an SVM (cont.)

* Functional margin scales w.r.t. (w, b) without changing the decision
boundary

* Fix the functional margin as 1, that is let

y =1
* Then the objective ii:
max -—---
w,b ||W| T .
s.t. y'w x‘+b)21, i=1,..,N
or equwalently 1 Can be efficiently solved by
mlgl E ”WHZ guadratic programming (QP)

s.t. “yiwTxi+b) =1, i=1,..,N

15



Lagrange Duality



Lagrangian for convex optimization

* Given a convex optimization problem
min f(w)
w
s.t. h;(w)=0, i=1,...,1

* The Lagranigan of this problem is defined as

l
L(w,B) = f(w)+ ) Bihi(w)
=1 Lagrangian multipliers
* Solving 82 (w, ) 82w, )
ow op
vields the solution of the original optimization problem

=0




Geometric interpretation

* With only one constraint

w2 -~

The two gradients are
on the same line but
with different direction

Oh(w)

ow =0
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With inequality constraints

* What if there are inequality constraint?

min f(w)
s.t. gi(w) <0, i=1,...,k
h;(w)=0, i=1,...,1

* The Lagrangian of this problem is defined as:

[
L(w,a,B) = f(w)+ Z a;gi(w) + ) Bihi(w)
=1

Lagrangian multipliers



More on primal problem

* Primal problem * Generalized Lagrangian
min f(w) k l
v L(w, o, )= flw)+ ;g (w) + 3;h;(w
st gi(w) <0, i=1,... .k (w, o, B) = f(w) ; gi(w) ;A (w)
hi(ﬂ)):O’ 1= ,...,E

e Consider quantity
() = mex L(w,a,0)

a,F:a; >0
* If a given w violates any constraints, i.e. g;(w) > 0 or h;(w) # 0, then
Op(w) = +oo

* If all constraints are satisfied for w, then

Op(w) = f(w)

20



More on primal problem (cont.)

* Primal problem * Generalized Lagrangian
min f(w) k l
v L(w, o, )= flw)+ ;g (w) + 3;hi(w
ot gi(w) <O, i=1... K (w, a, B) = f(w) Zl gi(w) le (w)
hi(ﬂ)):O’ 1= ,...,E

e Consider quantity
() = mex L(w,a,0)

a,B:0; >0

0p () f(w) if w satisfies primal constraints
w) —
i +00  otherwise
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More on primal problem (cont.)

* The minimization problem

. 9 _ . E
min fp(w) = min e, £l )

is the same with the original problem
min f(w)
s.t. gi(w) <0, 1=1,...,k
hi(w) =0, i=1,...,1
* The value of the primal problem

p" = minfp(w)



Dual problem

o I]%{'l;n pr(’lU) — mTin a,g}cﬁéﬂﬁ(w’ 0536)
* Define .
Dual %ﬁp((}f, )8) - IIIHIJII ﬁ(w’ & B)

* Dual optimization problem

) — in L
o BP0 0) = o, min £l )
with the value
d* = max minZL(w,a,[)

@:5&120 w
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Primal problem vs. dual problem

d* = max min/l(w. « < min max L(w.« —
ﬂ-’aﬁﬂ“zEU w ( j jﬁ) W ﬂﬁﬂizo ( j 36) P

* Proof
min L(w, o, 8) < L(w, o, B),Yw,a > 0,3
w

= max min L(w, < max L(w,« Vw
a,f:a>0 w ( ’ ’6)_3,,8::120 ( j jﬁ)j

= max min L(w, o < min max L(w,«
a,B:a>0 w ( j 36)_ W a,B:a>0 ( ’ 36)

 But under certain condition d* = p*

*
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Karush-Kuhn-Tucker (KKT) Conditions

* Suppose * W', a”, fsatisfy the KKT conditions:

* f and g;’s are convex

, Ow;
* h;’s are affine g@
 g;’s are all strictly feasible 3—@5(‘”*@ 87)=0,i=1,...,1
* There exists w such that g;(w) < 0 for all i ES;S:;LEHWW gi(w) =0, i=1,....k
. condition
* Then there must exist w*, a™, B~ gi(w*) <0, i=1,...,k
 w” is the solution of the primal problem o >0,i=1,...,k
* a”, " are the solution of the dual problem  Ifa; >0, then g;(w*) =0
* And the values of the two problems are e The converse is also true
equal
p* =d* = L(w*, ", ) * If some w, a, b satisfy the KKT conditions, then
it is also a solution to the primal and dual
problems

* More details can be found in Boyd’s book
“Convex optimization”



Back to SVM



Rewrite the SVM objective

* The objective of SVM is

n = [lwlf?
min —uw
wb 2

s.t.  y(w'™x*+b)=1, i=1,..,N
* Rewrite the constraints as
gw) ==y (wTx'+b)+1<0
* It is equivalent to solve the dual problem

* Note that from the KKT dual complementarity condition, a; > 0 is
only possible for training samples with g;(w) = 0



Support vectors R

. ®X x X
* The points with smallest margins 0.

\

* gilw) =0
« —yi(wTx'+b)+1=0
* Positive support vectors
cwix+b=1

* Negative support vectors . ®
s w'x+b=-1
2}
|
* Only support vectors decide the decision Hyperpline "
boundary >/ . |
* Moving or deleting non-support points doesn’t Margin ‘ O Support veials @kl

change the decision boundary -



Lagrangian of SVM

* SVM objective:

n - lw]|?
min —||w
wb 2

gw) =—yi(wTxi+b)+1<0,i=1,..,N
* Lagrangian

N
1 . .
Lw,b,a) = 5 lw||? + z ai[l — y‘(wal + b)]
i=1



Solve the dual

e L(w,b,a) = —||W||2 + YN a1 =y (wTxt + b)]

* Let the partial derivative to be zero:

OL(w,b;xx)
ow - W= Z

OL(Wba)
* ob ZL 1ayl:O

* Then substitute them back to L:
* miny, , L(w, b, a)

1alyx =0

N

1 N N
:E Z LJ’x +zal zalyl Zayfxf X +bz lyl

i=1 =1 =1 j=1 i=1

N '"'N
1 i Jned T i
XWX
=1 =1



Solve the dual (cont.)

* max fp(a) = maxmin L(w, b, )

a=0 a=0 w,b
e Dual problem
N N
1 i fnd | ol
> a;o;yy'x’ x
: Can check the KKT
N

a
L i=1j=1
s.t. a;=>0,i=1,..., conditions hold

N O v v

Lw*,a",*)=0,i=1,...,n
i 6’11.?3
a;y- =0 O i e o
Tﬁ(w,a,ﬁ)zo,zzl, sl
l:l KKT dual 51 . ( *) 0. i 1 I
* complementarity o; gi\w =UuU,1=1,...,
L condition

Then solve a™ by SMO i Gi(w) <0, =1,k
a*>0,i=1,...,k



Solve w* and b*

e With o™

N
w = z a;ytxt
i=1

* a; > 0 only holds on support vectors

e Then "

b* maxi:y(i):

LW T M W T __ Checkit!
2
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Predicting values

A
. oaN | o ><><
° WTX + b — (Z{:V=1 C(iylxl)Nx + b @X « X
- z C(lyl<xl’ x) + b ’ 0 @
=1 0 oO O\\\‘\

* Only need to calculate the inner product of x with support vectors

e Prediction is
y = Sign(w"x + b)



Regularization and the Non-
Separable Case



Motivation Z Coo
| R ::?.::‘
TR o
* SVM assumes data is linearly separable ol ,"*"f,"
* But some data is linearly non-separable ol Lo ';:'.". "
* SVM is susceptible to outliers 4 .




Solution — Soft margin

* To make the algorithm work for non-linearly
separable datasets as well as be less sensitive to ™
outliers

 Add slack variablesN
1 - L' regularization -. L
min = [wll” +C ) &,
wb 2 -

: . 1=
s.t. y‘(WTx‘ + b]) >1-¢,, i=1,..,N
EiZO, l:1,,N

36



Example

 Correctly classified points beyond the support line
with& =0

e Correctly classified points on the support line
(support vectors) with & = 0

* Correctly classified points inside the margin with
0<éEK1

* The misclassified points inside the margin with
slack 1 < & < 2

* The misclassified points outside the margin with
slack & > 2



Solve the Lagrangian dual problem

* Lagrangian N N

LOw,bE a,r) = lwll2 + cz i+ ) a1 —§ —yi(wTxi + b)) - ) niE
i=1 =1
* Let the partial derivative to be zero:
. 6L(w,b,§;a,r)

ow z:l 1 & y.xi =0
OLwbEar) _
) ab ~ iyt =0
. aL(Wébéf:W) =C—-a;—1,=0 <! Make € term disappear

* Then substitute them back to L:
. mlijnL(w, b, ¢ a,r)
w,D,

|




Dual problem

* 14 H T ) = -
C(ZO,T)éO D(a’ ) agr(l),ar)éog’llla’r%l‘(wybl‘f)a;r)

e Dual problem



Dual problem (cont.)

.. LT .
* max W(a) =YY, a; — 2N1ZN LoaytyIxd xt
s. t. O<al_ i=1,..,N

zy\

=0 Surprisingly, this is the only change
ﬂ =

Efficiently solved by SMO algorithm

* When « is solved, w and b can be solved



Revisit the regularized objective

1
* min — wll? +CYN, &
w,

b . .
s.t. y‘(WTx‘ + b) >1-g,
£ >0 i=1.,N

e min = Iw]|? + € XL, max{0,1 — y*
wb 2

[

1,...,N

)

N

SVM hinge loss

41



SVM hinge loss vs. logistic loss

* SVM hinge loss * Logistic loss
* L(y, f(®)) = max{0,1 —yf(x)} < L(y,f(x))=
CFory = 1 —y logo(f(x)) —(1 —y) log (1 - o(f (x)))

— Zero-one loss
— Hinge loss
—— Logistic loss

42



The effect of penalty coefficient

. 1 2 N
° rxg} E “W ~+ C2i=1 Ei

 Large C will result in narrow margin

43



Kernels



Non-linearly separable case

* Feature mapping

&) 0

0

e %

¢(z)

1.0

45



From inner product to kernel function

* SVM

N , N N

W)= ) a; — EEEaiajylyfoTxl

=1 i=1j=1
e Kernel N N N

1 Lay] L 4]

W(a) = EZ a;a;y'y K(x X )
o =1 (=1 j=1
» K(x'x7) = (o(x'), ( )

e Kernel trick:

* For many cases, only K(x xf) are needed, so we can only define these K;; without
explicitly defining @

* For prediction, only need K(xi,x) on support vectors



Property

 If K is a valid kernel (that is, is defined
by some feature mapping @), then

the kernel matrix K = (KU)

RY*N is symmetric positive seml-

definite
* Symmetric
o Kl] = K(xi,xj)

(@(x)), @(x"))

=(o(x') o(x/)) =

— K(xj,xi) — I(ji

Positive semi-definite
Zzzimjzj
>3 oty
53 T o)
222m

TR

k

0.

(

2.

i

2
Zan( (1)))

D)z;



Examples on kernels

e Gaussian kernel

K(x,z) = exp —Hﬁ:_zHQ
' 2) = ex] 52

e Radial basis function (RBF) kernel
* What is the feature mapping @? (Hint: by using Taylor series)

.’I:T

* Simple polynomial kernel K(z,z) = (z'z)
* Cosine similarity kernel K(z,z) = 2] -ﬁz\l

 Sigmoid kernel
K(z,z) = tanh(az 'z + ¢)

1 — 8_2b
1+ e—20

tanh(b) =



Which kernel to select?

RBF, polynomial, or others? @ Commonly used kernels are Gaussian (RBF),

For beginners, use RBF first polynomial, and finear
@ But in different areas, special kernels have been

Linear kernel: special case of RBF
developed. Examples

Accuracy of linear the same as RBF under certain
parameters (Keerthi and Lin, 2003)

Polynomial kernel:

1. x? kernel is popular in computer vision
2. String kernel is useful in some domains

(x/x;/a+ b)*

Numerical difficulties: (< 1)¢ — 0, (> 1)? — o
More parameters than RBF

By Prof. Chih-Jen Lin (NTU) 49



Examples

~0 OO

Original Input Space Feature Space

®:R? - R’

(1, T2) — (21,29, 23) := ('»F% \/(2)131132:3?%)




Demo time

Support Vector Machine in Javascript

Uses SMO algorithm. Find code on Github
Find me on Twitter @karpathy

mouse click: add red data point

e Before we learn how to solve the | . |
optimization problem, let’s have

some relax and see the online
demo of SVM

https://cs.stanford.edu/~karpath
y/svmijs/demo/

C=10 .

Using Rbf kemel with sigma = 050
Mumber of suppert vectors: 10 /10 O
Converged in 31 iterations.

C=1.0 REF Kernel sigma = 1.0


https://cs.stanford.edu/~karpathy/svmjs/demo/

SMO Algorithm



Solve a

* Dual problem

N (L
max W(a) = z a; — Ez z al-ajyiijiji

l
S.t. OSCZL'< ) [ =

 With a* solved, w and b are solved



Coordinate Ascent (Descent)

* For the optimization problem

mo?x W(aq, as, ..., ay)

* Coordinate ascent algorithm
Loop until convergence: {
Fori=1,..., N {

a; = argmax W(ay,...,a;—1,8;, Qiy1,...,0y)
b



Illustration

2.5

15

0.5

|
- -1.4 -1 -0.5 0 0.5 1 1.5 2

A two-dimensional coordinate ascent example

2.5

55



Sequential minimal optimization (SMO)

* Recall the SVM optimizatio}v problem:

N N
1 L T
max W(a) = ) «q; —5 a;a;y'ylx) x
a
i=1 i=1j=1
s.t. 0<a; <C, i=1,..,N
N
i _
2, =
i=1

* The coordinate ascth algorithm cannot be applied directly, because

z aiyi =0= aiyi = Z ajyj

i=1 J#i
* If we hold other a;, we can’t make any changes to a;



Solution

e Update two variable each time
Loop until convergence {

1. Select some pair o; and o; to update next
2. Re-optimize W(a) w.rt. a; and «,

)

* Convergence test: whether the change of W («a) is smaller than a
predefined value (e.g. 0.01)

* Key advantage of SMO algorithm
* The update of a; and «; (step 2) is efficient



SMO (cont.)

N 1N N .. LT
* max W(a) = i=1ai—52i=12j=1aiajyly]x] x!
S.t. ONS a; < C, i=1,..,N
2,y =0
i=1

* Without loss of generality, hold a5 ... ay and
optimize w(a) w.r.t ¢ and a,
N
1 2 _ _ i —
a1y tazy” = Zaiy =<
i=3
= a; =y ({ — azy?)

- iy s
Aoy ey ®=(

58



SMO (cont.)

* With a; = ({ — a,y?)y1, the objective is written as
W(al' Ay, vy aN) — W((Z — azyZ)yl’ 04 FRTY aN)

* Thus the original optimizatign problem

1 LT
max W(a) = z a; — —z z aiajy‘yfoTx‘
o , 2

st O<a;<C i=170,N

Zai}’i =0

is transformed into afzéuadratic Oftimization problem w.rt a,

max aa; +ba, + ¢
a

2
s.t. d<a,<e



SMO (cont.)

e Optimizing a quadratic function is much efficient
* Hint: The interval [0, C] should be revised according to your computation

[’V(a'g)h I’V(afg)h T'V(ag)“

AN N N

0 b C o 0 C o 0 O o
2a

max W(as) = aa’ + bas + ¢
a2

s.t. 0< ap <C(C



Pros and cons of SVM

* Advantages:
* The solution, which is based on convex optimization, is globally optimal
» Can be applied to both linear/non-linear classification problems
* Can be applied to high-dimensional data
* since the complexity of the data set mainly depends on the support vectors

 Complete theoretical guarantee
 Compared with deep learning

* Disadvantages:
* The number of parameters a is number of samples, thus hard to apply to
large-scale problems
* SMO can ease the problem a bit
* Mainly applies to binary classification problems

* For multi-classification problems, can solve several binary classification problems, but
might face the problem of imbalanced data



