
Lecture 7: Convolutional 
Neural Networks

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/VE445/index.html


Outline

• Motivation

• Convolution in math and NN

• Usage and parameters

• Training techniques

• Famous neural networks

2



Motivation

3



Previous pipeline of pattern recognition

• The black box in a traditional pattern recognition problem

4



Hand engineered features

• Feature is of critical importance in machine learning, and there are 
many things to consider when design the features manually:
• How to design a feature?

• What is the best feature?

• Time and money cost in feature engineering.

• Question: Can feature be learned automatically?

5



Objective

• Learn features and classifier at the same time

• Learn an end-to-end recognition system
• A non-linear map that takes raw pixels directly to labels

6



Convolution neural networks

• Is an answer of an end-to-end recognition system

• Contains the following layers with flexible order and repetitions
• Convolution layer

• Activation layer (ReLU)

• Pooling layer

• Example of CNN:

7



Convolution in Math and NN

8



Example of convolution in math

• Suppose we have two dice with probability over 
1,2, … , 6 are 𝑓 and 𝑔 respectively. We roll two 
dice. Then what is the probability that the sum 
of the two dice is 4?

• 𝑓 ∗ 𝑔 𝑛 = σ𝑖 𝑓 𝑖 𝑔(𝑛 − 𝑖)

9



Convolution in math – continuous case

10

𝑓 ∗ 𝑔 𝑥 = න

−∞

∞

𝑓 𝜏 𝑔 𝑥 − 𝜏 𝑑𝜏



Convolution in neural networks

• Given an input matrix (e.g. an image)

• Use a small matrix (called filter or 
kernel) to screening the input at 
every position of the input matrix

• Put the convolution results at 
corresponding positions

11



An animation example

12



Advantage – sparse connections

• Less computing burden

• In fully connected layer (top), every 𝑠 is linked 
to every input 𝑥, so there are 5 × 5 = 25
connecting edges

• In the convolution layer (bottom) with filter 
width 3, e.g. 𝑠2 is a weighted sum of 
𝑥1, 𝑥2, 𝑥3, so there is no weight connecting 𝑠2
and 𝑥4, 𝑥5. In this example, there are 13
connecting edges

13



Advantage – weight sharing

• When moving the filter, we don’t change the 
weights inside the filter and these weights are 
shared at different connecting edges

• In fully connected layer (top), there are 25
connecting edges. The weights on different edges 
are different parameters.

• In convolution layer (bottom), there are 13
connecting edges. But since 

𝑠2 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3
𝑠3 = 𝑤1𝑥2 +𝑤2𝑥3 +𝑤3𝑥4

the number of different weights is even smaller. In 
this case, there are 3 different weights (just the 
size of the filter!). E.g. the weights on the black 
arrows are the same.

14



Interpretation of convolution

• Convolution can be used to find an 
area with particular patterns!

• Example: 
• The filter in the left represents the 

edge in the right, which is the back of 
a mouse

15



Interpretation of convolution (cont.)

• When the filter moves to the back of the mouse, the convolution 
operation will generate a very large value

16



Interpretation of convolution (cont.)

• When the filter moves to other positions, it will generate small values 

17



Visualization

• Train the InceptionV3 model (by Google) on the ImageNet dataset

• Then test it on a flower image from the test dataset
• Example input image:

• Then let’s look at the outputs of different convolutional layers

18



Visualization (cont.)

• The outputs of the filters in the first layer

19



Visualization (cont.)

• The outputs of the filters in the fourth layer

20



Visualization (cont.)

• The outputs of the filters in the ninth layer

21



Visualization (cont.)

• Summary
• The filters in the deeper layers characterize more abstract patterns

• Layers that are deeper in the network visualize more training data specific 
features

• While the earlier layers tend to visualize general patterns like edges, texture, 
background

22



Usage and parameters

23



1 × 1 convolution

• Here we introduce a special filter, which as a size of 1 × 1

• The 1 × 1 convolution cannot detect edges with any shape, so is it 
really useful? Or is it redundant?

24

Convolution with large kernel Convolution with 1*1 kernel



1 × 1 convolution (cont.)
• The 1 × 1 convolution is very useful as it can reduce the computation 

complexity in CNN!

• Help reduce the number of channels

• In the example above, the size of the input data is reduced from 4 × 4 × 5
to 4 × 4 × 3

• Usually we assume the depth of the filter is the same with depth of data
25



1 × 1 convolution (cont.)

• 1 × 1 convolution filter is usually followed by 3 × 3 or other bigger 
filters. In this way, the computational complexity is greatly reduced

• This architecture is used in Google’s inception model

26



Filter depth

27

Convolve the filter with the image i.e. 
“slide over the image spatially, computing 
dot products”

filters always extend the full depth of the input 
volume



Stride

• The distance that the filter is moved in each step

• Examples of stride=1 and stride=2

28



Padding

• A solution to the problem of data shrinking

• Data shrinking: as convolution can only happen within the border of 
the input data, the size of the data will become smaller as the 
network becomes deeper

• 1D Example: 
• suppose the filter width is 6, 

the data will shrink 5 pixel each layer

29



Padding (cont.)
• Add numbers (usually zero, called zero padding) around the input 

data to make sure that the size of the output data is the same as that 
of the input data

• Left padding = 3, right padding = 2

• Usually left padding + right padding = filter width – 1

30



Example

• Input 7x7 (white area)

• 3x3 filter, applied with stride 1

• pad with 1 pixel border (dark area)

• => what is the size of the output?

31



Example (cont.)

• Input 7x7 (white area)

• 3x3 filter, applied with stride 1

• pad with 1 pixel border (dark area)

• => what is the size of the output?

• 7x7 output!

32



Example (cont.)

• Input 7x7 (white area)

• 3x3 filter, applied with stride 1

• pad with 1 pixel border (dark area)

• => what is the size of the output?

• 7x7 output!

• In general, convolution layers with stride 1, 
filters of size FxF, and zero-padding with (F-1)/2. 
(will preserve size spatially)

• e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3 33



Example 2

• Input volume: 32 × 32 × 3

• 10 5 × 5 filters with stride 1, pad 2

• Output volume size: ?

34



Example 2 (cont.)

• Input volume: 32 × 32 × 3

• 10 5 × 5 filters with stride 1, pad 2

• Output volume size: ?

• Filter size 5, pad = 𝐹 − 1 /2, 
so keep the size 32 × 32 spatially

• 10 5 × 5 filters means 10 5 × 5 × 3 filters

• So 32 × 32 × 10

35



Pooling layer

• Make the representations denser and more manageable

• Operate over each activation map independently:

36



Example of pooling layer

• Pooling of size 2 × 2 with stride 2

• Most common pooling operations are max and average

37



Activation functions (Review)

• Sigmoid: 𝜎 𝑧 =
1

1+𝑒−𝑧

• Tanh: tanh 𝑧 =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧

• ReLU (Rectified Linear Unity): 
ReLU 𝑧 = max 0, 𝑧

38

Most popular in fully 
connected neural network

Most popular in 
deep learning



ReLU activation function

• ReLU (Rectified linear unity) 
function

ReLU 𝑧 = max 0, 𝑧

39

• Its derivative

ReLU′ 𝑧 = ቊ
1 if 𝑧 > 0
0 if 𝑧 ≤ 0

• ReLU can be approximated by softplus function

• ReLU’s gradient doesn't vanish as x increases

• Speed up training of neural networks
• Since the gradient computation is very simple

• The computational step is simple, no exponentials, no 
multiplication or division operations (compared to others)

• The gradient on positive portion is larger than 
sigmoid or tanh functions

• Update more rapidly

• The left “dead neuron” part can be ameliorated by Leaky 
ReLU



ReLU activation function (cont.)

• ReLU function
ReLU 𝑧 = max 0, 𝑧

40

• The only non-linearity comes from the path 
selection with individual neurons being active or 
not

• It allows sparse representations:
• for a given input only a subset of neurons are active

Sparse propagation of activations and gradients



A typical CNN structure

• Convolution/Activation (ReLU)/Pooling layers appear in flexible order 
and flexible repetitions

41



Training Techniques

42



Dropout

• Dropout randomly ‘drops’ units from a layer on each training step, 
creating ‘sub-architectures’ within the model

• It can be viewed as a type of sampling a small network within a large 
network

• Prevent neural networks from overfitting

43Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning 
Research 15.1 (2014): 1929-1958.



Dropout (cont.)

• Forces the network to have a redundant representation

• Increase robustness in prediction power

44



Weights initialization

• If the weights in a network start too small,
• then the signal shrinks as it passes through each layer until it’s too tiny to be 

useful

• If the weights in a network start too large,
• then the signal grows as it passes through each layer until it’s too massive to 

be useful

45



Weights initialization (cont.)

• All zero initialization

• Small random numbers

• Draw weights from a Gaussian distribution

• with the standard deviation of 
2

𝑛

• 𝑛 is the number of inputs to the ending neuron

46



Batch normalization

• Batch training: 
• Given a set of data, each time a small portion of data are put into the model 

for training

• Extreme example
• Suppose we are going to learn some pattern of people, and the input data are 

people’s weights and heights

• Unluckily, women and men are divided into two batches when we randomly 
split the data

• As the weights and heights of women are very different from these of men, 
the neural network have to make huge changes to the weight when we switch 
the batch during training, which will cause slow convergence or even 
divergence

47



Batch normalization (cont.)

• The problem in the example is called Internal Covariate Shift
• The solution to Internal Covariate Shift is batch normalization

• Suppose 𝑍𝑗
(𝑖)

is the ith input for the jth neuron in the input layer

• Or normalize the whole input layer together

48



Batch normalization (cont.)

• 2D example

49



Example of batch normalization

• Without batch normalization
• Slow convergence and fluctuation 

50



Famous Neural Networks

51



LeNet

• LeNet [LeCun et al., 1998]

52

Input: 28*28*1 image, Conv filters of size 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]



AlexNet [Krizhevsky et al. 2012]

• AlexNet:

53

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? 



AlexNet (cont.)

• AlexNet:

54

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]



AlexNet (cont.)

• AlexNet:

55

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]
Q: What is the total number of parameters in this layer?



AlexNet (cont.)

• AlexNet:

56

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]
Q: What is the total number of parameters in this layer? (11*11*3)*96 = 35K



AlexNet (cont.)

57



VGGNet

• VGGNet: [Simonyan and Zisserman, 
2014]

• Only 3x3 CONV stride 1, pad 1 and 2x2 
MAX POOL stride 2

• 11.2% top 5 error in ILSVRC 2013
• ImageNet Large Scale Visual Recognition 

Challenge 2013

• 7.3% top 5 error

58

Best model



GoogleNet

• GoogleNet: [Szegedy et al., 2014]

ILSVRC 2014 winner (6.7% top 5 error)

59



GoogleNet (cont.)

• GoogleNet

60

Fun features:
- Only 5 million parameters! 
(Removes FC layers 
completely)
Compared to AlexNet:
- 12X less parameters
- 2x running speed
- Error rate 6.67% (vs. 
16.4%)



ResNet

• ResNet [He et al., 2015]
• Residual networks

• Solves the problem of drifting by adding the original input to later layers

61



ResNet (cont.)

• ResNet: ILSVRC 2015 winner (3.6% top 5 error)

62



DenseNet

• DenseNet

63



64



Revolution of depth

65



Architecture comparison

66


