
Lecture 6: Neural Networks
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/VE445/index.html


Outline

• Perceptron

• Activation functions

• Multilayer perceptron networks

• Training: backpropagation

• Examples

• Overfitting

• Applications

2



Brief history of artificial neural nets

• The First wave
• 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model

• 1958 Rosenblatt introduced the simple single layer networks now called Perceptrons

• 1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single 
layer perceptrons, and almost the whole field went into hibernation

• The Second wave
• 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was 

rediscovered and the whole field took off again

• The Third wave
• 2006 Deep (neural networks) Learning gains popularity

• 2012 made significant break-through in many applications

3



Biological neuron structure

• The neuron receives signals from their dendrites, and send its own 
signal to the axon terminal 

4



Biological neural communication
• Electrical potential across cell membrane 

exhibits spikes called action potentials

• Spike originates in cell body, travels down axon, 
and causes synaptic terminals to release 
neurotransmitters

• Chemical diffuses across synapse to dendrites 
of other neurons

• Neurotransmitters can be excitatory or 
inhibitory

• If net input of neuro transmitters to a neuron 
from other neurons is excitatory and exceeds 
some threshold, it fires an action potential

5



Perceptron

• Inspired by the biological neuron among humans and animals, researchers 
build a simple model called Perceptron

• It receives signals 𝑥𝑖’s, multiplies them with different weights 𝑤𝑖, and 
outputs the sum of the weighted signals after an activation function, step 
function

6



Neuron vs. Perceptron

7



Artificial neural networks

• Multilayer perceptron network

• Convolutional neural network

• Recurrent neural network

8



Perceptron

9



Training

• 𝑤𝑖 ← 𝑤𝑖 − 𝜂 𝑜 − 𝑦 𝑥𝑖
• 𝑦: the real label

• 𝑜: the output for the perceptron

• 𝜂: the learning rate

• Explanation
• If the output is correct, do nothing

• If the output is higher, lower the weight

• If the output is lower, increase the weight

10



Properties

• Rosenblatt [1958] proved the training can converge if two classes are 
linearly separable and 𝜂 is reasonably small

11



Limitation

• Minsky and Papert [1969] showed that 
some rather elementary computations, 
such as XOR problem, could not be 
done by Rosenblatt’s one-layer 
perceptron

• However Rosenblatt believed the 
limitations could be overcome if more 
layers of units to be added, but no 
learning algorithm known to obtain 
the weights yet

12



Solution: Add hidden layers

• Two-layer feedforward neural network
13



Demo

• Large Larger Neural Networks can represent more complicated functions. 
The data are shown as circles colored by their class, and the decision 
regions by a trained neural network are shown underneath. You can play 
with these examples in this ConvNetsJS demo. 14

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Activation Functions

15



Activation functions

• Sigmoid: 𝜎 𝑧 =
1

1+𝑒−𝑧

• Tanh: tanh 𝑧 =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧

• ReLU (Rectified Linear Unity): 
ReLU 𝑧 = max 0, 𝑧

16

Most popular in fully 
connected neural network

Most popular in 
deep learning



Activation function values and derivatives

17



• Its derivative
𝜎′ 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

• Output range 0,1

• Motivated by biological neurons 
and can be interpreted as the 
probability of an artificial 
neuron “firing” given its inputs

• However, saturated neurons 
make value vanished (why?)

• 𝑓 𝑓 𝑓 ⋯

• 𝑓 0,1 ⊆ 0.5, 0.732

• 𝑓 0.5, 0.732 ⊆ 0.622,0.676

Sigmoid activation function

• Sigmoid

𝜎 𝑧 =
1

1 + 𝑒−𝑧

18



Tanh activation function

• Tanh function

tanh 𝑧 =
sinh(𝑧)

cosh(𝑧)
=

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

19

• Its derivative
tanh ′ 𝑧 = 1 − tanh2(𝑧)

• Output range −1,1

• Thus strongly negative inputs to 
the tanh will map to negative 
outputs

• Only zero-valued inputs are 
mapped to near-zero outputs

• These properties make the 
network less likely to get “stuck” 
during training



ReLU activation function

• ReLU (Rectified linear unity) 
function

ReLU 𝑧 = max 0, 𝑧

20

• Its derivative

ReLU′ 𝑧 = ቊ
1 if 𝑧 > 0
0 if 𝑧 ≤ 0

• ReLU can be approximated by softplus function

• ReLU’s gradient doesn't vanish as x increases

• Speed up training of neural networks
• Since the gradient computation is very simple

• The computational step is simple, no exponentials, no 
multiplication or division operations (compared to others)

• The gradient on positive portion is larger than 
sigmoid or tanh functions

• Update more rapidly

• The left “dead neuron” part can be ameliorated by Leaky 
ReLU



ReLU activation function (cont.)

• ReLU function
ReLU 𝑧 = max 0, 𝑧

21

• The only non-linearity comes from the path 
selection with individual neurons being active or 
not

• It allows sparse representations:
• for a given input only a subset of neurons are active

Sparse propagation of activations and gradients



Multilayer Perceptron Networks

22



Neural networks

• Neural networks are built by connecting many perceptrons together, 
layer by layer

23



Universal approximation theorem

• A feed-forward network with a single hidden layer containing a finite 
number of neurons can approximate continuous functions

24

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal
approximators." Neural networks 2.5 (1989): 359-366

1-20-1 NN approximates 
a noisy sine function



Increasing power of approximation

• With more neurons, its approximation power increases. The decision 
boundary covers more details 

• Usually in applications, we use more layers with structures to 
approximate complex functions instead of one hidden layer with 
many neurons 25



Common neuron network 
structures at a glance

26



Multilayer perceptron network

27



Single / Multiple layers of calculation

• Single layer function
𝑓𝜃 𝑥 = 𝜎 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2

• Multiple layer function
• ℎ1 𝑥 = 𝜎 𝜃0

1 + 𝜃1
1𝑥1 + 𝜃2

1𝑥2
• ℎ2 𝑥 = 𝜎 𝜃0

2 + 𝜃1
2𝑥1 + 𝜃2

2𝑥2
• 𝑓𝜃 ℎ = 𝜎 𝜃0 + 𝜃1ℎ1 + 𝜃2ℎ2

28

𝑥1 𝑥2

𝑓𝜃

𝑥1 𝑥2

𝑓𝜃

ℎ2ℎ1



Training
Backpropagation

29



How to train?

• As previous models, we use gradient descent method to train the 
neural network

• Given the topology of the network (number of layers, number of 
neurons, their connections), find a set of weights to minimize the 
error function

OutputTarget
The set of 
training 

examples

30



Gradient interpretation

• Gradient is the vector (the red one) along which the value of the 
function increases most rapidly. Thus its opposite direction is where 
the value decreases most rapidly.

31



Gradient descent

• To find a (local) minimum of a function using gradient descent, one 
takes steps proportional to the negative of the gradient (or an 
approximation) of the function at the current point

• For a smooth function 𝑓(𝑥), 
𝜕𝑓

𝜕𝑥
is the direction that 𝑓 increases most 

rapidly. So we apply 

𝑥𝑡+1 = 𝑥𝑡 − 𝜂
𝜕𝑓

𝜕𝑥
(𝑥𝑡)

until 𝑥 converges

32



Gradient descent

Gradient

Training Rule

i.e.

Update

Partial derivatives 
are the key

33



The chain rule

• The challenge in neural network model is that we only know the 
target of the output layer, but don’t know the target for hidden and 
input layers, how can we update their connection weights using the 
gradient descent?

• The answer is the chain rule that you have learned in calculus

𝑦 = 𝑓(𝑔(𝑥))

⇒
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑔(𝑥))𝑔′(𝑥)

34



Feed forward vs. Backpropagation

35



Make a prediction

36

𝑡1

𝑡𝑘



Make a prediction (cont.)

37

𝑡1

𝑡𝑘



Make a prediction (cont.)

38

𝑡1

𝑡𝑘



Backpropagation
• Assume all the activation functions are sigmoid

• Error function 𝐸 =
1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

•
𝜕𝐸

𝜕𝑦𝑘
= 𝑦𝑘 − 𝑡𝑘

•
𝜕𝑦𝑘

𝜕𝑤
𝑘,𝑗
(2) = 𝑓(2)

′ 𝑛𝑒𝑡𝑘
(2)

ℎ𝑗
(1)

= 𝑦𝑘 1 − 𝑦𝑘 ℎ𝑗
(1)

• ⇒
𝜕𝐸

𝜕𝑤
𝑘,𝑗
(2) = − 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘 ℎ𝑗

(1)

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

39

𝛿𝑘
(2)

𝑡1

𝑡𝑘

Output of unit 𝑗



Backpropagation (cont.)
• Error function 𝐸 =

1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

•
𝜕𝐸

𝜕𝑦𝑘
= 𝑦𝑘 − 𝑡𝑘

• 𝛿𝑘
(2)

= 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

•
𝜕𝑦𝑘

𝜕ℎ𝑗
(1) = 𝑦𝑘 1 − 𝑦𝑘 𝑤𝑘,𝑗

(2)

•
𝜕ℎ𝑗

(1)

𝜕𝑤𝑗,𝑚
(1) = 𝑓(1)

′ 𝑛𝑒𝑡𝑗
(1)

𝑥𝑚 = ℎ𝑗
(1)

1 − ℎ𝑗
(1)

𝑥𝑚

•
𝜕𝐸

𝜕𝑤
𝑗,𝑚
(1) = −ℎ𝑗

(1)
1 − ℎ𝑗

(1)
σ𝑘𝑤𝑘,𝑗

2
𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘 𝑥𝑚

= −ℎ𝑗
(1)

1 − ℎ𝑗
(1)

෍

𝑘

𝑤𝑘,𝑗
2
𝛿𝑘
(2)

𝑥𝑚

• ⇒ 𝑤𝑗,𝑚
(1)

← 𝑤𝑗,𝑚
(1)

+ 𝜂𝛿𝑗
(1)
𝑥𝑚

40

𝛿𝑗
(1)

𝑡1

𝑡𝑘



Backpropagation algorithms

• Activation function: sigmoid

Initialize all weights to small random numbers

Do until convergence

• For each training example:
1. Input it to the network and compute the network output
2. For each output unit 𝑘, 𝑜𝑘 is the output of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘
3. For each hidden unit 𝑗, 𝑜𝑗 is the output of unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 ෍

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

4. Update each network weight, where 𝑥𝑖 is the output for unit 𝑖

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖
41

• Error function 𝐸 =
1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

• 𝛿𝑘
(2)

= 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

• 𝛿𝑗
(1)

= ℎ𝑗
(1)

1 − ℎ𝑗
(1) σ𝑘𝑤𝑘,𝑗

2
𝛿𝑘
(2)

• ⇒ 𝑤𝑗,𝑚
(1)

← 𝑤𝑗,𝑚
(1)

+ 𝜂𝛿𝑗
(1)
𝑥𝑚



See the backpropagation demo

• https://google-developers.appspot.com/machine-learning/crash-
course/backprop-scroll/

42

https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/


Formula example for backpropagation

43



Formula example for backpropagation (cont.)

44



Calculation example

• Consider the simple network below:

• Assume that the neurons have sigmoid activation function and 
• Perform a forward pass on the network and find the predicted output

• Perform a reverse pass (training) once (target = 0.5) with 𝜂 = 1

• Perform a further forward pass and comment on the result

45



Calculation example (cont.)

46

• For each output unit 𝑘, 𝑜𝑘 is the output
of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘

• For each hidden unit 𝑗, 𝑜𝑗 is the output of 
unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 ෍

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

• Update each network weight, where 𝑥𝑖 is 
the input for unit 𝑗

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖



Calculation example (cont.)

• Answer (i)
• Input to top neuron = 0.35 × 0.1 + 0.9 × 0.8 = 0.755. Out=0.68
• Input to bottom neuron = 0.35 × 0.4 + 0.9 × 0.6 = 0.68. Out= 0.6637
• Input to final neuron = 0.3 × 0.68 + 0.9 × 0.6637 = 0.80133. Out= 0.69

• (ii) It is both OK to use new or old weights when computing 𝛿𝑗 for hidden units

• Output error 𝛿 = 𝑡 − 𝑜 𝑜 1 − 𝑜 = 0.5 − 0.69 × 0.69 × 1 − 0.69 = −0.0406
• Error for top hidden neuron 𝛿1 = 0.68 × 1 − 0.68 × 0.3 × −0.0406 = −0.00265
• Error for top hidden neuron 𝛿2 = 0.6637 × 1 − 0.6637 × 0.9 × −0.0406 = −0.008156
• New weights for the output layer

• 𝑤𝑜1 = 0.3 − 0.0406 × 0.68 = 0.272392

• 𝑤𝑜2 = 0.9 − 0.0406 × 0.6637 = 0.87305

• New weights for the hidden layer

• 𝑤1𝐴 = 0.1 − 0.00265 × 0.35 = 0.0991

• 𝑤1𝐵 = 0.8 − 0.00265 × 0.9 = 0.7976

• 𝑤2𝐴 = 0.4 − 0.008156 × 0.35 = 0.3971

• 𝑤2𝐵 = 0.6 − 0.008156 × 0.9 = 0.5927

• (iii)
• Input to top neuron = 0.35 × 0.0991 + 0.9 × 0.7976 = 0.7525. Out=0.6797
• Input to bottom neuron = 0.35 × 0.3971 + 0.9 × 0.5927 = 0.6724. Out= 0.662
• Input to final neuron = 0.272392 × 0.6797 + 0.87305 × 0.662 = 0.7631. Out= 0.682
• New error is −0.182, which is reduced compared to old error −0.19

47

• For each output unit 𝑘, 𝑜𝑘 is the output
of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘

• For each hidden unit 𝑗, 𝑜𝑗 is the output of 
unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 ෍

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

• Update each network weight, where 𝑥𝑖 is 
the input for unit 𝑗

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖



More on backpropagations

• It is gradient descent over entire network weight vectors

• Easily generalized to arbitrary directed graphs

• Will find a local, not necessarily global error minimum
• In practice, often work well (can run multiple times)

• Often include weight momentum 𝛼
Δ𝑤𝑗,𝑖 𝑛 ← 𝜂𝛿𝑗𝑥𝑖 + 𝛼Δ𝑤𝑗,𝑖(𝑛 − 1)

• Minimizes error over training examples
• Will it generalize well to unseen examples?

• Training can take thousands of iterations, slow!

• Using network after training is very fast
48



An Training Example

49



Network structure

• What happens when we train a network? 

• Example:

50



Input and output

• A target function:

• Can this be learned?
51



Learned hidden layer

52



Convergence of sum of squared errors

53



Hidden unit encoding for 01000000

54



Convergence of first layer weights

55



Convergence of backpropagation

• Gradient descent to some local minimum
• Perhaps not global minimum

• Add momentum

• Stochastic gradient descent

• Train multiple nets with different initial weights

• Nature of convergence
• Initialize weights near zero

• Therefore, initial networks near-linear

• Increasingly approximate non-linear functions as training progresses

56



Expressiveness of neural nets

• Boolean functions:
• Every Boolean function can be represented by network with single hidden 

layer

• But might require exponential (in number of inputs) hidden units

• Continuous functions:
• Every bounded continuous function can be approximated with arbitrarily 

small error, by network with one hidden layer

• Any function can be approximated to arbitrary accuracy by network with two 
hidden layers

57



Tensorflow playground

• http://playground.tensorflow.org/ 58

http://playground.tensorflow.org/


Overfitting

59



Two examples of overfitting

60



Avoid overfitting

• Penalize large weights:

• Train on target slopes as well as values:

• Weight sharing
• Reduce total number of weights

• Using structures, like convolutional neural networks

• Early stopping

• Dropout 61



Applications

62



Autonomous self-driving cars

• Use neural network to summarize observation information and learn 
path planning

63



Autonomous self-driving cars (cont.)

64



A recipe for training neural networks

• By Andrej Karpathy

• https://karpathy.github.io/2019/04/25/recipe/

65

https://karpathy.github.io/2019/04/25/recipe/

